

MONASH INFORMATION TECHNOLOGY

FIT5202 – Data Processing for Big Data

Revision Presented by Peter Liu

Developed by Prajwol Sangat

Unit Overview

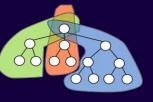
1. Volume → Sessions 1, 2, 3, 4

– How to process Big Data Volume?

2. Complexity → Sessions 5, 6, 7, 8

 How to apply machine learning algorithms to every aspect of Big Data?

3. Velocity → Sessions 9, 10, 11


– How to handle and process Fast Streaming Data?

Volume \rightarrow Session 1, 2, 3, 4

TANIAR LEUNG RAHAYU GOEL

High Performance Parallel Database Processing and Grid Databases Wiley Series on Parallel and Distributed Computing • Albert Zomaya, Series Editor High Performance Parallel Database Processing and Grid Databases

DAVID TANIAR, CLEMENT H.C. LEUNG, WENNY RAHAYU, and SUSHANT GOEL

WILEY

Chapter 1 Introduction

- 1.1 A Brief Overview Parallel Databases and Grid Databases
- 1.2 Parallel Query Processing: Motivations
- 1.3 Parallel Query Processing: Objectives
- 1.4 Forms of Parallelism
- 1.5 Parallel Database Architectures
- 1.6 Grid Database Architecture
- 1.7 Structure of this Book
- 1.8 Summary
- 1.9 Bibliographical Notes
- 1.10 Exercises

3

()

WILEY

Using the current processing resources, we can finish processing 1TB (one terabyte) of data in 1 hour. Recently the volume of data has increased to 2TB and the management has decided to double up the processing resources. Using the new processing resources, we can finish processing the 2 TB in 60 minutes.

Is this speed up or scale up?

Solution:

Using x resources (current resources), 1TB = 60 minutes When the resources are doubled (e.g. x becomes 2x now), a linear scale up is being able to complete 2TB in 60 minutes.

In the question, using 2x resources, it finishes 2 TB in 60 minutes. Therefore, it is linear scale up.

There is a job that will take 1 hour to complete, if this is done by 1 processor. The serial part of this job is 10%. There are 4 processors to use in this job, but each processor will have an overhead of 20% due to waiting time, communication time, etc. What type of speed up do we get?

Solution:

```
1 processor = 60min; Serial part = 10% = 6min; Parallel part = 54min
```

```
4 processors = 54min/4 = 13.5min
Overhead = 20%
Hence, parallel processing part = 13.5min + 20%overhead = 13.5min+2.7min = 16.2min
Total time = 6min + 16.2min = 22.2min
```

Speed up = 60min / 22.2min = 2.7 Linear speedup should be 4. Speed up of 2.7 is Sub-Linear Speedup

There 100,000 records in the table to be distributed to 32 processors. Assuming that the **skewness** degree is high (theta = 1), what is the estimated number of records in the heaviest processor?

$$|R_i| = \frac{|R|}{i^{\theta} \times \sum_{j=1}^{N} \frac{1}{j^{\theta}}} \quad \text{where } 0 \le \theta \le 1$$
(2.1)

Solution: i = 1(heaviest processor) $\theta = 1$ 1+ $\frac{1}{2}$ + 1/3 + $\frac{1}{4}$ + ...+ 1/32 = 4.05 Number of records = 100,000 / 4.05 = 24691

Skew

Data Skew

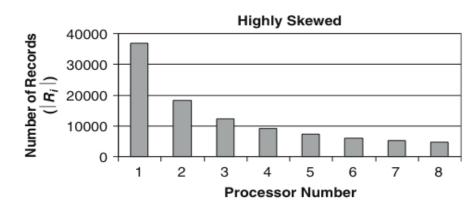
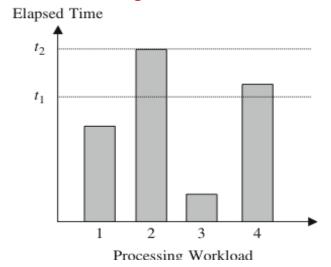
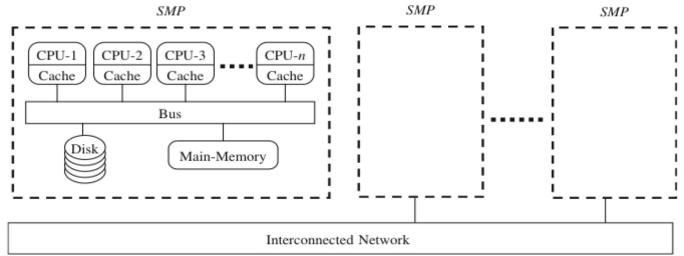



Figure 2.2 Highly skewed distribution

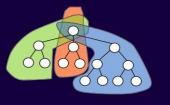
Processing Skew



Parallel Database Architectures

Shared-Something Architecture

A mixture of shared-memory and shared-nothing architectures



Volume \rightarrow Session 1, 2, 3, 4

TANIAR LEUNG RAHAYU GOEL

High Performance Parallel Database Processing and Grid Databases Wiley Series on Parallel and Distributed Computing • Albert Zomaya, Series Editor

High Performance Parallel Database Processing and Grid Databases

DAVID TANIAR, CLEMENT H.C. LEUNG, WENNY RAHAYU, and SUSHANT GOEL

WILEY

Chapter 3 Parallel Search

- 3.1 Search Queries
- 3.2 Data Partitioning
- 3.3 Search Algorithms
- 3.4 Summary
- 3.5 Bibliographical Notes
- 3.6 Exercises

9

WILEY

Data Partitioning

Basic Data Partitioning

- Round-robin or random equal data partitioning
- Hash data partitioning
- Range data partitioning
- Random-unequal data partitioning

Complex Data Partitioning

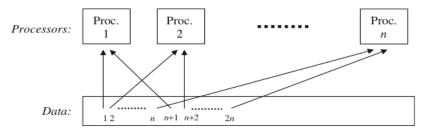
- Complex data partitioning is based on multiple attributes or is based on a single attribute but with multiple partitioning methods
- Hybrid-Range Partitioning Strategy (HRPS)
- Multiattribute Grid Declustering (MAGIC)
- Bubba's Extended Range Declustering (BERD)

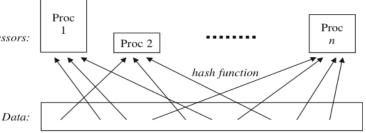
•

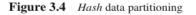
Data Partitioning (cont'd)

Round-robin data partitioning

- Each record in turn is allocated to a processing element in a clockwise manner
- · "Equal partitioning" or "Random-equal partitioning"
- Data evenly distributed, hence supports load balance
- · But data is not grouped semantically



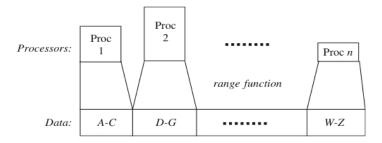

Figure 3.3 Round-robin data partitioning

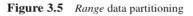


Data Partitioning (cont'd)

Hash data partitioning

- A hash function is used to partition the data
- Hence, data is grouped semantically, that is data on the same group shared the same hash value
- Selected processors may be identified when processing a search operation (exactmatch search), but for range search (especially continuous range), all processors must be used
- Initial data allocation is not balanced either_{processors:}





Data Partitioning (cont'd)

Range data partitioning

- Spreads the records based on a given range of the partitioning attribute
- Processing records on a specific range can be directed to certain processor only
- Initial data allocation is skewed too

Search Algorithms

Serial search algorithms:

Linear search Binary search

Parallel search algorithms:

Processor activation or involvement Local searching method Key comparison

Search Algorithms (cont'd)

Processor activation or involvement

- The number of processors to be used by the algorithm
- If we know where the data to be sought are stored, then there is no point in activating all other processors in the searching process
- · Depends on the data partitioning method used
- Also depends on what type of selection query is performed

		Data Partitioning Methods					
		Random- Equal	Hash Range		Random- Unequal		
Exact Mat	ch	All	1	1	All		
Range	Continuous	All	All	Selected	All		
Selection	Discrete	All	Selected	Selected	All		

 Table 3.6
 Processor activation or involvement of parallel search algorithms

Search Algorithms (cont'd)

Local searching method

- The searching method applied to the processor(s) involved in the searching process
- Depends on the data ordering, regarding the type of the search (exact match of range)

		Records Ordering			
		Ordered	Unordered		
Exact Mat	ch	Binary Search	Linear Search		
Range	Continuous	Binary Search	Linear Search		
Selection	Discrete	Binary Search	Linear Search		

 Table 3.7
 Local searching method of parallel search algorithms

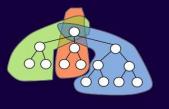
Search Algorithms (cont'd)

Key comparison

- Compares the data from the table with the condition specified by the query
- When a match is found: continue to find other matches, or terminate
- Depends on whether the data in the table is unique or not

		Search Attribute Values			
		Unique	Duplicate		
Exact Matcl	h	Stop	Continue		
Range	Continuous	Continue	Continue		
Selection	Discrete	Continue	Continue		

Table 3.8 Key comparison of parallel search algorithms



Volume \rightarrow Session 1, 2, 3, 4

TANIAR LEUNG RAHAYU GOEL

High Performance Parallel Database Processing and Grid Databases Wiley Series on Parallel and Distributed Computing • Albert Zomaya, Series Editor

High Performance Parallel Database Processing and Grid Databases

DAVID TANIAR, CLEMENT H.C. LEUNG, WENNY RAHAYU, and SUSHANT GOEL

WILEY

Chapter 5 Parallel Join

- 5.1 Join Operations
- 5.2 Serial Join Algorithms
- 5.3 Parallel Join Algorithms
- 5.4 Cost Models
- 5.5 Parallel Join Optimization
- 5.6 Summary
- 5.7 Bibliographical Notes
- 5.8 Exercises

WILEY

Join Algorithms

Parallel Inner Join components

- Data Partitioning
 - Divide and Broadcast
 - . Disjoint Partitioning
- Local Join
 - Nested-Loop Join
 - . Sort-Merge Join
 - . Hash Join
- Example of a Parallel Inner Join Algorithm
 - Divide and Broadcast, plus Hash Join

•

.

Serial Join Algorithms (cont'd)

Hash-based Join Algorithm

- The records of files *R* and *S* are both hashed to the *same hash file*, using the *same hashing function* on the join attributes *A* of *R* and *B* of *S* as hash keys
- A single pass through the file with fewer records (say, *R*) hashes its records to the hash file buckets
- A single pass through the other file (S) then hashes each of its records to the appropriate bucket, where the record is combined with all matching records from R

Serial Join Algorithms (cont'd)

Table S

Arts	8	
Business	15	
CompSc	2	
Dance	12	
Engineering	7	
Finance	21	
Geology	10	
Health	11	
IT	<mark>.18</mark>	
		-


hashed into →

H	ash Table	
Index	Entries	
1	Geology/10	
2	CompSc/2	Health/11
3	Dance/12	Finance/21
4		
5		
6	Business/15	
7	Engineering/7	
8	Arts/8	
9	IT/18	
10		
11		
12		

Figure 5.6. Hashing Table S

Serial Join Algorithms (cont'd)

Divide and Broadcast-based Parallel Join Algorithms

- Two stages: data partitioning using the divide and broadcast method, and a local join
- Divide and Broadcast method: Divide one table into multiple disjoint partitions, where each partition is allocated a processor, and broadcast the other table to all available processors
- Dividing one table can simply use equal division
- Broadcast means replicate the table to all processors
- Hence, choose the smaller table to broadcast and the larger table to divide

Processor 1			Processor 2			Processor 3								
R1	<i>S</i> 1		R2	R2 S2		S2	R3		<u>S3</u>					
Adele	8	Arts	8	Fung	25		Business	12		Kelly	6	[CompSc	2
Bob	22	Dance	15	Goel	3		Engineering	7		Lim	20	[Finance	21
Clement	16	Geology	10	Harry	17		Health	11		Meng	1	[IT	18
Dave	23			Irene	14					Noor	5			
Ed	11			Joanna	2					Omar	19			
									I I					

Figure 5.10 Initial data placement

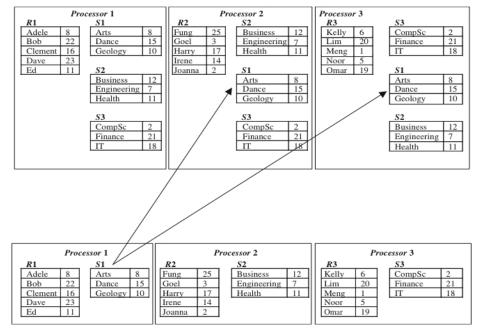


Figure 5.11 Divide and broadcast result

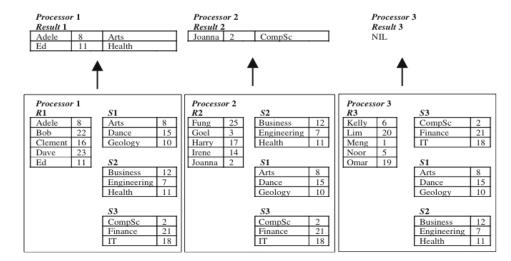


Figure 5.12 Join results based on divide and broadcast

Cost Models?

•

Divide and Broadcast

- Join two tables (table R and table S)
- The two tables have been partitioned and stored in 3 processors
- The tables have been partitioned using the random-equal data partitioning method
- The table fragments are called R1, R2, R3, and S1, S2, S3 (in general, each fragment is called Ri or Si, where i is the processor number)

|S| = 600 records, each record has the length of 100 bytes, and N=3.

Table 2.1 Cost notations

Symbol	Description				
Data parameters					
R	Size of table in bytes				
R_i	Size of table fragment in bytes on processor i				
R	Number of records in table R				
$ R_i $	Number of records in table R on processor i				
Systems pa	arameters				
Ν	Number of processors				
Р	Page size				
H Hash table size					
Query parameters					
π	Projectivity ratio				
σ	Selectivity ratio				
Time unit	cost				
Ю	Effective time to read a page from disk				
t _r	Time to read a record in the main memory				
t_w	Time to write a record to the main memory				
t_d	Time to compute destination				
Communication cost					
m _p	Message protocol cost per page				
m_l	Message latency for one page				

Solution:

S = 60000 bytesSi = S/N = 60000/3 = 20000 bytes

|S| = 600 records |Si| = 600/3 = 200 records

Divide and Broadcast based parallel join

Transfer cost = (Si/P) x (N-1) x (mp+ml)

Receiving cost = (S/P - Si/P) x (mp)

Parallel Join Query Processing

Parallel Outer Join processing methods **ROJA** (Redistribution Outer Join Algorithm) **DOJA** (Duplication Outer Join Algorithm) **DER** (Duplication & Efficient Redistribution)

Load Balancing OJSO (Outer Join Skew Optimization)

	ROJA	DOJA	DER
Steps	Step 1: Distribute or reshuffle the data based on the join attribute.Step 2: Each processor performs the Local outer Join.	 Step 1: Replication. We duplicate the small table. Step 2: Local Inner Join Step 3: Hash redistribute the inner join result based on attribute X. Step 4: Local outer join 	 Step 1: Replication. We broadcast the left table. Step 2: Local Inner Join Step 3: Select the ROW ID of left table with no matches. Step 4: Redistribute the ROW ID. Step 5: Store the ROW ID that appears as many times as the number of processors. Step 6: Inner join
Pros	fast performance, only two steps	None. ROJA is faster than DOJA.	Redistributes dangling row IDs instead of actual records.
Cons	redistribution of data -> data skew, communication cost	In the replication step, if the table is large, the replication cost is expensive. In the distribution step, data skew and communication cost similar to ROJA	In the replication step, if the table is large, the replication cost is expensive.

Volume \rightarrow Session 1, 2, 3, 4

TANIAR LEUNG RAHAYU GOEL

High Performance Parallel Database Processing and Grid Databases Wiley Stries on Parallel and Distributed Computing • Albert Zomaya, Series Editor High Performance Parallel Database Processing and Grid Databases

> DAVID TANIAR, CLEMENT H.C. LEUNG, WENNY RAHAYU, and SUSHANT GOEL

WILEY

Chapter 4 Parallel Sort and GroupBy

- 4.1 Sorting, Duplicate Removal and Aggregate
- 4.2 Serial External Sorting Method
- 4.3 Algorithms for Parallel External Sort
- 4.4 Parallel Algorithms for GroupBy Queries
- 4.5 Cost Models for Parallel Sort
- 4.6 Cost Models for Parallel GroupBy
- 4.7 Summar

31

4.8 Bibliographical Notes

(1)

WILEY

Sorting, and Serial Sorting

• Serial Sorting – INTERNAL

- . The data to be sorted fits entirely into the main memory
- Bubble Sort
- Insertion Sort
- Quick Sort
- Serial Sorting EXTERNAL
 - The data to be sorted DOES NOT fit entirely into the main memory
 - . Sort-Merge

There are 150 data pages to be sorted. The machine that we have has a limited memory, and can only take 8 pages at a time.How many passes will it take to sort the 150 data pages?

Solution:

File size to be sorted = 150 pages, number of buffer (or memory size) = 8 pages

Number of subfiles = 150/8 = 19 subfiles (Last subfile has only 6 pages)

Pass 0 (sorting phase): For each subfile, read from disk, sort in main-memory, and write to disk

Merging phase: We use **7 buffers for input** and **1 buffer for output**

Pass 1: Read 7 sorted subfiles and perform 7-way merging. Repeat the 7-way merging until all subfiles are processed. Result = 3 subfiles

Pass 2: Merge the 3 subfiles

Summary: 150 pages and 8 buffer pages require 3 passes

Parallel External Sort

- Parallel Merge-All Sort
- Parallel Binary-Merge Sort
- Parallel Redistribution Binary-Merge Sort
- Parallel Redistribution Merge-All Sort
- Parallel Partitioned Sort

Parallel External Sort (cont'd)

Parallel Merge-All Sort

- A traditional approach
- Two phases: local sort and final merge
- Load balanced in local sort
- Problems with merging:
 - · Heavy load on one processor
 - Network contention

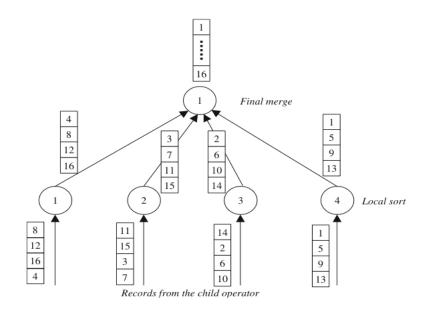
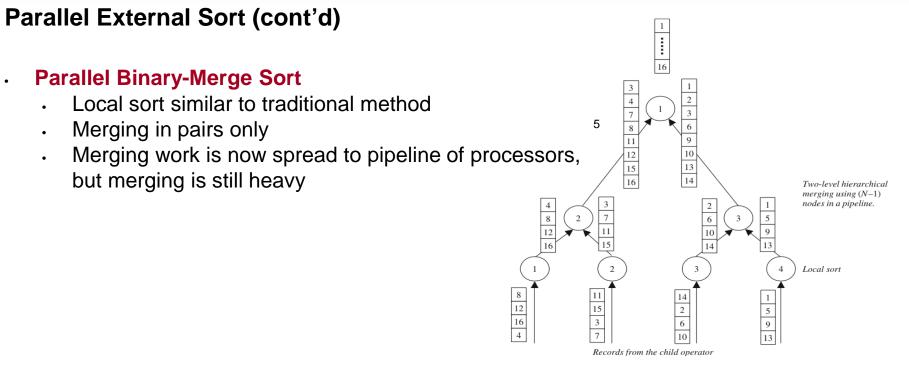
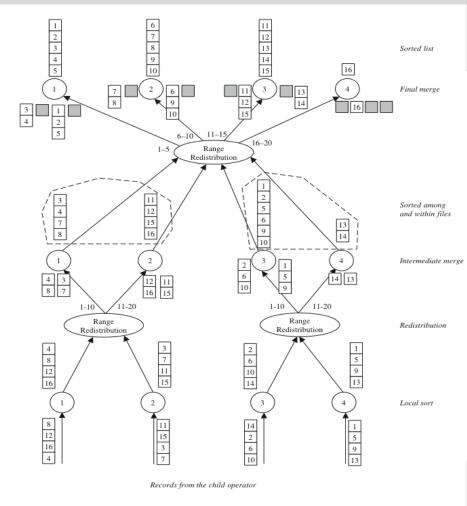



Figure 4.3 Parallel merge-all sort


Parallel Redistribution Binary-Merge Sort

Parallelism at all levels in the pipeline hierarchy

Step 1: local sort

- Step 2: redistribute the results of local sort
- Step 3: merge using the same pool of processors

Benefit: merging becomes lighter than without redistribution Problem: height of the tree

Parallel Redistribution Merge-All Sort

- Reduce the height of the tree, and still maintain parallelism
- Like parallel merge-all sort, but with redistribution
- The advantage is true parallelism in merging
- Skew problem in the merging

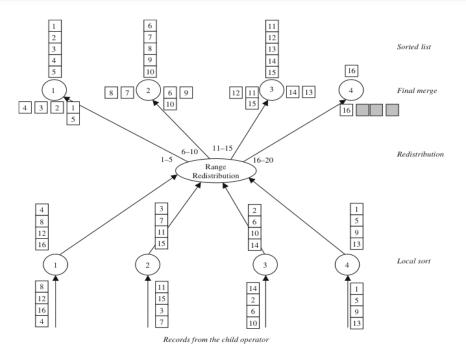


Figure 4.7 Parallel redistribution merge-all sort

Parallel Partitioned Sort

- Two stages: Partitioning stage and Independent local work
- Partitioning (or range redistribution) may raise load skew
- Local sort is done after the partitioning, not before
- No merging is necessary
- Main problem: Skew produced by the partitioning

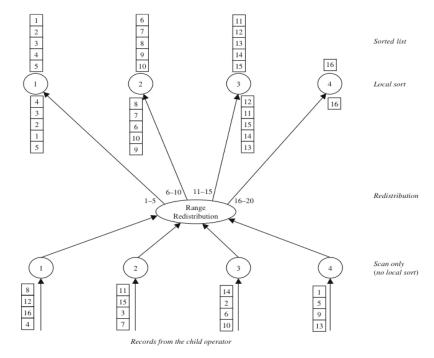


Figure 4.8 Parallel partitioned sort

Parallel External Sort

Exercise

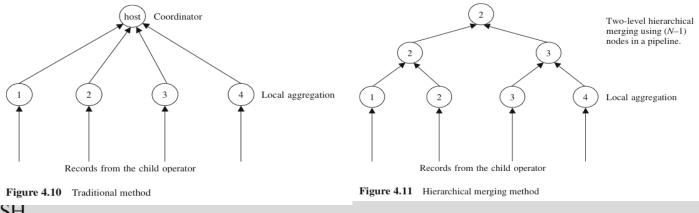
- Given a data set *D* = {8,11,14,1,12,15,2,5,16,3,6,9,4,7,10,13} and four processors, show step by step how the **Parallel Partitioned Sort** works.
- Initial Data Partitioning (Round Robin):
 - $P1 = \{8, 12, 16, 4\}, P2 = \{11, 15, 3, 7\}, P3 = \{14, 2, 6, 10\} and P4 = \{1, 5, 9, 13\}$
- **Range Redistribution** (Range Logic: P1 = 1-5, P2 = 6-10, P3 = 11-15, P4 = 16-20)
 - $P1 = \{4,3,2,1,5\}, P2 = \{8,7,6,10,9\}, P3 = \{12,11,15,14,13\}, P4 = \{16\}$
- Local Sort

- $P1 = \{1,2,3,4,5\}, P2 = \{6,7,8,9,10\}, P3 = \{11,12,13,14,15\}, P4 = \{16\}$

Parallel Group By

- Traditional methods (Merge-All and Hierarchical Merging)
- Two-phase method
- Redistribution method

Parallel Group By (cont'd)

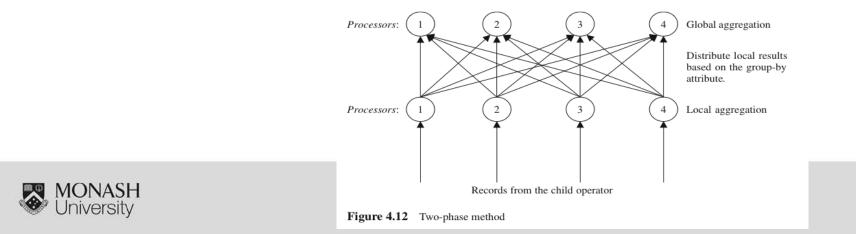

Traditional Methods

Step 1: local aggregate in each processor

Step 2: global aggregation

May use a Merge-All or Hierarchical method

Need to pay a special attention to some aggregate functions (AVG) when performing a local aggregate process



Parallel Group By (cont'd)

Two-Phase Method

Step 1: local aggregate in each processor. Each processor groups local records according to the groupby attribute

Step 2: global aggregation where all temp results from each processor are redistributed and then final aggregate is performed in each processor

Parallel Group By (cont'd)

Redistribution Method

Step 1 (Partitioning phase): redistribute raw records to all processors Step 2 (Aggregation phase): each processor performs a local aggregation

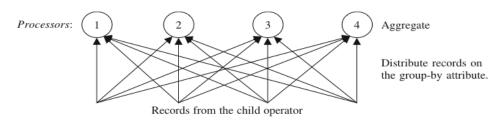


Figure 4.13 Redistribution method

Flux Quiz 7

The **Redistribution Method** has a load balancing option, through the Task Stealing method.

The **Two-Phase Method** does not have a load balancing problem.

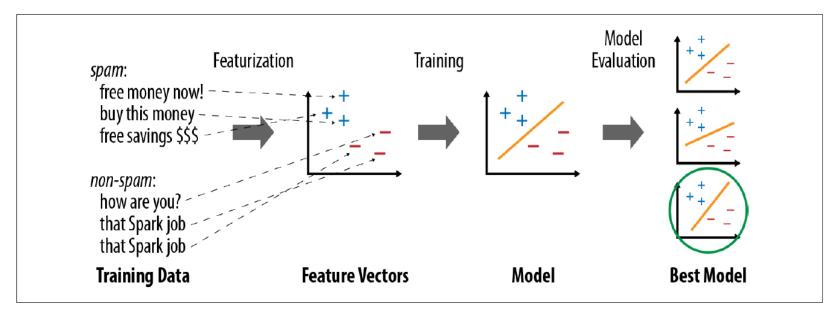
Solution: False

Unit Overview

1. Volume → Sessions 1, 2, 3, 4

How to process Big Data Volume?

2. Complexity → Sessions 5, 6, 7, 8


 How to apply machine learning algorithms to every aspect of Big Data?

3. Velocity → Sessions 9, 10, 11

– How to handle and process Fast Streaming Data?

Machine Learning

Figure 11-1. Typical steps in a machine learning pipeline

Machine Learning: Featurization

- **Extraction:** Extracting features from "raw" data
 - Count Vectorizer
 - TF-IDF
 - Word2Vec
- Transformation: Scaling, converting, or modifying features
 - Tokenization
 - Stop Words Remover
 - String Indexing
 - One Hot Encoding
 - Vector Assembler
- Selection: Selecting a subset from a larger set of features
 - Vector Slicer

Flux Quiz 8

In a product recommendation task, simply adding another feature (e.g., realizing that which book you should recommend to a user might also depend on which movies she's watched) could give a large improvement in results.

Solution: True

Types of Machine Learning

- Supervised,
- Unsupervised

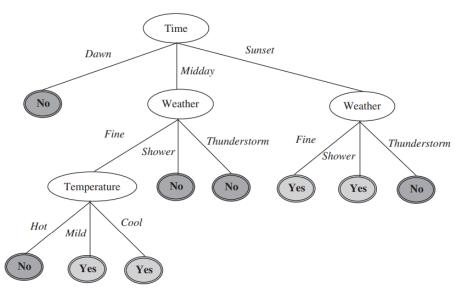
Types of Machine Learning: Supervised

- In supervised machine learning, the data consists of a set of input records.
- Each of these records have associated labels.
- The goal is to predict the output label(s) given a new unlabeled input.
- Two types of supervised machine learning:
- 1. Classification and
- 2. Regression.

Supervised Machine Learning: Classification

Binary classification example: dog or not dog

52


Supervised Machine Learning: Classification

Multinomial classification example: Australian shepherd, golden retriever, or poodle

Decision Trees: To Jog or Not To Jog

A decision tree is constructed based only on the given training dataset. It is not based on a universal belief.

Figure 17.15 Final decision tree

Flux Quiz 9

What is the entropy for the training data set in the table below?

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

$$H(S) = \sum_{x \in X} p(x) \log \frac{1}{p(x)}$$

$$IG(S,A) = H(S) - \sum_{i=0}^{n} P(x) * H(x)$$

ID3 (Iterative Dichotomiser 3)

Steps

- 1. Compute the entropy for data set
- 2. For every attribute/feature:
 - 2.1. Calculate entropy for all categorical values
 - 2.2 Take average information entropy for the current attribute
 - 2.3 Calculate gain for the current attribute
- 3. Pick the highest gain attribute
- 4. Repeat until the tree is complete

ID3

Entropy for the given probability of the target classes n n n where -		
Entropy for the given probability of the target classes, $p_1, p_2,, p_n$ where	Rec#	We
	1	Fine
$\sum_{n=1}^{\infty}$	2	Fine
$\sum p_i = 1$, can be calculated as follows:	3	Sho
	4	Thu
	5	Sho
T T	6	Fin
n	7	Ein

$$entropy(p_1, p_2, ..., p_n) = \sum_{i=1}^{n} (p_i \log(1/p_i))$$

where	Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
	1	Fine	Mild	Sunset	Weekend	Yes
	2	Fine	Hot	Sunset	Weekday	Yes
	3	Shower	Mild	Midday	Weekday	No
	4	Thunderstorm	Cool	Dawn	Weekend	No
	5	Shower	Hot	Sunset	Weekday	Yes
	6	Fine	Hot	Midday	Weekday	No
	7	Fine	Cool	Dawn	Weekend	No
	8	Thunderstorm	Cool	Midday	Weekday	No
	9	Fine	Cool	Midday	Weekday	Yes
(17.2)	10	Fine	Mild	Midday	Weekday	Yes
(17.2)	11	Shower	Hot	Dawn	Weekend	No
	12	Shower	Mild	Dawn	Weekday	No
	13	Fine	Cool	Dawn	Weekday	No
	14	Thunderstorm	Mild	Sunset	Weekend	No
5/10)	15	Thunderstorm	Hot	Midday	Weekday	No

$$entropy(Yes, No) = 5/15 \times \log(15/5) + 10/15 \times \log(15/10)$$

= 0.2764

Figure 17.11. Training dataset

•	Step 1: Calculate entropy for the training dataset in Figure 17.11. The result is	Yes
	previously calculated as 0.2764 (see equation 17.3).	_

Jog					
Yes	No				
5	10				

(17.3)

entropy(Weather=Fine) = $4/7 \times \log(7/4) + 3/7 \times \log(7/3)$		Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
		1	Fine	Mild	Sunset	Weekend	Yes
= 0.2966		2	Fine	Hot	Sunset	Weekday	Yes
	(17.1)	3	Shower	Mild	Midday	Weekday	No
	(17.4)	4	Thunderstorm	Cool	Dawn	Weekend	No
		5	Shower	Hot	Sunset	Weekday	Yes
<i>entropy</i> (Weather=Shower) = $1/4 \times \log(4/1) + 3/4 \times \log(4/3)$		6	Fine	Hot	Midday	Weekday	No
		7	Fine	Cool	Dawn	Weekend	No
= 0.2442		8	Thunderstorm	Cool	Midday	Weekday	No
	(17.5)	9	Fine	Cool	Midday	Weekday	Yes
	(17.5)	10	Fine	Mild	Midday	Weekday	Yes
		11	Shower	Hot	Dawn	Weekend	No
		12	Shower	Mild	Dawn	Weekday	No

58

13

14

15

Fine

Thunderstorm

Thunderstorm

Cool

Mild

Hot

Step 2: Process attribute *Weather*

MONASH University

- Calculate weighted sum entropy of attribute Weather: ٠ entropy(Fine) = 0.2966entropy(Shower) = 0.2442 $entropy(Thunderstorm)=0 + 4/4 \times \log(4/4) = 0$ weighted sum entropy(Weather) = 0.2035
- Calculate information gain for attribute *Weather*: ٠ gain (Weather) = 0.0729

Midday Figure 17.11. Training dataset

Dawn

Sunset

Weekday

Weekend

Weekday

No

No

No

		Jo		
		Yes	No	
	Fine	4	3	7
Weather	Shower	1	3	4
	Thunderstorm	0	4	4
				15

Weighted sum entropy (*Weather*) = Weighted entropy (*Fine*) + Weighted entropy (*Shower*) + Weighted entropy (*Thunderstorm*) = $7/15 \times 0.2966 + 4/15 \times 0.2442 + 4/15 \times 0$ = 0.2035

(17.6)

59

- Step 2: Process attribute *Weather*
 - Calculate weighted sum entropy of attribute Weather: *entropy(Fine)* = 0.2966 *entropy(Shower)* = 0.2442 *entropy(Thunderstorm)*=0 + 4/4×log(4/4) = 0 *weighted sum entropy(Weather)* = 0.2035
 - Calculate information gain for attribute *Weather*: gain (Weather) = 0.0729

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

		JC		
		Yes	No	
	Fine	4	3	7
Weather	Shower	1	3	4
	Thunderstorm	0	4	4
				15

						x (m) (m)
	Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
$(\mathbf{H}_{i}^{\prime}, \mathbf{d}_{i}^{\prime}) = (\mathbf{d}_{i}^{\prime}, \mathbf{d}^{\prime}) = (\mathbf{d}_{i$	1	Fine	Mild	Sunset	Weekend	Yes
<i>gain(Weather) = entropy</i> (training dataset <i>D</i>) – <i>entropy</i> (attribute <i>Weather</i>)	2	Fine	Hot	Sunset	Weekday	Yes
= 0.2764 - 0.2035	3	Shower	Mild	Midday	Weekday	No
-0.2704 - 0.2033	4	Thunderstorm	Cool	Dawn	Weekend	No
= 0.0729	5	Shower	Hot	Sunset	Weekday	Yes
(17.7)	6	Fine	Hot	Midday	Weekday	No
(17.7)	7	Fine	Cool	Dawn	Weekend	No
	8	Thunderstorm	Cool	Midday	Weekday	No
	9	Fine	Cool	Midday	Weekday	Yes
	10	Fine	Mild	Midday	Weekday	Yes
	11	Shower	Hot	Dawn	Weekend	No
 Stop 2: Process attribute Weather 	12	Shower	Mild	Dawn	Weekday	No
• Step 2: Process attribute <i>Weather</i>	13	Fine	Cool	Dawn	Weekday	No
	14	Thunderstorm	Mild	Sunset	Weekend	No
	15	Thunderstorm	Hot	Midday	Weekday	No
• Calculate weighted sum entropy of attribute <i>Weather</i> :			Figure 17.1	1. Training	dataset	

- entropy(Fine) = 0.2966 (equation 17.4) entropy(Shower) = 0.2442 (equation 17.5) $entropy(Thunderstorm)=0 + 4/4 \times \log(4/4) = 0$ weighted sum entropy(Weather) = 0.2035 (equation 17.6)
- Calculate information gain for attribute *Weather*: gain (Weather) = 0.0729

(equation 17.7)

- Step 3: Process attribute *Temperature*
 - Calculate weighted sum entropy of attribute *Temperature*: $entropy(Hot) = 2/5 \times \log(5/2) + 3/5 \times \log(5/3) = 0.2923$ entropy(Mild) = entropy(Hot) $entropy(Cool) = 1/5 \times \log(5/1) + 4/5 \times \log(5/4) = 0.2173$ weighted sum entropy(Temperature) = 5/15 \times 0.2923 + 5/15 \times 0.2173 = 0.2674

61

• Calculate information gain for attribute *Temperature*: gain (Temperature) = 0.2764 - 0.2674 = 0.009

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

•	5/15/21/5								
			Jc						
			Yes	No					
		Hot	2	3	5				
	Temperature	Mild	3	2	5				
		Cool	1	4	5				
					15				

٠

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

• Step 4: Process attribute *Time*

- Calculate weighted sum entropy of attribute *Time*: $entropy(Dawn) = 0 + 5/5 \times \log(5/5) = 0$ $entropy(Midday) = 2/6 \times \log(6/2) + 4/6 \times \log(6/4) = 0.2764$ $\frac{12}{13} \quad Fine$ $\frac{14}{15} \quad Thur}{15} \quad Thur$ $entropy(Sunset) = 3/4 \times \log(4/3) + 1/4 \times \log(4/1) = 0.2443$ weighted sum entropy (*Time*) = 0 + 6/15 \times 0.2764 + 4/15 \times 0.2443 = 0.1757
- Calculate information gain for attribute *Time*: gain (*Temperature*) = 0.2764 - 0. 1757= 0.1007

		Jc	Jog	
		Yes	No	
Time	Dawn	0	5	5
	Midday	2	4	6
	Sunset	3	1	4
				15

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Step 5: Process attribute *Day*

• Calculate weighted sum entropy of attribute *Day*:

 $entropy(Weekday) = 4/10 \times \log(10/4) + 6/10 \times \log(10/6) \\= 0.2923$

 $entropy(Weekend) = 1/5 \times \log(5/1) + 4/5 \times \log(5/4)$ = 0.2173

weighted sum entropy $(Day) = 10/15 \times 0.2923 + 5/15 \times 0.2173 = 0.2674$

• Calculate information gain for attribute *Day*:

```
gain(Temperature) = 0.2764 - 0.2674 = 0.009
```

63

Figure 17.11. Training dataset

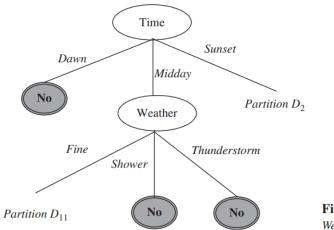
		Jog		
	Yes No			
Dav	Weekend	4	6	10
Day	Weekday	1	4	5
				15

		Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
		1	Fine	Mild	Sunset	Weekend	Yes
		2	Fine	Hot	Sunset	Weekday	Yes
		3	Shower	Mild	Midday	Weekday	No
(Time)		4	Thunderstorm	Cool	Dawn	Weekend	No
		5	Shower	Hot	Sunset	Weekday	Yes
Sunset		6	Fine	Hot	Midday	Weekday	No
Dawn		7	Fine	Cool	Dawn	Weekend	No
Midday		8	Thunderstorm	Cool	Midday	Weekday	No
		9	Fine	Cool	Midday	Weekday	Yes
No Partition D ₂		10	Fine	Mild	Midday	Weekday	Yes
	Figure 17.13 Attribute <i>Time</i>	11	Shower	Hot	Dawn	Weekend	No
Partition D_1	as the root node	12	Shower	Mild	Dawn	Weekday	No
		13	Fine	Cool	Dawn	Weekday	No
		14	Thunderstorm	Mild	Sunset	Weekend	No

Midday Figure 17.11. Training dataset

Weekday

No


Thunderstorm

15

Hot

Comparing equations 17.7, 17.8, 17.9, and 17.10, and 17.10 for the gain of each other attributes (Weather, Temperature, Time, and Day), the biggest gain is *Time*, with gain value = 0.1007 (see equation 17.9), and as a result, attribute *Time* is chosen as the first splitting attribute. A partial decision tree with the root node *Time* is shown in Figure 17.13.

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

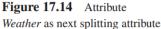
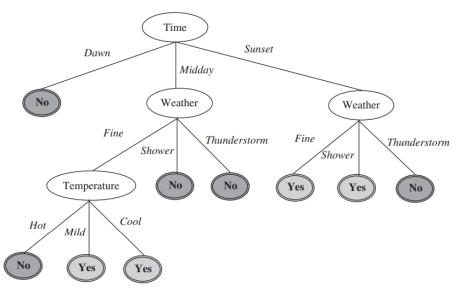



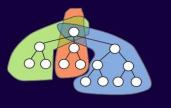
Figure 17.11. Training dataset

The next stage is to process partition D₁ consisting of records with Time=*Midday*. Training dataset partition D₁ consists of 6 records with record#: 3, 6, 8, 9, 10, and 15. The next task is to determine the splitting attribute for partition D₁, whether it is *Weather*, *Temperature*, or *Day*.

Decision Trees: To Jog or Not To Jog

A decision tree is constructed based only on the given training dataset. It is not based on a universal belief.

Figure 17.15 Final decision tree



Complexity → Session 5, 6, 7, 8

High Performance Parallel Database Processing and Grid Databases Wiley Series on Parallel and Distributed Computing • Albert Zomaya, Series Editor

High Performance Parallel Database Processing and Grid Databases

DAVID TANIAR, CLEMENT H.C. LEUNG, WENNY RAHAYU, and SUSHANT GOEL

WILEY

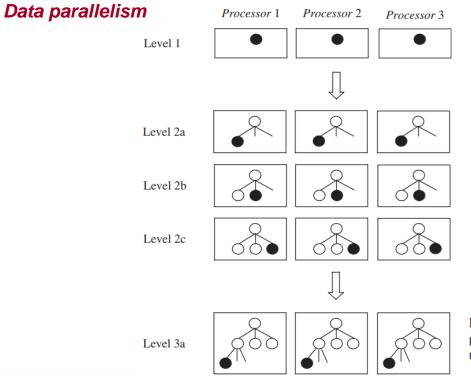
Chapter 17 Parallel Clustering and Classification

- 17.1 Clustering and Classification
- 17.2 Parallel Clustering
- 17.3 Parallel Classification
- 17.4 Summary
- 17.5 Bibliographical Notes
- 17.6 Exercises

(*

Figure 17.16 Vertical data partitioning of training data set

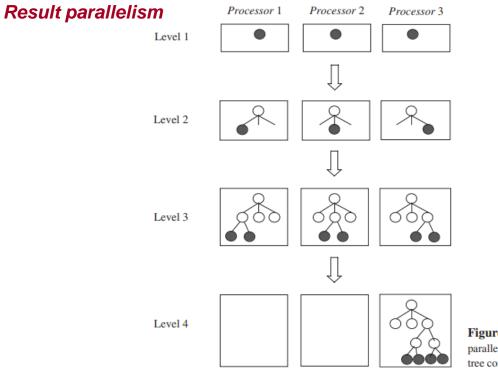
Data parallelism:


Rec#	Weather	Temperature	Jog (Target Class)
1	Fine	Mild	Yes
2	Fine	Hot	Yes
3	Shower	Mild	No
4	Thunderstorm	Cool	No
5	Shower	Hot	Yes
6	Fine	Hot	No
7	Fine	Cool	No
8	Thunderstorm	Cool	No
9	Fine	Cool	Yes
10	Fine	Mild	Yes
11	Shower	Hot	No
12	Shower	Mild	No
13	Fine	Cool	No
14	Thunderstorm	Mild	No
15	Thunderstorm	Hot	No

Partition 1

Rec#	Time	Day	Jog (Target Class)
1	Sunset	Weekend	Yes
2	Sunset	Weekday	Yes
3	Midday	Weekday	No
4	Dawn	Weekend	No
5	Sunset	Weekday	Yes
6	Midday	Weekday	No
7	Dawn	Weekend	No
8	Midday	Weekday	No
9	Midday	Weekday	Yes
10	Midday	Weekday	Yes
11	Dawn	Weekend	No
12	Dawn	Weekday	No
13	Dawn	Weekday	No
14	Sunset	Weekend	No
15	Midday	Weekday	No

Partition 2



Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

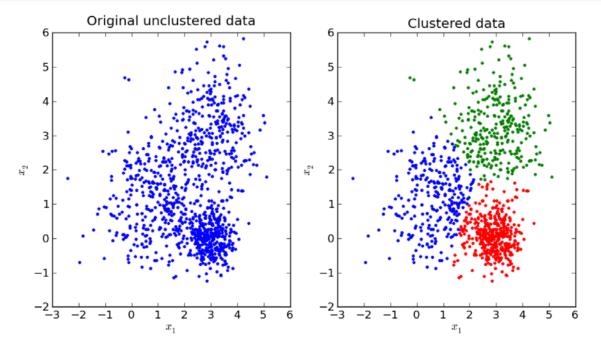
Figure 17.11. Training dataset

Figure 17.17 Data parallelism of parallel decision tree construction

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No


Figure 17.11. Training dataset

Figure 17.20 Result parallelism of parallel decision tree construction


Types of Machine Learning: Unsupervised

- Instead of predicting a label, unsupervised ML helps you to better understand the structure of your data.
- Two types of unsupervised machine learning:
- 1. Clustering and
- 2. Association.

Unsupervised Machine Learning: Clustering

Clustering example

Algorithm k-Means:

- Specifies knumber of clusters, and guesses the kseed cluster centroid
- Iteratively looks at each data point and assigns it to the closest centroid
- Current clusters may receive or loose their members
- Each cluster must re-calculate the mean (centroid)
- The process is repeated until the clusters are stable (no change of members)

Algorithm: k-	means
Input:	
$D = \{ x_1, x_2, \dots \}$, x _n } //Data objects
k	//Number of desired clusters
Output:	
K	//Set of clusters
1. Assign ini	tial values for means m_1 , m_2 ,, m_k
2. Repeat	
3. Assign e	ach data object x_i to the cluster
which ha	s the closest mean
4. Calculat	e new mean for each cluster
5. Until conv	ergence criteria is met

•

Flux Quiz 10

Data D = $\{5, 19, 25, 21, 4, 1, 17, 23, 8, 7, 6, 10, 2, 20, 14, 11, 27, 9, 3, 16\}$ Number of clusters: k = 3 Initial centroids: m1=6, m2=7, and m3=8.

Which of the following grouping is correct after applying K-Means algorithm?

```
Solution:

C_1 = \{1, 2, 3, 4, 5, 6\}

C_2 = \{7, 8, 9, 10, 11, 14\}

C_3 = \{16, 17, 19, 20, 21, 23, 25, 27\}
```


- Data D = {5, 19, 25, 21, 4, 1, 17, 23, 8, 7, 6, 10, 2, 20, 14, 11, 27, 9, 3, 16}
- Number of clusters: k = 3
- Initial centroids: $m_1=6$, $m_2=7$, and $m_3=8$

- First Iteration

- Clusters:
 - $\quad C_1 = \{1, \, 2, \, 3, \, 4, \, 5, \, 6\}$
 - $C_2 = \{7\}$
 - $C_3 = \{8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 27\}$
- Re-calculated centroids: $m_1=3.5$, $m_2=7$, and $m_3=16.9$

- Clusters:
 - $C_1 = \{1, 2, 3, 4, 5, 6\}$
 - *C*₂={7}
 - $C_3 = \{8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 27\}$
- New centroids: m_1 =3.5, m_2 =7, and m_3 =16.9
- Second Iteration
 - Clusters:
 - $C_1 = \{1, 2, 3, 4, 5\}$
 - $\quad C_2 = \{6, 7, 8, 9, 10, 11\}$
 - $\quad C_3 = \{14, \, 16, \, 17, \, 19, \, 20, \, 21, \, 23, \, 25, \, 27\}$
 - Re-calculated centroids: $m_1=3$, $m_2=8.5$, and $m_3=20.2$

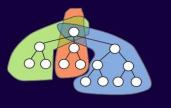
- Clusters:
 - $C_1 = \{1, 2, 3, 4, 5\}$
 - $C_2 = \{6, 7, 8, 9, 10, 11\}$
 - $C_3 = \{14, 16, 17, 19, 20, 21, 23, 25, 27\}$
- New centroids: $m_1=3$, $m_2=8.5$, and $m_3=20.2$
- Third Iteration
 - Clusters:
 - $C_1 = \{1, 2, 3, 4, 5\}$
 - $\quad C_2 = \{6, 7, 8, 9, 10, 11, 14\}$
 - $C_3 = \{16, 17, 19, 20, 21, 23, 25, 27\}$
 - Re-calculated centroids: $m_1=3$, $m_2=9.29$, and $m_3=21$

- Clusters:
 - $C_1 = \{1, 2, 3, 4, 5\}$
 - $C_2 = \{6, 7, 8, 9, 10, 11, 14\}$
 - $C_3 = \{16, 17, 19, 20, 21, 23, 25, 27\}$
- New centroids: $m_1=3$, $m_2=9.29$, and $m_3=21$
- Fourth Iteration
 - Clusters:
 - $\quad C_1 = \{1, \, 2, \, 3, \, 4, \, 5, \, 6\}$
 - $\quad C_2 = \{7, 8, 9, 10, 11, 14\}$
 - $C_3 = \{16, 17, 19, 20, 21, 23, 25, 27\}$
 - Re-calculated centroids: m_1 =3.5, m_2 =9.83, and m_3 =21

- Clusters:
 - $C_1 = \{1, 2, 3, 4, 5, 6\}$
 - *C*₂={7, 8, 9, 10, 11, 14}
 - $C_3 = \{16, 17, 19, 20, 21, 23, 25, 27\}$
- New centroids: m_1 =3.5, m_2 =9.83, and m_3 =21

- Fifth Iteration

No data movement from clusters (Process Terminated)


<i>m</i> ₁	m ₂	m ₃	C ₁	C ₂	C ₃
6	7	8	1, 2, 3, 4, 5, <mark>6</mark>	7	8, 9, 10, 11, 14, 16, 17, 19, 20, 23, 25, 27
3.5	7	16.9	1, 2, 3, 4, 5	6, 7, 8, 9, 10, 11	14, 16, 17, 19, 20, 21, 23, 25, 27
3	8.5	20.2	1, 2, 3, 4, 5	6, 7, 8, 9, 10, 11, 14	16, 17, 19, 20, 21, 23, 25, 27
3	9.29	21	1, 2, 3, 4, 5, 6	7, 8, 9, 10, 11, 14	16, 17, 19, 20, 21, 23, 25, 27
3.5	9.83	21	1, 2, 3, 4, 5, 6	7, 8, 9, 10, 11, 14	16, 17, 19, 20, 21, 23, 25, 27

Complexity → Session 5, 6, 7, 8

High Performance Parallel Database Processing and Grid Databases Wiley Series on Parallel and Distributed Computing • Albert Zomaya, Series Editor

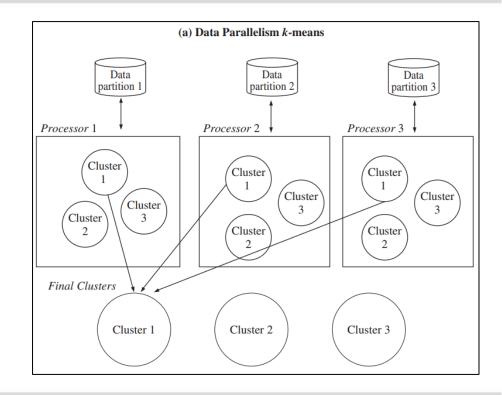
High Performance Parallel Database Processing and Grid Databases

DAVID TANIAR, CLEMENT H.C. LEUNG, WENNY RAHAYU, and SUSHANT GOEL

WILEY

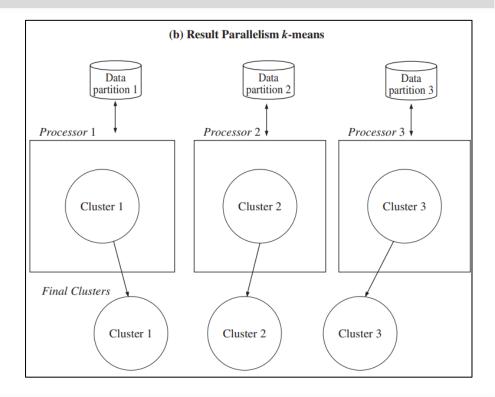
Chapter 17 Parallel Clustering and Classification

- 17.1 Clustering and Classification
- 17.2 Parallel Clustering
- 17.3 Parallel Classification
- 17.4 Summary
- 17.5 Bibliographical Notes
- 17.6 Exercises


81

(*

Parallel K-means clustering


Data parallelism of k-means

Parallel K-means clustering

Result Parallelism of k-means

According to <u>McKinsey study</u>, 35% of what consumers purchase on Amazon and 75% of what they watch on Netflix is driven by machine learning–based product recommendations.

Flux Quiz 11

Collaboration Filtering: Walkthrough Example

Name	Star Trek	Star wars	Superman	Batman	Hulk
Harry	4	2	?	5	4
John	5	3	4	?	3
Rob	3	?	4	4	3

Aim: Recommend top-2 movies to Harry

Data Collection -> Data Processing -> Calculate Referrals -> Derive Results

- Data collection: Collecting user behaviour and associated data items
- Data processing: Processing the collected data
- Recommendation Calculation: The recommended calculation method used to calculate referrals
- Derive the result: Extract the similarity, sort it, and extract the top N to complete

Step 1: Calculate the similarity between Harry and all other users

Name	Star Trek	Star wars	Superman	Batman	Hulk
Harry	4	2	?	5	4
John	5	3	4	?	3
Rob	3	?	4	4	3

Cosine similarity

$$sim(u, u') = cos(\theta) = \frac{\mathbf{r}_{u} \cdot \mathbf{r}_{u'}}{\|\mathbf{r}_{u}\| \|\mathbf{r}_{u'}\|} = \sum_{i} \frac{r_{ui} r_{u'i}}{\sqrt{\sum_{i} r_{ui}^{2}} \sqrt{\sum_{i} r_{u'i}^{2}}}$$

Step 1: Calculate the similarity between Harry and all other users

Name	Star Trek	Star wars	Superman	Batman	Hulk
Harry	4	2	?	5	4
John	5	3	4	?	3
Rob	3	?	4	4	3

Cosine similarity

Sim(Harry, John) =
$$\frac{(4*5)+(2*3)+(4*3)}{sqrt(4^2+2^2+4^2)*sqrt(5^2+3^2+3^2)}$$
 Sim(Harry, Rob) = $\frac{(4*3)+(5*4)+(4*3)}{sqrt(4^2+5^2+4^2)*sqrt(3^2+4^2+3^2)}$
= 0.97 = 1.00

88

Collaboration Filtering: Walkthrough Example (user-based)

Step 2: Predict the ratings of movies for Harry

Name	Star Trek	Star wars	Superman	Batman	Hulk
Harry	4	2	?	5	4
John	5	3	4	?	3
Rob	3	?	4	4	3

Calculate k as a normalising factor $k = \frac{1}{(0.97+1)} = 0.51$

 $\mathsf{R}(\mathsf{Harry}, \mathsf{Superman}) = \mathsf{k}^*((sim(\mathit{Harry}, \mathit{John}) * \mathit{R}(\mathit{John}, \mathit{Superman})) + (sim(\mathit{Harry}, \mathit{Rob}) * \mathit{R}(\mathit{Rob}, \mathit{Superman})))$

$$= 0.51((0.97 * 4) + (1 * 4))$$

= 4.02

Collaboration Filtering: Walkthrough Example (user-based)

Step 3: Select top-2 rated movies for Harry

Name	Star Trek	Star wars	Superman	Batman	Hulk
Harry	4	2	4.02	5	4
John	5	3	4	?	3
Rob	3	?	4	4	3

Top-2(Harry, movies)=Batman, Superman

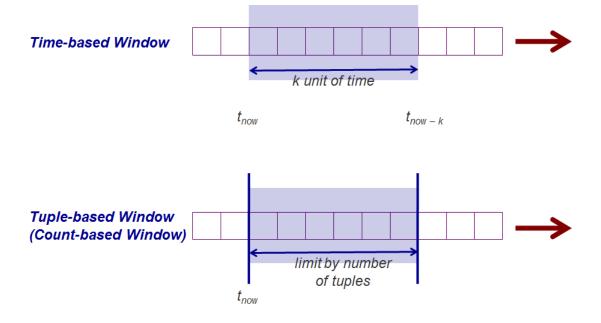
Unit Overview

1. Volume → Sessions 1, 2, 3, 4

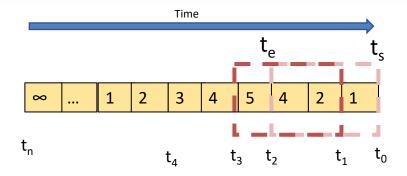
How to process Big Data Volume?

2. Complexity → Sessions 5, 6, 7, 8

 How to apply machine learning algorithms to every aspect of Big Data?

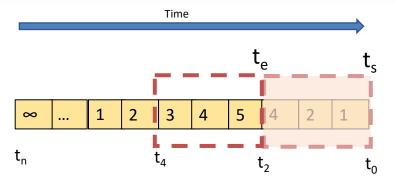

3. Velocity → Sessions 9, 10, 11

– How to handle and process Fast Streaming Data?


Windowing System in Unbounded Streams

A data stream is a real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) sequence of items.

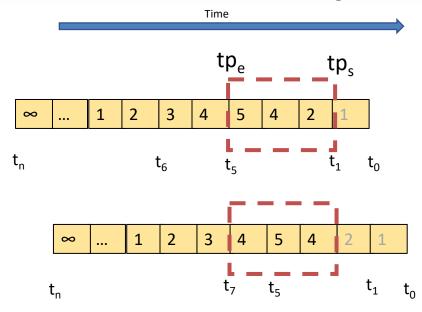
Stream Window – Time Based Window



Window size 2 seconds Slides 1 second.

Overlapping Sliding Window

Stream Window – Time Based Window



Non-Overlapping Sliding Window

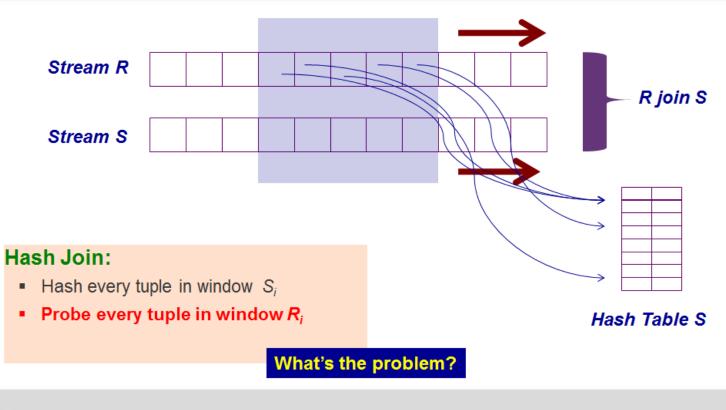
- Window size is based on time, eg 2 seconds
- Window can be advanced by:
 - t_e-t_s (window size)
 - Duration less than the window size (sliding window).
- In uniform data rate, the number of tuples will be the same for each window.

Stream Window – Tuple Based Window

Window size is 3 tuples Slide window by 1 tuple

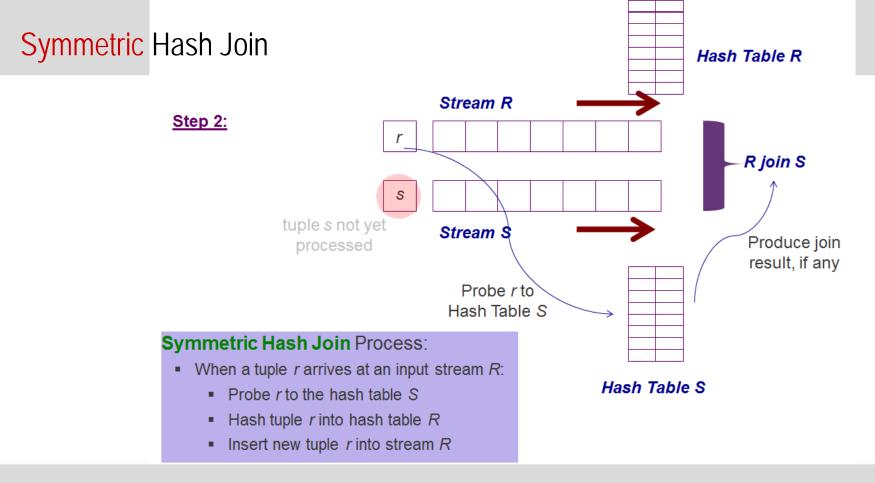
Event vs Processing time

- Event time: the time when the data is produced by the source.
- Processing time: the time when data is arrived at the processing server.
- In ideal situation, event time = processing time.
- In real world event time is earlier than the processing time due to network delay.
- The delay can be uniformed (ideal situation) or non-uniform (most of real network situation).
- Data may arrive in "burst" (bursty network).

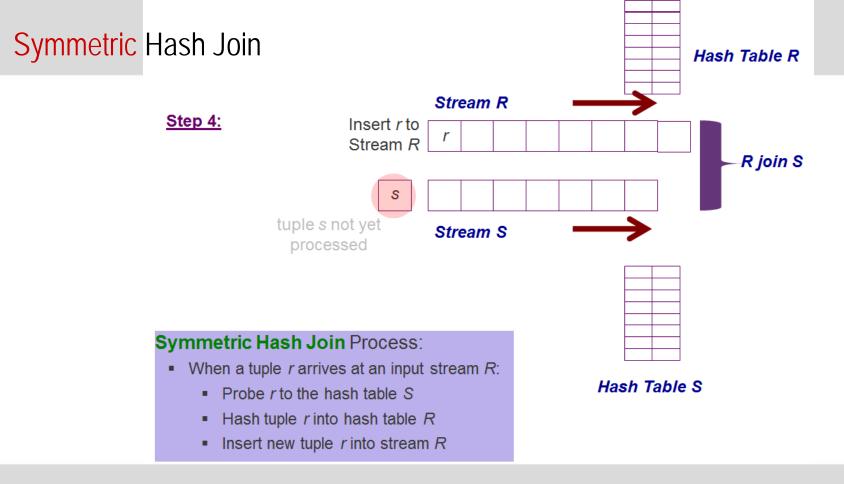

Velocity → Session 9, 10, 11

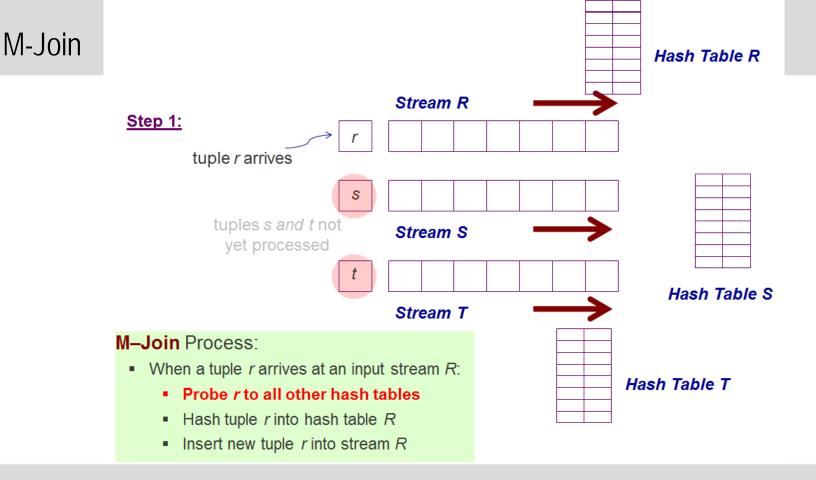
Joins In Data Streams

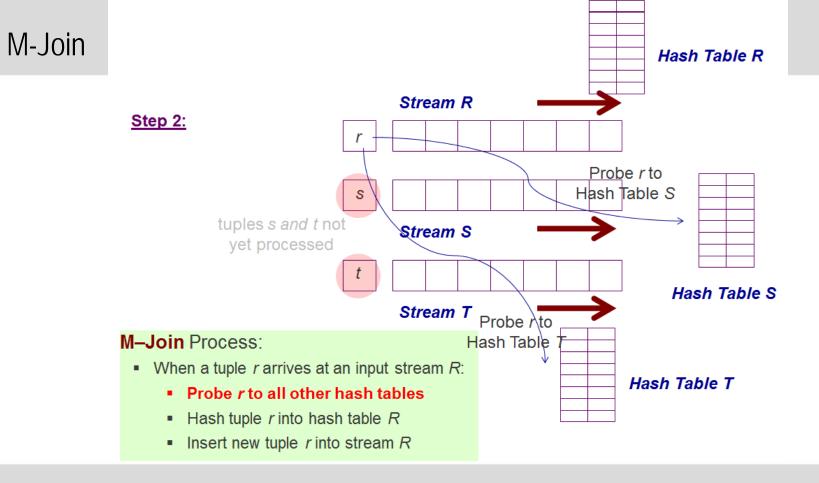
- Symmetric Hash Join
- M Join
- AM Join
- Handshake Join

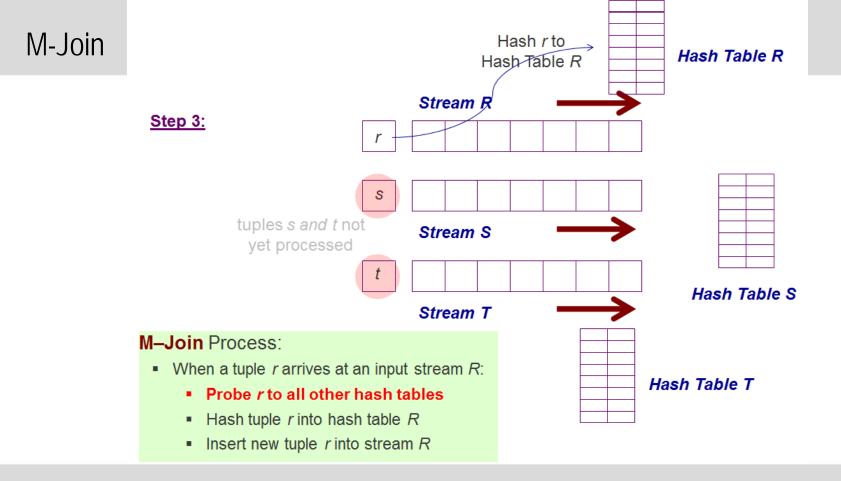

Hash Join

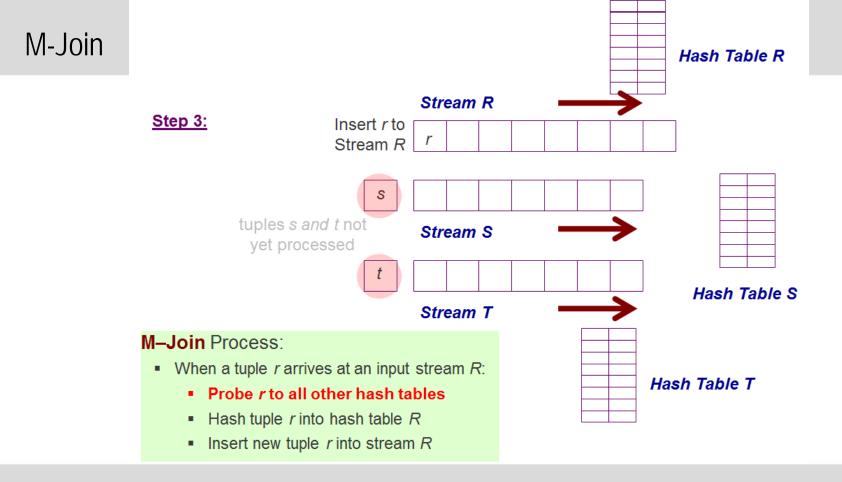


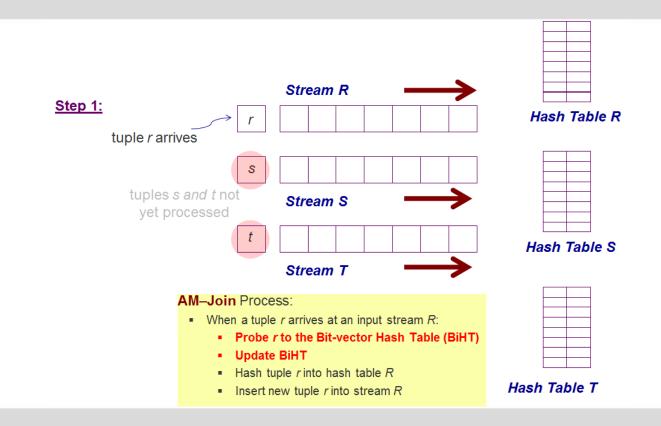


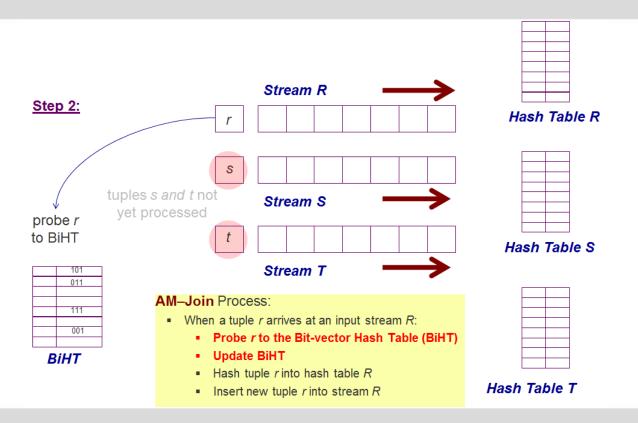




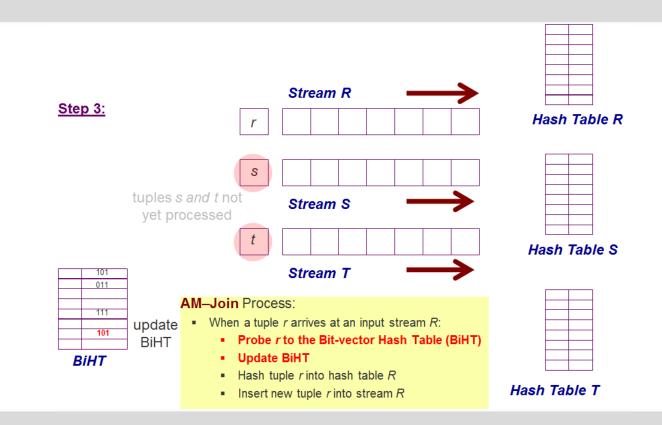

MONASH University

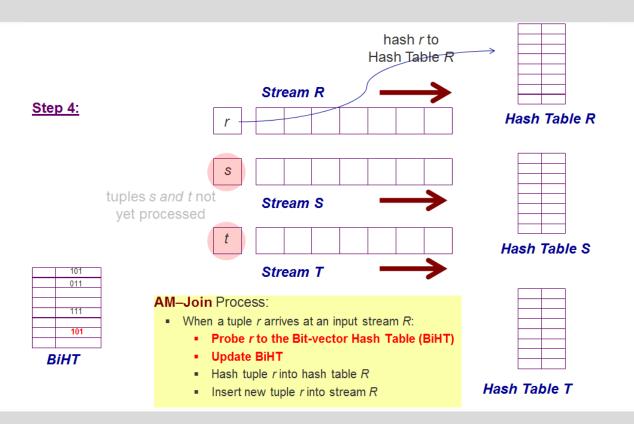




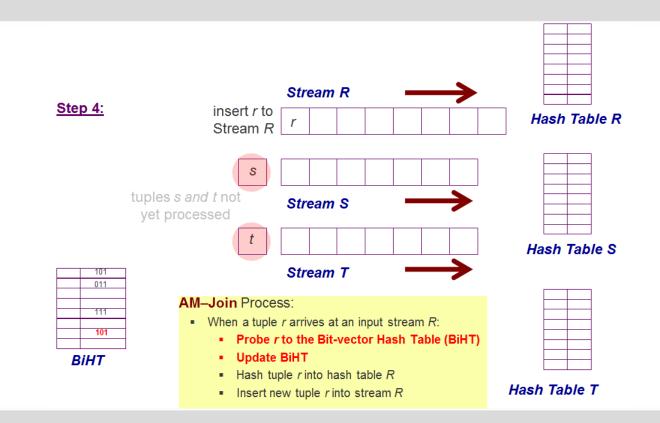


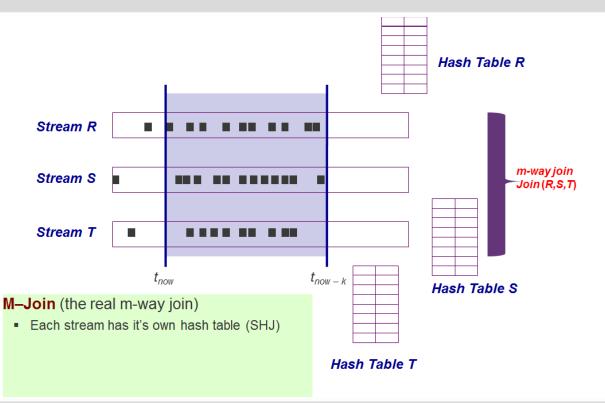
AM-Join


AM-Join

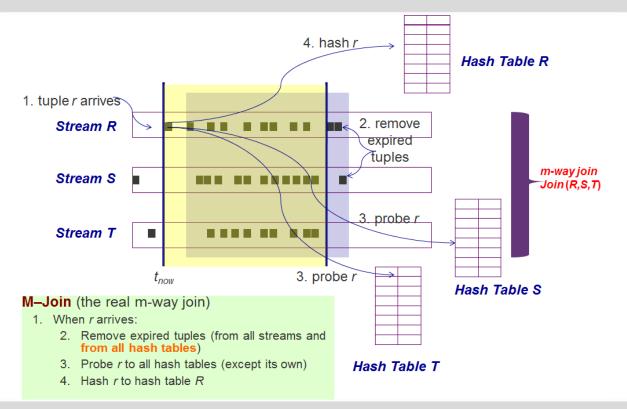

AM-Join

109

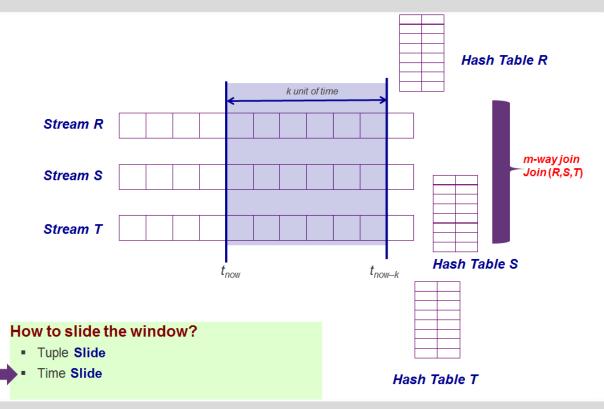

AM-Join

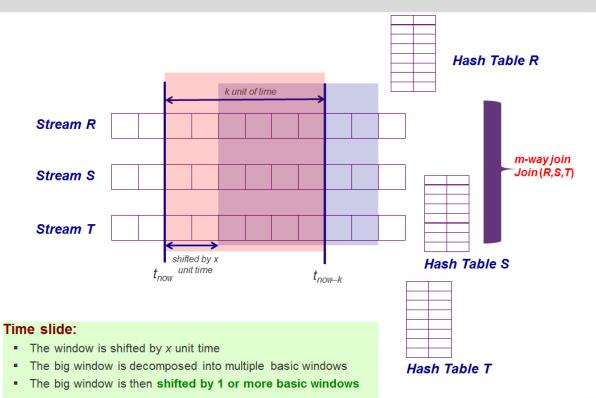

110

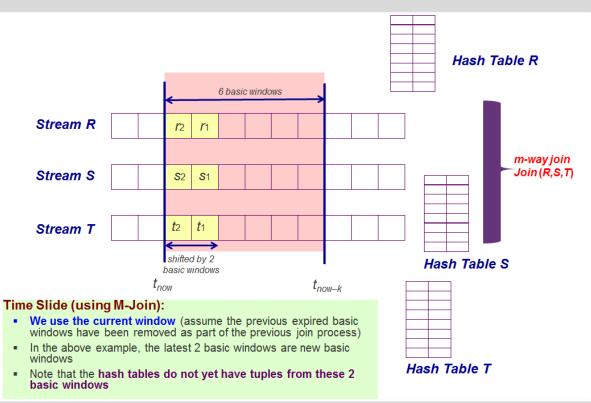
AM-Join

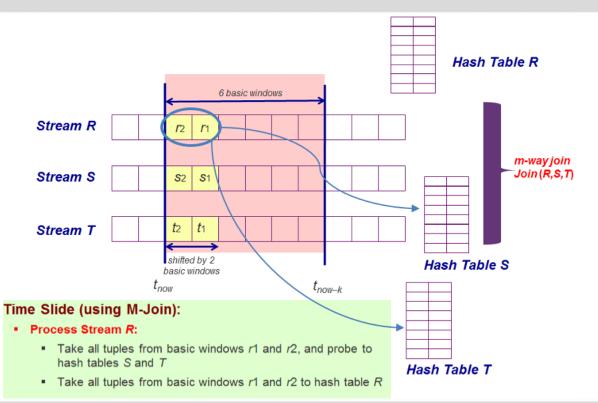


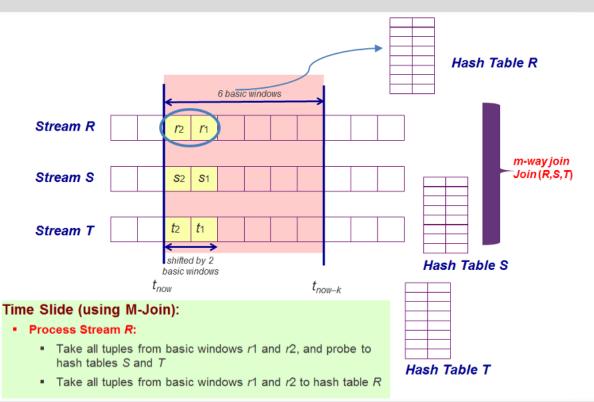
Tuple Slide (Using M–Join)

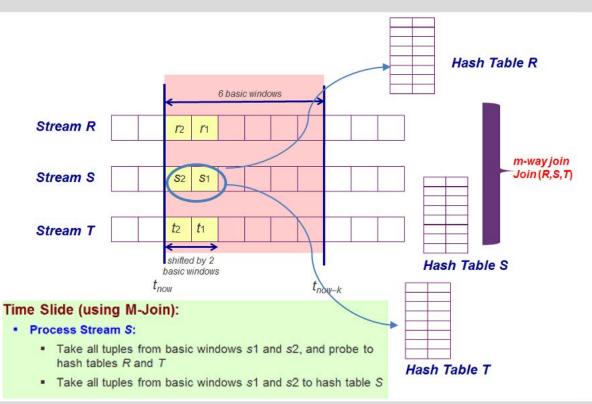


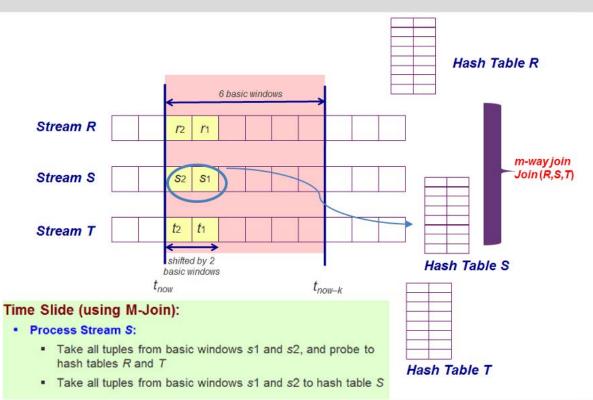

Tuple Slide (Using M–Join)

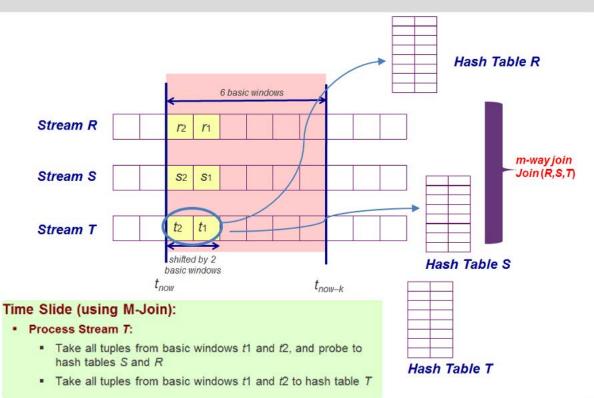


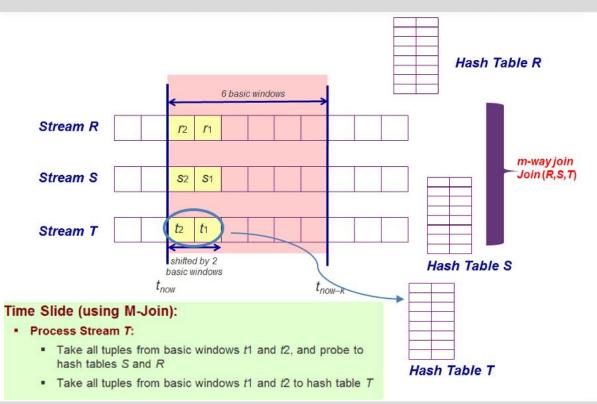




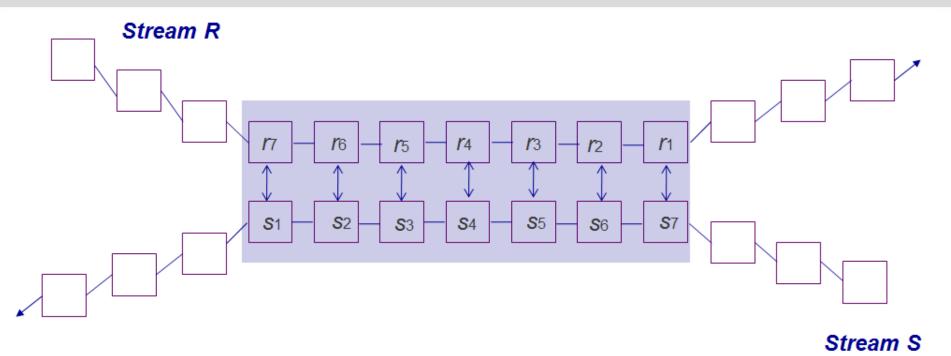


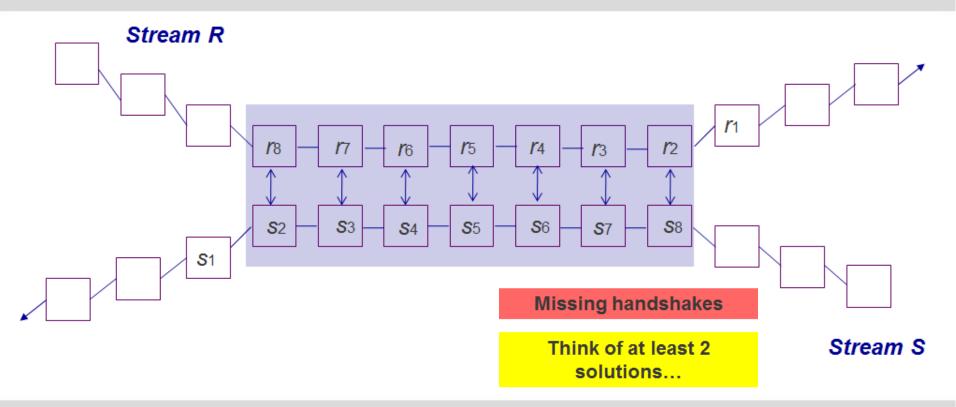




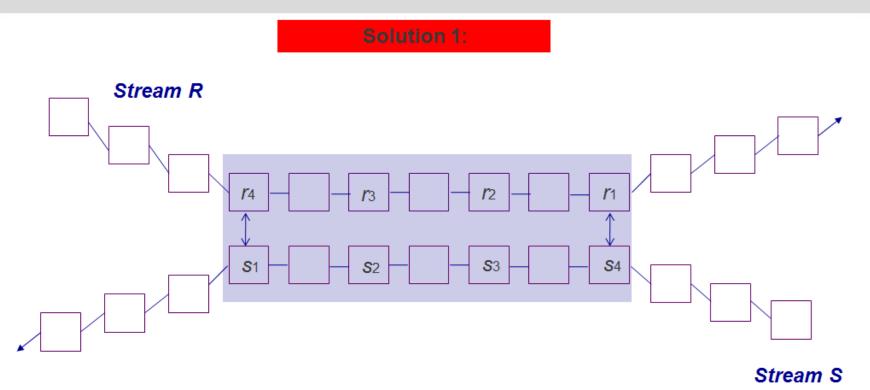


120

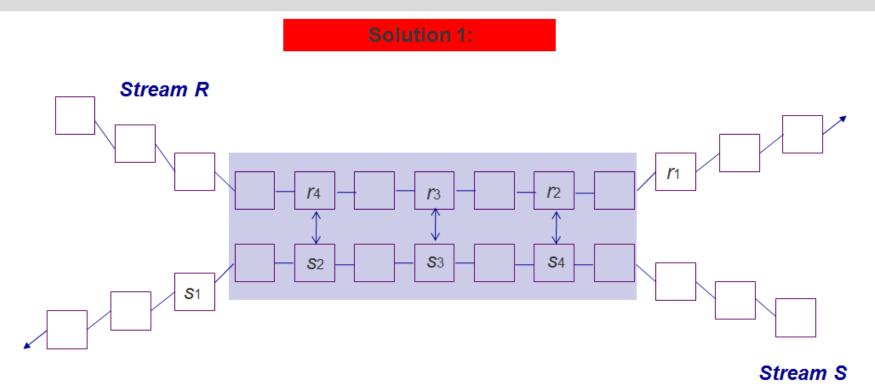




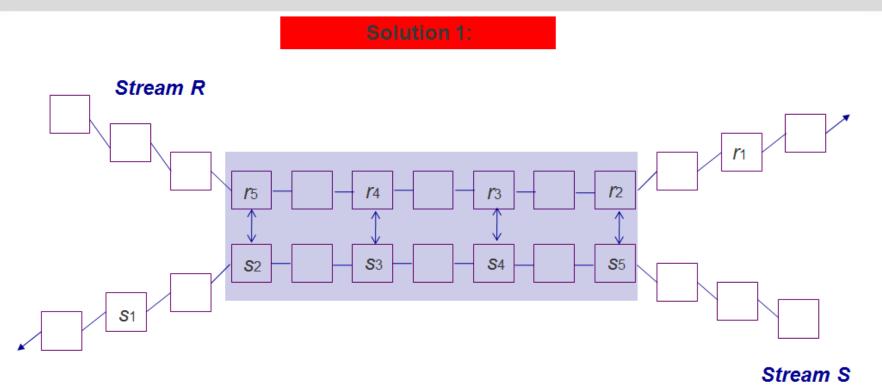
Handshake Join


MONASH University

Handshake Join

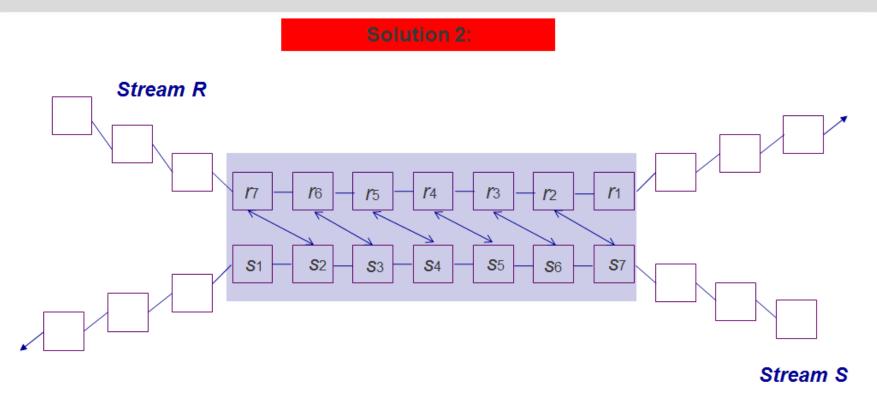


Handshake Join (Solution 1)

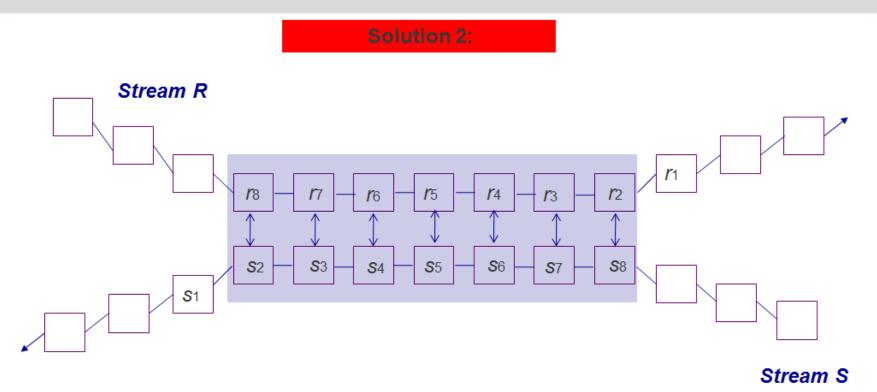


Handshake Join (Solution 1)

Handshake Join (Solution 1)



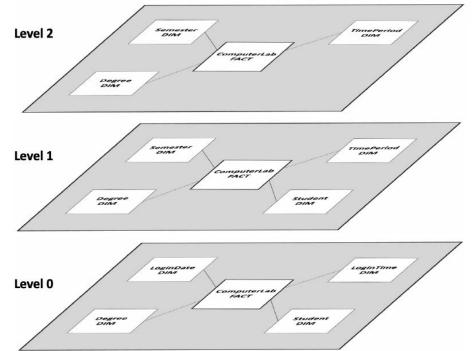
Handshake Join (Solution 2)



Handshake Join (Solution 2)

Handshake Join (Solution 2)

Velocity → Session 9, 10, 11


Granularity Reduction In Data Streams

• Group By and Aggregation

Granularity

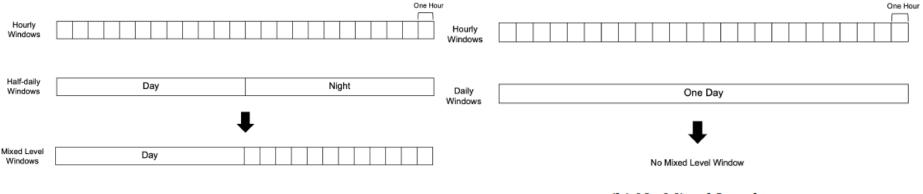
- **Granularity** is the level of detail at which **data** are stored in a database.
- level-0, the bottom level indicating no aggregation.
- level-1 and level-2 with more aggregation.

Flux Quiz 13

In a sales scenario, if one record is a one-month sales amount, a window of 6 months is used to calculate the running 6-month average sales amount. In this case, the window size is 6 records, and the slide is every record. The number of records in the moving average will be the same as the original number of records. If one year has 12 records of sales, the moving average will also contain 12 records. Hence, no reduction in terms of the number of records. This is a pure moving average (also known as rolling mean). The above-mentioned case is an example of:

A. Overlapped Windows - No granularity reduction

- B. Overlapped Windows With granularity reduction
- C. Non-Overlapped Windows Granularity reduction


Mixed Levels of Granularity

- Different levels of granularity combined into one level.
- Mixed level of granularity can be two types:
 - Temporal-based Mixed Levels of Granularity
 - Time based.
 - Spatial-based Mixed Levels of Granularity
 - Space or location based.

Mixed Levels of Granularity

Temporal-based Mixed Levels of Granularity
 Time based.

(a) Mixed Level of Granularity between Day and Night

(b) No Mixed Level

Sensor Arrays

- A sensor array is a group of sensors, usually deployed in a certain geometry pattern.
- A network of distributed sensors.
- They add new dimension to the observation, and hence it helps to estimate more parameters, to have better picture of the environment being observed, and improve accuracy.
- Two categories:
 - 1. Multiple sensors measuring the same things, and

2. Multiple sensors measuring different things, but they are grouped together.

Sensor Arrays

- Multiple sensors measuring the same things
- Two methods to lower the granularity of sensor arrays that measure the same thing:
 - Method 1: Reduce and then Merge
 - Method 2: Merge and then Reduce

Sensor Arrays

Multiple sensors measuring different things

- Sensors arrays can be a collection of sensors measuring different things within the same environment.

- Example: A simple indoor sensor array, containing three sensors: air quality, temperature, and humidity.
- Two methods to lower the granularity of sensor arrays that measure the different thing:
 - Method 1: Reduce, Normalize, and then Merge
 - Method 2: Normalize, Merge and then Reduce

Unit Summary

1. Volume → Sessions 1, 2, 3, 4

– How to process Big Data Volume?

2. Complexity → Sessions 5, 6, 7, 8

 How to apply machine learning algorithms to every aspect of Big Data?

3. Velocity → Sessions 9, 10, 11

– How to handle and process Fast Streaming Data?

Thank You

Questions?

