Session 1

parallel processing
Reason
= Parallel processing divides a large task into smaller subtasks
= Database processing works well with parallelism (coarse-grained parallelism)
= Lesser complexity but need to work with a large volume of data
The primary objective of parallel database processing is to gain performance improvement
Measure
Throughput: the number of tasks that can be completed within a given time interval

Response time: the amount of time it takes to complete a single task from the time it is
submitted

Speed up:
— Performance improvement gained because of extra processing elements added
— Running a given task in less time by increasing the degree of parallelism
Scale up:
— Handling of larger tasks by increasing the degree of parallelism
— The ability to process larger tasks in the same amount of time by providing
more resources.
4 Superlinear Speed Up
Linear-Speed Up
Speed up

Sublinear Speed up

N
Resources Figure 1.1 Speed up

Session 2

Parallel Obstacles

Start-up and Consolidation costs

Start up: initiation of multiple processes

Consolidation: the cost for collecting results obtained from each processor by
a host processor

Interference and Communication, and

Skew

Number of Records

Interference: competing to access shared resources

Communication:; one process communicating with other processes, and often

one has to wait for others to be ready for communication (i.e. waiting time).

Unevenness of workload

Skew

(‘Ril}

Zipf distribution model to model skew. Measured in terms of different sizes of fragments
allocated to the processors |R|
|R,‘|=7_V where 0 <6 < 1 (2.1
"% ¥ #
j=1"

indicates highly skewed
|R] is number of records in the table, |Ri] is number of records in processor i, and N is
number of processor (j is a loop counter, starting from 1 to)

Example: |[R|=100,000 records, N=8 processors

No Skew
Highly Skewed
40000 2 40000
30000 § 30000 4
o=
20000 5 o 20000
0 T T T T T T T ; 0 v T | r H - |_| - l_l - ’_l T /|
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Processor Number Processor Number

Forms of Parallelism

» Interquery parallelism

Speeding up the processing of a query by executing in parallel different operations in a query
expression. (e.g. simultaneous sorting or searching)

Different queries or transactions are executed in parallel with one another

Main aim: scaling up transaction processing systems

» Intraquery parallelism

Speeding up the processing of a query by parallelizing the execution of each individual
operation (e.g. parallel sort, parallel search, etc)

— Execution of a single query in parallel on multiple processors and disks
— Main aim: speeding up long-running queries

» Interoperation parallelism
— Parallelism created by concurrently executing different operations within the
same query or transaction
» Intraoperation parallelism

Parallelism due to the data being partitioned
» Pipeline Parallelism

— Multiple operations form some sort of assembly line to manufacture the query
results

» Independent Parallelism

— Operations in a query that do not depend on one another are executed in parallel

Parallel computers

» Shared-memory architecture

— Shared-Memory: all processors share a common main memory and secondary memory

— Load balancing is relatively easy to achieve, but suffer from memory and bus contention
» Shared-disk architecture

— Shared-Disk: all processors, each of which has its own local main memory, share the disks
» Shared-nothing architecture

— Shared-Disk: all processors, each of which has its own local main memory, share the disks

— Load balancing becomes difficult

» Shared-something architecture

Basic Data Partitioning
» Round-robin data partitioning
Each record in turn is allocated to a processing element in a clockwise manner
Data evenly distributed, hence supports load balance
» Hash data partitioning
A hash function is used to partition the data
Hence, data is grouped semantically, that is data on the same group shared the same hash value

» Range data partitioning

Spreads the records based on a given range of the partitioning attribute
» Random-unequal data partitioning

This is common especially when the operation is actually an operation based on temporary results
obtained from the previous operations

Complex Data Partitioning

» Hybrid-Range Partitioning Strategy (HRPS)

Partitions the table into many fragments using range, and the fragments are distributed to all processors
using round-robin

» Multiattribute Grid Declustering (MAGIC)

Based on multiple attributes - to support search queries based on either of data partitioning attributes
Support range and exact match search on each of the partitioning attributes

Search Algorithms

» Processor activation or involvement

The number of processors to be used by the algorithm

If we know where the data to be sought are stored, then there is no point in activating all other
processors in the searching process

Depends on the data partitioning method use

» Local searching method

The searching method applied to the processor(s) involved in the searching process
Depends on the data ordering, regarding the type of the search (exact match of range)
» Key comparison

Compare the data from the table with the condition specified by the query

When a match is found: continue to find other matches, or terminate

Depends on whether the data in the table is unique or not

Session 3 - Join

Parallel Join Algorithms

Parallelism of join queries is achieved through data parallelism, whereby the same task is applied to
different parts of the data. After data partitioning is completed, each processor will have its own data to
work with using any serial join algorithm

Divide and Broadcast
: data partitioning using the divide and broadcast method, and a local join

Divide one table into multiple disjoint partitions(range or hash partitioning), where each partition is
allocated a processor, and broadcast the other table to all available processors

» Serial Join Algorithms

— Nested loop join algorithm

For each record of table R, it goes through all records of table S

— Sort-merge join algorithm

Both tables must be pre-sorted based on the join attribute(s). If not, then both tables must be sorted
first, then merge the two sorted tables

— Hash-based join algorithm

The records of files R and S both hashed to the same hash file, using the same hashing functionon the
join attributes Aof Rand Bof Sas hash keys

> Cost Models for Parallel Join

- Scan cost for loading data from local disk in each processor is:
(Si/P)x 10

- Select cost for getting record out of data page is:
|Si| x (tr + tw)

- Join costs involve reading, hashing, and probing:
(IR0 x (¢r + th) + (|S] X (fr + th + 1))

- Generating result records cost is: |RI| X o X |S| X tw

- Disk cost for storing the final resultis: (ng X RiX g/ Xng X S/P) x IO
Storing cost = (S/P - Si/P) x (10)

|S| = 600 records, each record has the length of 100 bytes, and N=3.

Table 21 Cost powmtions

Symbal | Deseription

Solution: Data
S = 60000 bytes &
Si = S/N = 60000/3 = 20000 bytes &

|S| = 600 records o

|Si| = 600/3 = 200 records i

7]

Divide and Broadcast based parallel join T

Transfer cost = (Si/P) x (N-1) x (mp+ml)

[ommunication cost

Receiving cost = (S/P - Si/P) x (mp) my T Momoge ool o e pe

| Message latency for ane page

Table 2.1 Cost notations

Symbaol Description

Data parameters

R Size of table in bytes

R; Size of table fragment in bytes on processor i
IR Number of records in table R

IR Number of records in table R on processor i
Systems parameters

N Number of processors

P Page size

H Hash table size

Query parameters

n Projectivity ratio

o Selectivity ratio

Time unit cost

10 Effective time to read a page from disk

f, Time to read a record in the main memory
fy Time to write a record to the main memory
fd Time to compute destination

Communication cost

mp Message protocol cost per page

my Message latency for one page

> Parallel Outer Join

Steps Step 1: Distribute or ~ Step 1: Replication. We duplicate the Step 1: Replication. We broadcast

reshuffle the data small table. the left table.
based on the join
attribute. Step 2: Local Inner Join Step 2: Local Inner Join
Step 2: Each Step 3: Hash redistribute the inner join Step 3: Select the ROW D of left
processor performs the result based on attribute X. table with no matches.
Local outer Join. Step 4: Redistribute the ROW ID.
Step 4: Local outer join Step 5: Store the ROW ID that
appears as many times as the
number of processors.
Step 6: Inner join
Pros fast performance, only None. ROJA is faster than DOJA. Redistributes dangling row IDs
two steps instead of actual records.
Cons redistribution of data -> In the replication step, if the table is large, In the replication step, if the table is
data skew, the replication cost is expensive. large, the replication cost is
communication cost expensive.

In the distribution step, data skew and
communication cost similar to ROJA

0JSO (Outer Join Skew Optimization)

Step 1: Redistribute R and S (same as the previous example)

Step 2: (a) Outer Join R and S, but the results are divided into Jaredis and Jiocal
Step 2: (b) Redistribute Jareis and T; and do an outer join

Step 3: Union the final results in each processor

Session 4

Parallel External Sort

External sorting assumes that the data does not fit into main memory
» Parallel Merge-All Sort

Two phases: local sort and final merge

Problems with merging:Heavy load on one processor

» Parallel Binary-Merge Sort

Local sort similar to traditional method, Merging in pairs only (&% “{>merge)
L TE1]

» Parallel Redistribution Binary-Merge Sort

Redistribute: LR T #HIL© Arangedt TEHDX (1-5, 6-10...)

» Parallel Redistribution Merge-All Sort

LT E2]

» Parallel Partitioned Sort

LT E3]

[1] [=] m|
L] L] 2]
a [¥] m| Sorted it
[+] [=] m|
o m o

Parallel Redistribution Binary-Merge
Sort

Parallelism at all levels in the
pipeline hierarchy

Step 1: local sort

Step 2: redistribute the results of
local sort

Step 3: merge using the same
pool of processors

Korted smeng
and wikin fiter

drtermediste meree

Redistribativn

Benefit: merging becomes lighter
than without redistribution
Problem: height of the tree

MONASH
UI'PNGTSFW Figure 4.6 Parallel redistribution binary-merge sort

1 [[51]

Parallel Redistribution Merge-All Sort E st
o m [
Reduce the height of the tree, and E|

still maintain parallelism =
Like parallel merge-all sort, but with
redistribution
The advantage is true parallelism in
merging
Skew problem in the merging

ecords prom the NI speratar

Figure 4.7 Parallel redistribution merge-all sort

MONASH
University

Parallel Partitioned Sort

Two stages: Partitioning stage and
Independent local work

Partitioning (or range redistribution) may
raise load skew

Local sort is done after the partitioning,
not before

No merging is necessary

Main problem: Skew produced by the
partitioning

Figure 4.8 Farallel paniioned son

MONASH
27 University

Parallel Group By

» Traditional Methods

Step 1: local aggregate in each processor

Step 2: global aggregation

» Two-Phase Method

Step 1: local aggregate in each processor. Each processor groups local records according to the
groupby attribute

Step 2: global aggregation where all temp results from each processor are redistributed and then final
aggregate is performed in each processor

> Redistribution Method
Step 1 (Partitioning phase): redistribute raw records to all processors
Step 2 (Aggregation phase): each processor performs a local aggregation

Two-phase method works well when the number of groups is small, whereas the Redistribution method
works well when the number of groups is large
#dEs)\ B filocal aggregatefE 2R/, K ¥IRE A9 f&local aggregate?E % .

Session 5 — Machine Learning

Model: A specification of a mathematical (or probabilistic) relationship that exist between multiple
different variables

Machine learning: Creating, Modifying and Implementing models that are learnt from data

Algorithm Typical usage

Linear regression Regression

Logistic regression (lassification (we know, it has regression in the name!)
Decision trees Both

Gradient boosted trees Both

Random forests Both

Naive Bayes (lassification

Support vector machines (SVMs) Classification

9

Unsupervised : Instead of predicting a label, unsupervised ML helps you to better understand the
structure of your data.

Bias: is the gap between the value predicted by the model and the actual value of the data
Variance: measures the distance of the predicted values in relation to each other.

Overfitting (high variance, low bias) is a model that performs well on the training data but generalizes
poorly to any new data

Underfitting (low variance, high bias) is an overly simple model that does not perform well even on
the training data.

Precision: measures the % of the correct classification from the predicted members: true positives /
(true positives + false positives)

Recall: measures the % of the correct classification from the overall members: true positives / (true
positives + false negatives)

F1: measures the balances of precision and recall: 2*((precision*recall) / (precision + recall))
String Indexing: Encoding a string column of labels to a column of label indices

One Hot Encoding: Maps a categorical feature represented as a label index to a binary vector.
Using this encoding and allowing the model to assume a natural ordering between categories may
result in poor performance or unexpected results.

TF-IDF

The term frequency (TF), which is the number of times the term occurs in that document, and

The inverse document frequency (IDF), which measures how (in)frequently a term occurs across the
whole document corpus.

. - Document 1 Document 2
Calculating IDF for “this":
. ipian Document 1 Document 2 |0l - 2 Term Term Count Term | Term Count
Calculating TF for “this™:
Term Term Count Term Term Count DFit. Dl -2 his 1 this i
TF (this”, d1} - 1/5-02 this 1 this 1 e i I
; IDF {"this”. D} = log {3/ D=0 |8 1 s 1
TF (‘this”, d2) = 1/7 - 0.4 ! 9(3/31-0
(Approx.) is 1 is 1] 2 anolher | 2
a 2 another | 2 Dol sample 1 example | 3
IDF(t, D) = 1og =,
sample | 1 example | 3 ' DRt 1) +1

SEETR SR PRI M X 2 09 B B R R
DIt X448, DFtR XM BFHAA S DN XHEE, XERNXEEE T2
B EE

— Document 1 Document 2
Calculating TF-IDF for “this™ Term Term Count Term | Term Count
TF-IDF ("this". d1.D)=02"0=0 this 1 this 1
TF-IDF (this’, d2. D)-014°0-0 ® t 3 L
a 2 another | 2
sample | 1 example | 3

TFIDF(t,d,D) = TF(t,d) - IDF(t,D).

Data parallelism: Vertical Partitioning of Training dataset (#&3//£/4")
Result parallelism: Horizontal Data Partitioning(#/&.£/4")

Classification Algorithms
» Decision Trees
It splits the sample into two or more homogeneous sets (leaves) based on the most significant
differentiators in the input variables.
Advantages: Easy to generate rules.There are almost null hyper-parameters to be tuned.
Disadvantages: Might suffer from overfitting.Does not easily work with non-numerical data.
» Random Forest
Random forest (or random forests) is an ensemble classifier that consists of many decision trees and
outputs the class that is the mode of the class's output by individual trees.

> ID3itEIiTE

10

entropy(Weather=Fine) =4/7xlog(7/4) + 3/7xlog(7/3) [Rech [Weather Temperature | Time | Day Jog (Tacger Clins)

Fine Mild Sunsct Yes

=0.2966 Fing Hot Sunsct Yes
| 3 Shower Mild fidday Mo
(1 7‘4) Thunderstorm | Cool Daum Mo

Shower lot Sumset

Fine lot Midday
Fine o0l L
T d [

Yes
‘o
o

entropy(Weather=Shower) = 1/4xlog(4/1) + 3/4xlog(4/3)
=1.2442

0
Yes
Vs

(17.5)

=== |2 e i] = [] 2

H

Shower fild Jawn

* Step 2: Process attribute Weather 13| Fine Cool Dawn | Weekday

14 Thunderstorm [Mild Sunzer Weekend
. . “Thunds Hot Midday Weekday
* Calculate weighted sum entropy of attribute Weather: Figure 17.11. Training dataset

entropy(Fine) = 0.2966

entrapy(Shower) = 0442 I T
entropy(Thunderstorm)=0 + 4/4xlog(4/4)=0 Yes No

weighted sum entropy(Weather) = 0.2035

FlEEE|F

Fine 4 z 7

* Caleulate information gain for attribute Weather: \woather Shower 1
gain (Weather) = 0.0729

L U R n A]

Weighted sum entropy (Weather) = Weighted entropy (Fine)
+ Weighted entropy (Shower)
+ Weighted entropy (Thunderstorm)

= 7/15 x 0.2966 + 4/15 x 0.2442 + 4/15 x 0
= 0.2035
(17.6)

gain(Weather) = entropy(training dataset D) — entropy(attribute Weather)
=0.2764 - 0.2035
=0.0729

(17.7)

> Optimisations(fgx{£4k)

Bagging: Bootstrap aggregating is a method that result in low variance

Gradient boosting: selecting best classifiers to improve prediction accuracy with each new tree.
Advantages: It is robust to correlated predictors. solve both regression and classification problems.
It can handle thousands of input variables without variable selection.
Disadvantages: The Random Forest model is difficult to interpret. It tends to return erratic
predictions for observations out of range of training data

Session 6

Clustering: A member is closer to another member within the same group than to a member of a
different group

K-Means

K-means is a partitional clustering algorithm
Each cluster has a cluster center, called centroid.

11

Algorithm k-Means:

Specifies k number of clusters, and guesses the k seed cluster
centroid

- lteratively looks at each data point and assigns it to the closest
centroid

- Current clusters ma{/ receive or loosetheir members
Each cluster mus{ re-calculate the mean (centroid)
- The process is[repeated until the clusters are stable|(no change of

members) Algorithm: k-means
Input:
D={xy, Xzs ..o Xl //Data objects
k //Number of desired clusters
Output:
K //5et of clusters
1. Assign initial values for means my, My .« Mg
2. Repeat
MONASH 3. A:'?iﬁn. eachhda:é object x; to the cluster
. . whic has the closest mean
; UHIVGFSIW 11 g, Caleulate new mean for each cluster

5. Until convergence criteria is met

Pros: Simple and fast for low dimensional data (time complexity of K Means is linear i.e. O(n)), Scales
to large data sets Easily adapts to new data points
Cons: It will not identify outliers, Restricted to data which has the notion of a centre (centroid)

Data parallelism of k-means: &4 —-process & FHI i HEE T LT 5 — N HEE T
Result Parallelism of k-means: #h7+-& s s fGid Foch, R LEHHEE o I H5.T #7549

Session 8

Collaboration Filtering (Recommender System)
Collaborative filtering: is a mathematical method/formula to find the predictions about how much a
user can rate a particular item by comparing that user to all other users.

Explicit(‘\2 7): users giving ratings to movies
Implicit(Ba=X): e.g. views, clicks, purchases, likes, shares etc.).

12

» Calculate the similarity

Step 1: Calculate the similarity between Harry and all other users

orme | STkt vrs | Suprman [Bman ok —
4 2 ? 3 4

Harry
John 5 3 4 ? 3
Rob 3 ? 4 4 3

Cosine similarity

(4+3)+(5+4)+(4+3)
sqrt(4*+5%+4%) esqrt (3 +47+3%)

(4+5)+(2+3)+(4°3) Sim(Harry, Rob) =
sqre(4F+28+4%) esqre(5°+3°43%)

Sim(Harry, John) =
= 0.97 = 1.00
Step 2: Predict the ratings of movies for Harry

Harry 4 2 ? 5 4

John 5 3 4 ? 3
Rob 3 ? 4 4 3

Calculate kas a normalising factor
k= ——=051
(0.97+1)
R(Harry, Superman) = k*((sim(Harry, John) » R(John, Superman)) + (sim(Harry, Rob) = R(Rob, Superman)))
= 0.51((0.97 «4) + (1 * 4))
= 4.02
Step 3: Select top-2 rated movies for Harry

e] tar Tk Starwars | Sperman | siman bk —
4 2 5 4

Harry 4.02
John 5 3 4 ? 3
Rob 3 ? 4 4 3

Top-2(Harry, movies)= Batman, Superman

Session 9

Data stream
A data stream is a real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp)
sequence of items.

* Event time: the time when the data is produced by the source.

®* Processing time: the time when data is arrived at the processing server.

* |In ideal situation, event time = processing time.

* In real world event time is earlier than the processing time due to network delay.

* The delay can be uniformed (ideal situation) or non-uniform (most of real
network situation).

= Data may arrive in “burst” (bursty network).
13

Apache Kafka

publish-subscribe system. All messages are persisted and replicated to peer brokers for fault tolerance.
Messages stay around for a configurable period of time

Advantages:
Handles large volume of data, reliable, fault tolerant and scalable system.

Handles high-velocity real-time data
Highly durable system as data is persistent.
Handles messages with very low latency

Session 9
Stream Join Processing

Nested-Loop Stream Join

Stream R q
Step 1:
(] —— |
tuple rarrives R join 8
Stream S —_—
Nested-Loop Stream Join:
= When a tuple rarrives at an input stream R: ACID
= Scan stream S window to find tuples matching r fransaction
= Insert new tuple rinto stream R window PERpoity.
Symmetric Hash Join W———
Stream R e

Step 2:
) FEEEEEEE
= R join 8

@y ¥
Stream § é > ~Produce join

p e tnonsy of result, if any

Probe rto™~._ [

Hash Table S ———

Symmetric Hash Join Process:
* When a tuple rarrives at an input stream R:
= Probe rto the hash table S Hash Table S
= Hash tuple rinto hash table R
= |nsert new tuple rinto stream R

14

M-Join Ha;f%«ggﬁ" : _ Hash Table R
Stneamf q_:
Step 3: =
- T T11)
@ [[[[11]]
Stream S é
IE | | | | E | Hash Tab.f;es

Stream T

M-Join Process:
= When a tuple rarrives at an input stream R:
= Probe rto all other hash tables
* Hash tuple rinto hash table R 1
= Insert new tuple rinto stream R

Hash Table T

AM-Join
Stream R e :
e T‘] [] Hash Table R
@I T TTTT]
P Stream § %
[|] hesnrapies
2 S 1 >
AM-Join Process: =
update *+ When atuple rarrives at an input stream R:
1 BiHT » Probe rto the Bit-vactor Hash Tahle (BiHT)
BiHT = Update BiHT
= Hash tuple rinto hash table R '
» |nsertnew tuple rinto stream R Hash Tabie T
Handshake Join
1 f#BF—1

2. f£khand shake®>k, ©MEEEHN

Session 11

Granularity

Granularity is the level of detail at which data are stored in a database.
- level-0, the bottom level indicating no aggregation.

- level-1 and level-2 with more aggregation.
Granularity may simplify the complexity of the information.

Granularity Reduction: When the time slide is more than one unit of time, there will be a
reduction in terms of number of records after aggregation.

Sensor Arrays
A sensor array is a group of sensors, usually deployed in a certain geometry pattern.
A network of distributed sensors.

15

They add new dimension to the observation, and hence it helps to estimate more parameters,
to have better picture of the environment being observed, and improve accuracy.

» Multiple sensors measuring the same things
Reduce and then Merge (B B)
» Multiple sensors measuring different things
Reduce, Normalize, and then Merge (Normalize, Merge and then Reduce)

Step 1. each stream according to the categories
Step 2: the normalized streams.
Step 3: the granularity of the merged results

Granularity reduction of sensor data is achieved though the windowing schemes.

The drill-down of data streams can be assisted though multi levels of granularity which
combined several granularity levels when presenting the data streams

Sensor arrays are multiple sensors that work together in an environment to provide
users with more complete picture of the environment.

16

