2" University INFORMATION
TECHNOLOGY

FIT5202 — Data Processing for Big Data

Revision
Presented by
Peter Liu

Developed by
Prajwol Sangat

A\ GROUP
AUSTRALIA

Unit Overview

1. Volume =» Sessions 1, 2, 3,4

— How to process Big Data Volume?

2. Complexity =» Sessions 5, 6, 7, 8
— How to apply machine learning algorithms to
every aspect of Big Data?

3. Velocity = Sessions 9, 10, 11

— How to handle and process Fast Streaming Data?

P MONASH
K@”’ University 2

Volume =» Session 1, 2, 3,4

TANIAR
LEUNG
RAHAYU
GOEL

High Performance Parallel

Database Processing and

Grid Databases

DAVID TANIAR, CLEMENT H.C. LEUNG,
WENNY RAHAYU, and SUSHANT GOEL

WILEY

MONASH
® University

1.1

1.2
1.3

Chapter 1
Introduction

A Brief Overview - Parallel Databases and Grid
Databases

Parallel Query Processing: Motivations
Parallel Query Processing: Objectives

Flux Quiz 1

Using the current processing resources, we can finish processing 1TB (one terabyte)
of data in 1 hour. Recently the volume of data has increased to 2TB and the
management has decided to double up the processing resources. Using the new
processing resources, we can finish processing the 2 TB in 60 minutes.

Is this speed up or scale up?

Solution:

Using x resources (current resources), 1TB = 60 minutes

When the resources are doubled (e.g. x becomes 2x now), a linear scale up is being able to complete 2TB
in 60 minutes.

In the question, using 2x resources, it finishes 2 TB in 60 minutes. Therefore, it is linear scale up.

PN MONASH
K@”’ University 4

Flux Quiz 2

There is ajob that will take 1 hour to complete, if this is done by 1 processor. The
serial part of this job is 10%. There are 4 processors to use in this job, but each
processor will have an overhead of 20% due to waiting time, communication time,
etc. What type of speed up do we get?

Solution:
1 processor = 60min; Serial part = 10% = 6min; Parallel part = 54min

4 processors = 54min/4 = 13.5min

Overhead = 20%

Hence, parallel processing part = 13.5min + 20%overhead = 13.5min+2.7min = 16.2min
Total time = 6min + 16.2min = 22.2min

Speed up = 60min/ 22.2min = 2.7
Linear speedup should be 4. Speed up of 2.7 is Sub-Linear Speedup

MONASH
® University 5

Flux Quiz 3

There 100,000 records in the table to be distributed to 32 processors. Assuming that

the skewness degree is high (theta = 1), what is the estimated number of records in
the heaviest processor?

R
|R;| = | *1 where 0 <6 < 1 (2.1)
34 " 1
L Z J*
=1
Solution:
I = 1(heaviest processor)
6=1

1+ Y%+ 1/3 + Y+ ...+ 1/32=4.05
Number of records = 100,000/ 4.05 = 24691

9 MONASH
® University 6

Skew

= Data Skew » Processing Skew
Elapsed Time

Highly Skewed 4

w 40000 I
'E p—
S 30000 1+
w‘ —
c-= 4
S o 20000 4+ ——
E 10000]
E AN NN e e m

1 2 3 4 5 6 7 8

Processor Number

1 2 3 ol

Figure 2.2 Highly skewed distribution .
- Processine Workload

MONASH 7
University

Parallel Database Architectures

Shared-Something Architecture
A mixture of shared-memory and shared-nothing architectures

SMP SMpP SMP
r__________________-; - - - == : = = = === 1
 ((cpu-1) (cpu2)(cpu-3) o - | |
: |_Cache) | Cache J l\CatheJ : : : : :

| | |

I 1 1 | I
' | BLh o laumans I l
| | : | : I :
I ‘mb 1 I

1 N— (Main-Memory] o [I I
| @ Lo I I I
I 1 1 | I

___________________ s oo

Interconnected Network

Figure 1.14 Cluster of SMP architectures

& VIONASH
3 University 8

Volume =» Session 1, 2, 3,4

Chapter 3

LEUNG
RAHAYU
GOEL

High Performance Parallel P a ral I e I S e a rC h

Database Processing and

Grid Databases

3.1 Search Queries

3.2 Data Partitioning

3.3 Search Algorithms
3.4 Summary

DAVID TANIAR, CLEMENT H.C. LEUNG, 3.5 Blbllographlcal Notes

WENNY RAHAYU, and SUSHANT GOEL .
3.6 Exercises
MWILEY

MONASH
® University 9

Data Partitioning

Basic Data Partitioning
- Round-robin or random equal data partitioning
- Hash data partitioning
- Range data partitioning
- Random-unequal data partitioning

Complex Data Partitioning

- Complex data partitioning is based on multiple attributes or is based on a
single attribute but with multiple partitioning methods

- Hybrid-Range Partitioning Strategy (HRPS)
- Multiattribute Grid Declustering (MAGIC)
- Bubba’s Extended Range Declustering (BERD)

9 MONASH
® University 10

S —

Data Partitioning (cont’d)

Round-robin data partitioning
Each record in turn is allocated to a processing element in a clockwise manner
“Equal partitioning” or “Random-equal partitioning”
Data evenly distributed, hence supports load balance
But data is not grouped semantically

Processors: 1 2

Data: | T T
2 no 2 n

Figure 3.3 Round-robin data partitioning

7, MONASH
i UanGfSlty

S —

Data Partitioning (cont’d)

Hash data partitioning
A hash function is used to partition the data
Hence, data is grouped semantically, that is data on the same group shared the same
hash value
Selected processors may be identified when processing a search operation (exact-

match search), but for range search (especially continuous range), all processors
must be used

Initial data allocation is not balanced either

Processors: | | [4 A~ =~ sssssa=as
Proc 2

Figure 3.4 Hash data partitioning

Proc

Daia:

PN MONASH
@ |Un |Ver8|ty

S —

Data Partitioning (cont’d)

Range data partitioning

Spreads the records based on a given range of the partitioning attribute

Processing records on a specific range can be directed to certain processor
only

Initial data allocation is skewed too

Pr()c 2 IIIIIIII
Processors: 1
range function
Data: A-C D-G | ssssssas W-Z

Figure 3.5 Range data partitioning

7, MONASH
® University

Search Algorithms

Serial search algorithms:
Linear search
Binary search

Parallel search algorithms:
Processor activation or involvement
Local searching method
Key comparison

9 MONASH
® University 14

S —

Search Algorithms (cont’d)

Processor activation or involvement
The number of processors to be used by the algorithm
If we know where the data to be sought are stored, then there is no point in
activating all other processors in the searching process
Depends on the data partitioning method used
Also depends on what type of selection query is performed

Table 3.6 Processor activation or involvement of parallel search algorithms
Data Partitioning Methods

Random- Hash Range | Random-

Equal Unequal
Exact Match All 1 1 All
Range Continuous | All All Selected | All
Selection | Discrete All Selected | Selected | All

4 VIONASH
“®’ University

S —

Search Algorithms (cont’'d)

Local searching method

The searching method applied to the processor(s) involved in the searching
process

Depends on the data ordering, regarding the type of the search (exact match
of range)

Table 3.7 Local searching method of parallel search algorithms

Records Ordering
Ordered Unordered
Exact Match Binary Search | Linear Search
Range Continuous | Binary Search | Linear Search
Selection | Discrete Binary Search | Linear Search

7, MONASH
i UanGfSlty

S —

Search Algorithms (cont’d)

Key comparison
Compares the data from the table with the condition specified by the query

When a match is found: continue to find other matches, or terminate
Depends on whether the data in the table is unique or not

Table 3.8 Key comparison of parallel search algorithms

Search Attribute Values

Unique Duplicate
Exact Match Stop Continue
Range Continuous Continue Continue
Selection Discrete Continue Continue

75, MONASH
P U niversi ty

Volume =» Session 1, 2, 3,4

Chapter 5
High Performance Parallel P aral I e I J O i n

Database Processing and

RAHAYU
GOEL

&

Grid Databases

5.1 Join Operations

5.2 Serial Join Algorithms
5.3 Parallel Join Algorithms
5.4 Cost Models

5.5 Parallel Join Optimization
5.6 Summary

DAVID TANIAR, CLEMENT H.C. LEUNG, 57 Blbllographlcal Notes

WENNY RAHAYU, and SUSHANT GOEL .
5.8 Exercises
MWILEY

MONASH
@ University 18

Join Algorithms

Parallel Inner Join components
- Data Partitioning
Divide and Broadcast
Disjoint Partitioning
- Local Jaoin
Nested-Loop Join
Sort-Merge Join
Hash Join
Example of a Parallel Inner Join Algorithm
~ Divide and Broadcast, plus Hash Join

4 MONASH
@ University 19

S —

Serial Join Algorithms (cont'd)

Hash-based Join Algorithm

. The records of files R and S are both hashed to the same hash file,
using the same hashing function on the join attributes A of R and B of
S as hash keys
A single pass through the file with fewer records (say, R) hashes its
records to the hash file buckets
A single pass through the other file (S) then hashes each of its
records to the appropriate bucket, where the record is combined with
all matching records from R

N MONASH

@ University

S —

Serial Join Algorithms (cont’d)

Hazk Table
Table 5 Tndex | Eniries
| Aris # 1 G-:uluEL-'l[I
Business 15 2 CompSe/2 Healith!/1 1
[CompSc |2 hashed 3 Dance/12 Finance/21
Dance 12 inlo 4
Engineering | 7 > 5
Finamce 2l i Busipess'15 |
| Geology 1] 7 Engineering?
Hizalth |] Arts’Ss
1T 18. 4 IT/I%
10
11
12

Figure 5.6. Hashing Table §

MONASH
University

S —

Serial Join Algorithms (cont'd)

Table R Hash Table

Adele 8 Index | Entries Join Results
Bob 22 1 Geology/10 Adele 8 Arts
Clement 16 2 CompSc/2 Health/11 Ed 11 | Health
Dave 23 3 Dance/12 Finance/21 Joanna | 2 CompSc
Ed 11 1 4

Fung 25 5

Goel 3 6 Business/15

Harry 17 7 Engineering/7

Irene 14 |/ probed Y\ 8 Arts/8

Joanna 2 into 9 IT/18

Kelly 6 10

Lim 20 11

Meng 1 12

Noor 5

Omar 19

Figure 5.7. Probing Table R

MONASH
University

S —

Parallel Join Algorithms (cont’'d)

Divide and Broadcast-based Parallel Join Algorithms
Two stages: data partitioning using the divide and broadcast method, and a
local join
Divide and Broadcast method: Divide one table into multiple disjoint partitions,

where each partition is allocated a processor, and broadcast the other table to
all available processors

Dividing one table can simply use equal division
Broadcast means replicate the table to all processors
Hence, choose the smaller table to broadcast and the larger table to divide

MONASH

@ University

Parallel Join Algorithms (cont'd)

4 MONASH
University

Processor 1 Processor 2 Processor 3
R1 S1 R2 52 R3 853
Adele 3 Arls 3 Fung 25 Business 12 Kelly | & CompSc | 2
Bob 22 Dance 15 Goel 3 Engineering | 7 Lim 20 Finance 21
Clement | 16 Geology | 10 Harry 17 Health 11 Meng | 1 IT 18
Dave 23 Irene 14 Noor | 5
Ed 11 Joanna | 2 Omar | 19

Figure 5.10 Initial data placement

Parallel Join Algorithms (cont’d)

Processor 1 Processor 2 FProcessor 3
Rl S1 R2 52 R3 53
Adele Arts Fung 25 | Business | 12 Kelly | 6 | CompSc 2
Bob 22 Dance 5 Goel 3 Engineering Lim 20 | Finance 21
Clement | 16 | Geology 0 Harry 17 Health 11 Meng | 1 IT 8
Dave 23 Irene 14 Noor | 5
Ed 11 S2 Joanna | 2 51 Omar | 19 51
Business 12 Ars Arts
Engineering | 7 | Dance 5 Dance 5
Health 11 Geology 0 Geology 0
53 53 52
CompSc 2 CompSc 2 Business 12
Finance 21 Finance 21 Engineering | 7
IT 18 IT L& Health 11
FProcessor 1 / FProcessor 2 Processor 3
Rl S1 R2 52 R3 53
Adele 8 Arts 8 Fung 25 Busin 12 Kellv [CompSc 2
Bob 22 Dance 15 Goel 3 Engineering | 7 Lim 20 Finance 21
Clement | 16 | Geology | 10 Harry 17 Health 11 Meng 1 1T 18
Dave 23 Irene 14 Noor 5
Ed 11 Joanna 2 Omar 19

Figure 5.11 Divide and broadcast result

MONASH

LA\ . .
University

Parallel Join Algorithms (cont’'d)

N MONASH

University

Processor 1 Processor 2 Processor 3

Result 1 Result 2 Result 3

Adele | 8 | Arts | Joanna | 2 | Compse NIL

Ed | 11 | Health |

Processor 1 Processor 2 Processor 3

Rr1 51 R2 52 "3 53

Adele B Arts 8 Fung 25 Business 12 Kelly [} CompSc 2

Bob 22 Dance 15 Goel 3 Engineering | 7 Lim 20 Finance 21

Clement | 16 Geology 10 Harry 17 Health 11 Meng 1 IT 18

Dave 23 Irene 14 Noor 5

Ed 11 52 Joanna | 2 51 Omar 19 51
Business 12 Arts 8 Arts L3
Engineering | 7 Dance 15 Dance 15
Health 11 Geology 10 Geology 10
53 53 52
CompSc 2 CompSc 2 Business 12
Finance 21 Finance 21 Engineering | 7
IT 18 IT 18 Health 11

Figure 5.12 Join results based on divide and broadcast

Cost Models?

Divide and Broadcast
- Join two tables (table R and table S)

- The two tables have been partitioned and stored in 3
Processors

- The tables have been partitioned using the random-equal
data partitioning method

- The table fragments are called R1, R2, R3, and S1, S2, S3
(in general, each fragment is called Ri or Si, where i is the
processor number)

P MONASH
K@”’ University 2

Flux Quiz 4

|S| = 600 records, each record has the length of 100 bytes, and N=3.

Table 2.1 Cost notations

Solution:

S = 60000 bytes
Si = S/N = 60000/3 = 20000 bytes

|S| = 600 records
|Si| = 600/3 = 200 records

Divide and Broadcast based parallel join
Transfer cost = (Si/P) x (N-1) x (mp+ml)

Receiving cost = (S/P — Si/P) x (mp)

MONASH
University

28

Symbol | Description

Data parameters

R Size of table in bytes

R; Size of table fragment in bytes on processor i
IR Number of records in table R

|1R;l Number of records in table R on processor i

Systems parameters

N Number of processors
P Page size
H Hash table size

Query parameters

n

Projectivity ratio

a

Selectivity ratio

Time unit cost

1o Effective time to read a page from disk

[3 Time to read a record in the main memory
Iy Time to write a record to the main memory
7] Time to compute destination

Communication cost

iy Message protocol cost per page
i Message latency for one page

S —

Parallel Join Query Processing

Parallel Outer Join processing methods
ROJA (Redistribution Outer Join Algorithm)
DOJA (Duplication Outer Join Algorithm)
DER (Duplication & Efficient Redistribution)

Load Balancing
OJSO (Outer Join Skew Optimization)

N MONASH

e

¥ University

Steps

Pros

Cons

Step 1: Distribute or
reshuffle the data
based on the join
attribute.

Step 2: Each
processor performs the
Local outer Join.

fast performance, only
two steps

redistribution of data ->
data skew,
communication cost

Step 1: Replication. We duplicate the
small table.

Step 2: Local Inner Join

Step 3: Hash redistribute the inner join
result based on attribute X.

Step 4: Local outer join

None. ROJA is faster than DOJA.

In the replication step, if the table is large,
the replication cost is expensive.

In the distribution step, data skew and
communication cost similar to ROJA

Step 1: Replication. We broadcast
the left table.

Step 2: Local Inner Join

Step 3: Select the ROW ID of left
table with no matches.

Step 4: Redistribute the ROW ID.
Step 5: Store the ROW ID that
appears as many times as the
number of processors.

Step 6: Inner join

Redistributes dangling row IDs
Instead of actual records.

In the replication step, if the table is
large, the replication cost is
expensive.

Volume =» Session 1, 2, 3,4

" PEbh Perfornmnes Parallel P ar al I e I S O rt an d

Database Processing and

Grid Databases

GroupBy

4.1 Sorting, Duplicate Removal and Aggregate
4.2 Serial External Sorting Method
4.3 Algorithms for Parallel External Sort

DAVID TANIAR, CLEMENT H.C. LEUNG,
WENNY RAHAYU, and SUSHANT GOEL

WILEY

MONASH
@ University 31

Sorting, and Serial Sorting

Serial Sorting — INTERNAL

The data to be sorted fits entirely into the main memory
Bubble Sort

Insertion Sort

Quick Sort

Serial Sorting - EXTERNAL

The data to be sorted DOES NOT fit entirely into the main memory
Sort-Merge

P MONASH
K@”’ University 32

Flux Quiz 5

There are 150 data pages to be sorted. The machine that we have has a limited
memory, and can only take 8 pages at a time.
How many passes will it take to sort the 150 data pages?

Solution:

File size to be sorted = 150 pages, humber of buffer (or memory size) = 8 pages

Number of subfiles = 150/8 = 19 subfiles (Last subfile has only 6 pages)

Pass O (sorting phase): For each subfile, read from disk, sort in main-memory, and write to
disk

Merging phase: We use 7 buffers for input and 1 buffer for output

Pass 1: Read 7 sorted subfiles and perform 7-way merging. Repeat the 7-way merging until
all subfiles are processed. Result = 3 subfiles

Pass 2: Merge the 3 subfiles

Summary: 150 pages and 8 buffer pages require 3 passes

P MONASH
K@”’ University 33

Parallel External Sort

Parallel Merge-All Sort

Parallel Binary-Merge Sort

Parallel Redistribution Binary-Merge Sort
Parallel Redistribution Merge-All Sort
Parallel Partitioned Sort

P MONASH
K@”’ University 34

S —

Parallel External Sort (cont’'d)

A traditional approach
Two phases: local sort and final merge
Load balanced in local sort
Problems with merging:
Heavy load on one processor
Network contention

Parallel Merge-All Sort

Final merge

Local sort

R

Figure 4.3 Parallel merge-all sort

ecords from the child operator

7, MONASH
@ University

S —

Parallel External Sort (cont’d)

Parallel Binary-Merge Sort
Local sort similar to traditional method
Merging in pairs only
Merging work is now spread to pipeline of processors,
but merging is still heavy

[=[>]=]-]

HEH

Records from the child operator

Figure 4.4 Parallel binary-merge sort

7, MONASH
® University

P

Twao-level hierarchical
merging using (N—1)
nodes in a pipeline.

Local sort

Sorted list

1]

Parallel Redistribution Binary-Merge

Sort

[11]
m

Parallelism at all levels in the
pipeline hierarchy

Step 1: local sort

Step 2: redistribute the results of
local sort

Step 3: merge using the same
pool of processors

Sorted amonyg
and within files

fntermedinie merge

Redistribution

Benefit.: merging becomes lighter
than without redistribution
Problem: height of the tree

=y .

& (| MON AS! l Records from the child operator
% Yo . ;

& Un|Ver8|ty Figure 4.6 Parallel redistribution binary-merge sort

Parallel Redistribution Merge-All Sort

Reduce the height of the tree, and
still maintain parallelism

Like parallel merge-all sort, but with
redistribution

The advantage is true parallelism in
merging

Skew problem in the merging

78 MONASH

“®’ University

ecords from the child operaror

Figure 4.7 Parallel redistribution merge-all sort

Sorted list

Final merge

Redistribution

Local sort

Parallel Partitioned Sort

Two stages: Partitioning stage and
Independent local work

Partitioning (or range redistribution) may
raise load skew

Local sort is done after the partitioning,
not before

No merging is necessary

Main problem: Skew produced by the
partitioning

4 VIONASH
“®’ University

&
7 12
“ Sorted list
[10]

Local sort

(-)EEEEE]

[o]-Te]=]=

Redistribution

Records from the child operaror

Figure 4.8 Parallel partitioned sort

Parallel External Sort

Exercise

Given a data set D ={8,11,14,1,12,15,2,5,16,3,6,9,4,7,10,13} and four processors,
show step by step how the Parallel Partitioned Sort works.

Initial Data Partitioning (Round Robin):
- P1={8,12,16,4}, P2 ={11,15,3,7}, P3 ={14,2,6,10} and P4 ={1,5,9,13}
Range Redistribution (Range Logic: P1 = 1-5, P2 = 6-10, P3 = 11-15, P4 = 16-20)
- P1={4,3,2,1,5}, P2 ={8,7,6,10,9}, P3 ={12,11,15,14,13}, P4 = {16}
Local Sort
- P1={1,2,34,5}, P2={6,7,8,9,10}, P3={11,12,13,14,15}, P4 = {16}

MONASH
® University 40

Parallel Group By

- Traditional methods (Merge-All and Hierarchical Merging)
- Two-phase method
- Redistribution method

MONASH
® University 41

S —

Parallel Group By (cont’'d)
Traditional Methods
Step 1: local aggregate in each processor
Step 2: global aggregation
May use a Merge-All or Hierarchical method
Need to pay a special attention to some aggregate functions (AVG) when performing
a local aggregate process

Coordinator o Twao-level hierarchical
merging using (N—1)

nodes in a pipeline.
Local aggregation o ° ° ° Local aggregation

Records from the child operator Records from the child operator

Figure 4.10 Traditional method Figure 4.11 Hierarchical merging method

S —

Parallel Group By (cont’'d)

Two-Phase Method
Step 1: local aggregate in each processor. Each processor groups local records
according to the groupby attribute

Step 2: global aggregation where all temp results from each processor are
redistributed and then final aggregate is performed in each processor

Processors: Global aggregation

Distribute local results
based on the group-by
attribute.

D Local aggregation

Processors:

x EJ/[ONASD!’_I Records from the child operator
@' Universi

Figure 4.12 Two-phase method

S —

Parallel Group By (cont’'d)

Redistribution Method
Step 1 (Partitioning phase): redistribute raw records to all processors
Step 2 (Aggregation phase): each processor performs a local aggregation

Processors: Aggregate

Distribute records on
the group-by attribute.

Figure 4.13 Redistribution method

7, MONASH
® University

P

Flux Quiz 7

The Redistribution Method has a load balancing option, through the Task Stealing method.

The Two-Phase Method does not have a load balancing problem.

Solution: False

79 MONASH
@ University 45

Unit Overview

2. Complexity =» Sessions 5, 6, 7, 8
— How to apply machine learning algorithms to
every aspect of Big Data?

3. Velocity = Sessions 9, 10, 11

— How to handle and process Fast Streaming Data?

P MONASH
K@”’ University 46

Machine Learning

Model 4 +

. . _ . ++
spam: Featurization Training Evaluation =

free money now! - - - - - - -

buy this money - - - — |-+

free savings 95 - - # T #
non-spam: -

howareyou? -~ ~

that Sparkjob - = -~

that Spark job - ~

Training Data Feature Vectors Model Best Model

Figure 11-1. Typical steps in a machine learning pipeline

7 MONASH
@ University 47

Machine Learning: Featurization

= Extraction: Extracting features from “raw” data
— Count Vectorizer
— TF-IDF
— Word2Vec
= Transformation: Scaling, converting, or modifying features
— Tokenization
— Stop Words Remover
— String Indexing
— One Hot Encoding
— Vector Assembler
= Selection: Selecting a subset from a larger set of features
— Vector Slicer

P MONASH
K@”’ University 48

Flux Quiz 8

In a product recommendation task, simply adding another feature (e.g., realizing that which
book you should recommend to a user might also depend on which movies she’s watched)

could give alarge improvement in results.

Solution: True

MONASH
® University 49

Types of Machine Learning

= Supervised,
= Unsupervised

MONASH
@ University 50

Types of Machine Learning: Supervised

* |n supervised machine learning, the data consists of a set of input
records.

= Each of these records have associated labels.

= The goal is to predict the output label(s) given a new unlabeled input.

= Two types of supervised machine learning:

1. Classificationand

2. Regression.

P MONASH
K@”’ University 51

Supervised Machine Learning: Classification

4 MONASH
® University 52

Supervised Machine Learning: Classification

Multinomial classification example: Australian shepherd, golden retriever, or poodle

4 MONASH
¥ University 53

Decision Trees: To Jog or Not To Jog

Sunset

Dawn
Midday

Thunderstorm Fine Thunderstorm

Shower

Figure 17.15 Final decision tree

4 MONASH
@ University 54

A decision tree is constructed based
only on the given training dataset. It
IS not based on a universal belief.

Flux Quiz 9

What is the entropy for the training data set in the table

below?

Heef | Weather Temperature | Time Day Jog (Targer Class)
1 Firig Mild Suifset Weekend Yes
p Fine Huot Sunsct Wieekday Yes
3 Shower Mild Middaw Weekday Mo
4 Thunderstorm | Cool Dawn Weckend Mo
5 Shower Hoit Sunset Weekday Yes
i Fing Haot Midday Weekday Mo
7 Fine Cool Diawn Wieekend M
8 Thunderstorm | Cool Midday Weekday Mo
i Fine Cool Midday Wieekday Yes
1) Fine Mild Midday Weekday Yes
11 Shower Huoi Dawn Weekend Mo
12 Shower Mild Diawn Weekday Mo
13 Fine Cool Dawn Weekday Mo
14 Thunderstorm Mild Sunsct Wieekend Mo
15 Thunderstorm | Hot Midday Weekday Mo

MONASH
University

Figure 17.11. Training dataset

29

1
H(S) = p(x) log war)

xEX

1G(S,4) = H(S) — Z P(x) » H(x)
=

ID3 (Iterative Dichotomiser 3)

= Steps

1. Compute the entropy for data set
For every attribute/feature:
2.1. Calculate entropy for all categorical values
2.2 Take average information entropy for the current attribute
2.3 Calculate gain for the current attribute

3. Pick the highest gain attribute
Repeat until the tree is complete

P MONASH
K@”’ University 56

ID3

Entropy for the given probability of the target classes, py, pa, ..., py Where [Reez Tweather Temperature | Time Day Yoz (Tareet Class)
" 1 Fine Mild Sunset Wecekend Yes
2 Fine Hot Sunset Weekday Yes
2 p, =1, can be calculated as follows: 3| Shower Mild Midday | Weekday | No
inl 4 Thunderstorm | Cool Dawn Weekend No
5 Shower Hot Sunset Weekday Yes
6 Fine Hot Midday Weekday No
< 7 Fine Cool Dawn Weekend No
entropy(p,.py--.p,)= 2 (p,. log(1/p,)) 8 [Thunderstorm | Cool Midday | Weekday | No
il 9 Fine Cool Midday Weekday Yes
(1? 2) 10 Fine Mild Midday chkday Yes
. 11 Shower Hot Dawn Wecekend No
12 Shower Mild Dawn Weekday No
13 Fine Cool Dawn Weekday No
14 Thunderstorm | Mild Sunset Weekend No
15 Thunderstorm Hot Midday Weekday No

entropy(Yes, No) = 5/15xlog(15/5) + 10/15xlog(15/10)
=0.2764

Figure 17.11. Training dataset

(17.3)

Jog

* Step 1: Calculate entropy for the training dataset in Figure 17.11. The result is Ves No

previously calculated as 0.2764 (see equation 17.3). c 10

Y

ID3

entropy(Weather=Fine) = 4/7xlog(7/4) + 3/7xlog(7/3) Rect [Weather Temperature [Time [Day [Jog (Targer Clse)
mnc 1 unsct ‘ecken Cs
= 0_2966 2 Fine Hot Sunset Weekday Yes
3 hower i idda feckda 0
(1 7 .4) 4 '?'Ihunderswrm 210101 Ediqn - &eetgnz EO
5 Shower Hot Sunset Weekday Yes
entropy(Weather=Shower) = 1/4xlog(4/1) + 3/4xlog(4/3) b e B R
= 0.2442 8 Thunderstorm éool Midday Weekday No
d K
9 Fine Cool Midda Weekday Yes
(17.5) [0 Fine Mild Middai chkda; Yes
11 Shower Hc_:t Dawn Wecekend No
* Step 2: Process attribute Weather e - D e e
14 Thunderstorm Mild Sunset Weekend No
i . 15 Thunderstorm | Hot Midday Weekday No
* Calculate weighted sum entropy of attribute Weather: Figure 17.11. Training dataset
entropy(Shomer) -~ 02 | s |
entropy(Shower) = 0.2442
entropy(Thunderstorm)=0 + 4/4xlog(4/4) = 0 Yes No
weighted sum entropy(Weather) = 0.2035 _
Fine 4 3
. Calculfdte information gain for attribute Weather: \yaather Shower 1 3 4
gain (Weather) = 0.0729
Thunderstorm 0 4
MONASH
University 58 15

ID3

Weighted sum entropy (Weather) = Weighted entropy (Fine) :m# ;T::th" Lﬁ?;mmm ::,:1; \[:iikcnd '\I,»ocimmf Chns)
+ Weight t 2 Fin H Suns Weekd Yes
Clg ed en ropy (Shower) 3 Shoewcr M(‘;lld I'v;idtiealy Wz:kd:; sz
+ Welghted entropy (Thunder SfO."m) 4 Thunderstorm Cool Dawn Weekend No
5 Shower Hot Sunset Weekday Yes
=7/15 x 0.2966 + 4/15 x 0.2442 + 4/15 x 0 b e Do Middyy eekdey LR
=(0.2035 8 Thunderstorm | Cool Midday Weekday No
17.6 9 Fine Cool Midday Weekday Yes
(.) 10 Fine Mild Midday Weekday Yes
11 Shower Hc_:t Dawn Wecekend No
* Step 2: Process attribute Weather e - D e e
14 Thunderstorm Mild Sunset Weekend No
i . 15 Thunderstorm | Hot Midday Weekday No
* Calculate weighted sum entropy of attribute Weather: Figure 17.11. Training dataset
entropy(Shower) = 0.2442
entropy(Thunderstorm)=0 + 4/4xlog(4/4) = 0 Yes No
weighted sum entropy(Weather) = 0.2035 Ei p .
ne
* Calculate information gain for attribute Weather: \yaather Shower 1 3 4
gain (Weather) = 0.0729
Thunderstorm 0 4
MONASH
University 59 15

ID3

Rec# | Weather Temperature | Time Day Jog (Target Class)
- — - 1 Fine Mild Sunset Weekend Yes
gain(Weather) = entropy(training dataset D) — entropy(attribute Weather) |[2__|Fine Hot Sunset | Weekday | Yes
_ 0 2764 0 2035 3 Shower Mild Mldda)" chkday No
Ve Ve 4 Thunderstorm Cool Dawn Weekend No
=0.0729 5 Shower Hot Sunset Weekday Yes
6 Fine Hot Midday Weekday No
(1 7 . 7) 7 Fine Cool Dawn Weekend No
3 Thunderstorm Cool Midday Weekday No
9 Fine Cool Midday Weekday Yes
10 Fine Mild Midday Weekday Yes
11 Shower Hot Dawn Wecekend No
. 12 Show Mild Daw Weekday N
* Step 2: Process attribute Weather 5 Thm Cool Dewn T Weekdo TNe
14 Thunderstorm | Mild Sunset Weekend No
i . 15 Thunderstorm Hot Midday Weekday No
¢ (Calculate weighted sum entropy of attribute Weather: Figure 17.11. Training dataset
entropy(Fine) = 0.2966 (equation 17.4)
entropy(Shower) = 0.2442 (equation 17.5)
entropy(Thunderstorm)=0 + 4/4xlog(4/4) = 0
weighted sum entropy(Weather) = 0.2035 (equation 17.6)
* Calculate information gain for attribute Weather:
gain (Weather) = 0.0729 (equation 17.7)

MONASH
" University 60

ID3

Rec# | Weather Temperature | Time Day Jog (Target Class)
1 Fine Mild Sunset Weekend Yes
2 Fine Hot Sunset Weekday Yes
3 Shower Mild Midday Weekday No
4 Thunderstorm Cool Dawn Weekend No
5 Shower Hot Sunset Weekday Yes
6 Fine Hot Midday Weekday No
7 Fine Cool Dawn Weekend No
. 3 Thunderstorm Cool Midday Weekday No
Step 3: Process attribute Temperature 9 |Fine Cool Midday | Weekday | Yes
10 Fine Mild Midday Weekday Yes
. X 11 Shower Hot Dawn Weekend No
* Calculate weighted sum entropy of attribute Temperature: D Shoer Mid T .
mne 00 awn cekday Q
enff’opy(HOl‘) = ZISXIOg(S/z) + 3/5x10g(5/3) = 02923 14 Thunderstorm | Mild Sunset Weekend No
15 Thunderstorm Hot Midday Weekday No

entropy(Mild) = entropy(Hot)
entropy(Cool) = 1/5xlog(5/1) + 4/5xlog(5/4) = 0.2173
weighted sum entropy(Temperature) = 5/15x0.2923 + 5/15x0.2173

Figure 17.11. Training dataset

* Calculate information gain for attribute Temperature: Yes No
gain (Temperature) = 0.2764 — 0.2674 = 0.009 Hot 2 3
Temperature Mild 3

MONASH 6 1 Cool 1 4

Universi
ty 15

ID3

Rec# | Weather Temperature | Time Day Jog (Target Class)
1 Fine Mild Sunset Weekend Yes
2 Fine Hot Sunset Weekday Yes
3 Shower Mild Midday Weekday No
4 Thunderstorm Cool Dawn Weekend No
5 Shower Hot Sunset Weekday Yes
6 Fine Hot Midday Weekday No
7 Fine Cool Dawn Weekend No
. . 8 Thunderstorm Cool Midday Weekday No
10 Fine Mild Midday Weekday Yes
. . 11 Shower Hot Dawn Weekend No
* (Calculate weighted sum entropy of attribute 7ime: 12| Shower Mild Dawn | Weckday | No
— — 13 Fine Cool Dawn Weekday No
en I.V()py (D aWH) - O + 5 / 5 ><log(s / 5) - 0 14 Thunderstorm | Mild Sunset Weekend No
entropy(Midday) = 2/6x1og(6/2) + 4/6xlog(6/4) = 0.2764 > Thunderstomm [fot Muddy [Wedhday [0

Figure 17.11. Training dataset

entropy(Sunset) = 3/4xlog(4/3) + 1/4xlog(4/1) = 0.2443
weighted sum entropy (Time) = 0 + 6/15x0.2764 + 4/15x0.2443 =

* Calculate information gain for attribute 7ime: Yes No
gain (Temperature) = 0.2764 — 0. 1757= 0.1007

Dawn 0 5
Time Midday 2
MONASH 62 Sunset 3
University

15

ID3

Rec# | Weather Temperature | Time Day Jog (Target Class)
1 Fine Mild Sunset Weekend Yes
2 Fine Hot Sunset Weekday Yes
3 Shower Mild Midday Weekday No
4 Thunderstorm | Cool Dawn Weekend No
5 Shower Hot Sunset Weekday Yes
6 Fine Hot Midday Weekday No
7 Fine Cool Dawn Weekend No
3 Thunderstorm Cool Midday Weekday No
9 Fine Cool Midday Weekday Yes
10 Fine Mild Midday Weekday Yes
. 11 Shower Hot Dawn Weekend No
Step 5: Process attribute Day 12 | Shower Mild Dawn Weckday | No
. . . 13 Fine Cool Dawn Weekday No
o Calculate weighted sum entropy of attribute Day: R [— v Sunser Weckend TNo
entropy(Weekday) = 4/10 x log(10/4) + 6/10 x log(10/6) 15| Thunderstorm | Hot Midday | Weekday | No
= (.2923 Figure 17.11. Training dataset
entropy(Weekend) = 1/5 x log(5/1) +4/5 x log(5/4)
= 0.2173
x 0.2173 = 0.2674
o Calculate information gain for attribute Day: Yes No
gain(Temperature) = 0.2764—0.2674 = (0.009 Weekend 4 6 10
Day
Weekday 1 4 5

MONASH 15
University 63

ID3

Rec# | Weather Temperature | Time Day Jog (Target Class)
1 Fine Mild Sunset Wecekend Yes
2 Fine Hot Sunset Weekday Yes
3 Shower Mild Midday Weekday No
4 Thunderstorm Cool Dawn Weekend No
5 Shower Hot Sunset Weekday Yes
Sunset 6 Fine Hot Midday Weekday No
. 7 Fine Cool Dawn Weekend No
Midday 8 Thunderstorm | Cool Midday Weekday No
9 Fine Cool Midday Weekday Yes
e 10 Fine Mild Midday Weekday Yes
. Partition D, Figure 17.13 Attribute Time 11 Shower Hot Dawn Weekend No
Fartition Dl as the root node 12 Shower Mild Dawn Weekday No
13 Fine Cool Dawn Weekday No
14 Thunderstorm | Mild Sunset Weekend No
15 Thunderstorm Hot Midday Weekday No

Figure 17.11. Training dataset

Comparing equations 17.7, 17.8, 17.9, and 17.10 ,and 17.10 for the gain of
each other attributes (Weather, Temperature, Time, and Day), the biggest gain is
Time, with gain value = 0.1007 (see equation 17.9), and as a result, attribute Time
is chosen as the first splitting attribute. A partial decision tree with the root node
Time 1s shown in Figure 17.13.

MONASH
University 64

ID3

Rec# | Weather Temperature | Time Day Jog (Target Class)
1 Fine Mild Sunset Weckend Yes
2 Fine Hot Sunset Weekday Yes
3 Shower Mild Midday Weekday No
Sunset 4 Thunderstorm Cool Dawn Weekend No
Dawn 5 Shower Hot Sunset Weekday Yes
6 Fine Hot Midday Weekday No
7 Fine Cool Dawn Weekend No
Partition D, 3 Thunderstorm Cool Midday Weekday No
- 9 Fine Cool Midday Weekday Yes
10 Fine Mild Midday Weekday Yes
11 Shower Hot Dawn Weckend No
12 Shower Mild Dawn Weekday No
13 Fine Cool Dawn Weekday No
14 Thunderstorm | Mild Sunset Weekend No
15 Thunderstorm Hot Midday Weekday No
Partition Dy, Figure 17.14 Autribute Figure 17.11. Training dataset

Weather as next splitting attribute

= The next stage is to process partition D, consisting of records with
Time=Midaay. Training dataset partition D, consists of 6 records with record#:
3,6,8,9, 10, and 15. The next task is to determine the splitting attribute for
partition D,, whether it is Weather, Temperature, or Day.

MONASH
¥ University 65

Decision Trees: To Jog or Not To Jog

Sunset

Dawn
Midday

Thunderstorm Fine Thunderstorm

Shower

Figure 17.15 Final decision tree

»q4 VIONASH
Q University 66

A decision tree is constructed based
only on the given training dataset. It
IS not based on a universal belief.

Complexity = Session 5, 6, 7, 8

Chapter 17
vl Parallel Clustering and

Grid Databases

Classification

17.2 Parallel Clustering

DAVID TANIAR, CLEMENT H.C. LEUNG,
WENNY RAHAYU, and SUSHANT GOEL

WILEY

MONASH
® University 67

Parallel Classification: Decision Tree

Feature attributes

Data parallelism

Target
Record# N~ Class ~ -

Rec# | Weather Temperature | Time Day Jog (Target Class)
1 Fine Mild Sunset Weekend Yes
2 Fine Hot Sunset Weekday Yes
3 Shower Mild Midday Weekday No
4 Thunderstorm Cool Dawn Wecekend No
5 Shower Hot Sunset Weekday Yes
6 Fine Hot Midday Weekday No
7 Fine Cool Dawn Weekend No
8 Thunderstorm Cool Midday Weekday No
9 Fine Cool Midday Weekday Yes
10 Fine Mild Midday Weekday Yes
11 Shower Hot Dawn Weekend No
12 Shower Mild Dawn Weekday No
13 Fine Cool Dawn Weekday No
14 Thunderstorm Mild Sunset Weekend No
15 Thunderstorm | Hot Midday Weekday No

~—(—— ~—

Partition 1 Partition 2 Partition 3

Figure 17.16 Vertical data partitioning of training data set

MONASH
University

68

Figure 17.11. Training dataset

Parallel Classification: Decision Tree

Data parallelism:

Rec# | Weather Temperature | Jog (Target Class) Rec# | Time Day Jog (Target Class)
1 Fine Mild Yes 1 Sunset Weekend Yes
2 Fine Hot Yes 2 Sunset Weekday Yes
3 Shower Mild No 3 Midday Weekday No
4 Thunderstorm Cool No 4 Dawn Weekend No
5 Shower Hot Yes 5 Sunset Weekday Yes
6 Fine Hot No 6 Midday Weekday No
7 Fine Cool No 7 Dawn Weekend No
8 Thunderstorm Cool No 8 Midday Weekday No
9 Fing Cool Yes 9 Midday Weekday Yes
10 Fine Mild Yes 10 Midday Weekday Yes
11 Shower Hot No 11 Dawn Weekend No
12 Shower Mild No 12 Dawn Weekday No
13 Fine Cool No 13 Dawn Weekday No
14 Thunderstorm Mild No 14 Sunset Weekend No
15 Thunderstorm Hot No 15 Midday Weekday No
Partition 1 Partition 2

9 MONASH
@’ University 69

Parallel Classification: Decision Tree

Data parallelism

Level 1

Level 2a

Level 2b

Level 2¢

Level 3a

MONASH
University

Processor 1

Processor 2

Processor 3

Bl 30|90 %

20| <= (30| || %] <= |

Rec# | Weather Temperature | Time Day Jog (Target Class)
1 Fine Mild Sunset Weekend Yes
2 Fine Hot Sunset Weekday Yes
3 Shower Mild Midday Weekday No
4 Thunderstorm Cool Dawn Weekend No
5 Shower Hot Sunset Weekday Yes
6 Fine Hot Midday Weekday No
7 Fine Cool Dawn Weekend No
3 Thunderstorm Cool Midday Weekday No
9 Fine Cool Midday Weekday Yes
10 Fine Mild Midday Weekday Yes
11 Shower Hot Dawn Weekend No
12 Shower Mild Dawn Weekday No
13 Fine Cool Dawn Weekday No
14 Thunderstorm | Mild Sunset Weekend No
15 Thunderstorm Hot Midday Weekday No

Figure 17.11. Training dataset

Figure 17.17 Data
parallelism of parallel decision

tree construction

Parallel Classification: Decision Tree

Res u |t p ar al | el | sm Processor 1 Processor ? Processor 3 Rec# | Weather Temperature | Time Day Jog (Target Class)
1 Fine Mild Sunset Weekend Yes
Level 1 [] ®] 2 Fine Hot Sunset Weekday Yes
3 Shower Mild Midday Weekday No
4 Thunderstorm Cool Dawn Weekend No
ﬂ 5 Shower Hot Sunset Weekday Yes
6 Fine Hot Midday Weekday No
7 Fine Cool Dawn Weekend No
3 Thunderstorm Cool Midday Weekday No
Level 2 ﬁ{ % & 9 Fine Cool Midday | Weekday Yes
10 Fine Mild Midday Weekday Yes
11 Shower Hot Dawn Weekend No
@ 12| Shower Mild Dawn Weekday | No
13 Fine Cool Dawn Weekday No
14 Thunderstorm | Mild Sunset Weekend No
15 Thunderstorm Hot Midday Weekday No
Level 3 Cf&% Figure 17.11. Training dataset

[

Level 4
Figure 17.20 Result

parallelism of parallel decision
tree construction

yq4 MIONASH
® University 71

Types of Machine Learning: Unsupervised

» Instead of predicting a label, unsupervised ML helps you to better
understand the structure of your data.

= Two types of unsupervised machlne learning:

1. Clustering and
2. Association.

Unsupervised
Learning

P9 MONASH
@’ University (2

ing

Cluster

Unsupervised Machine Learning

Clustered data

Original unclustered data

1

0

-3 -2 -1

Clustering example

73

MONASH
University

“'nlA:’_.‘&‘
i+

K-Means clustering

Algorithm k-Means:
- Specifies knumber of clusters, and guesses the kseed cluster centroid
~lteratively looks at each data point and assigns it to the closest centroid
~ Current clusters may receive or loose their members
- Each cluster must re-calculate the mean (centroid)
- The process is repeated until the clusters are stable (no change of

members)
Algorithm: k-means
Input:
D={x,, X5y ., X,} //Data objects
k //Number of desired clusters
Output:
K //Set of clusters
1. Assign initial wvalues for means m,, m,, .., m
2. Repeat
mﬁ} MONASH 3. iiiignhifci%gaziobeect x%; to the cluster
oY . . 74 S n [n sest mean
& lJrnverSﬁy 4. Calculate new mean for each cluster

5. Until convergence criteria is met

Flux Quiz 10

Data D = {5, 19, 25, 21,4, 1, 17, 23,8, 7, 6, 10, 2, 20, 14, 11, 27, 9, 3, 16}
Number of clusters: k =3
Initial centroids: m1=6, m2=7, and m3=8.

Which of the following grouping is correct after applying K-Means
algorithm?

Solution:

C.={1, 2,3,4,5, 6}

C,={7, 8,9, 10, 11, 14}

C,;={16, 17, 19, 20, 21, 23, 25, 27}

MONASH
@ University 15

k-Means: Step-By-Step Example

— DataD ={5, 19, 25, 21,4, 1, 17, 23,8, 7, 6, 10, 2, 20, 14, 11, 27, 9, 3,
16}

— Number of clusters: k =3

— Initial centroids: m;=6, m,=7, and m;=8

— First Iteration
Clusters:
- C,;={1,2,3,4,5,6}
- C={7}
- C;5={8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 27}
Re-calculated centroids: m;=3.5, m,=7, and m;=16.9

P9 MONASH
@’ University 76

k-Means: Step-By-Step Example

— Clusters:

- C,={1, 2, 3,4,5, 6}

- C={7}

- C;5={8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 27}
— New centroids: m;=3.5, m,=7, and m;=16.9
— Second lteration

= Clusters:
- C,={1, 2, 3,4, 5}
- C,={6,7,8,9,10, 11}
— C;={14, 16, 17, 19, 20, 21, 23, 25, 27}
= Re-calculated centroids: m;=3, m,=8.5, and m;=20.2

P94 VIONASH
“®’ University v

k-Means: Step-By-Step Example

— Clusters:

= C,={1, 2,3,4,5}

- C,={6,7,8,9, 10, 11}

 C;5={14, 16, 17, 19, 20, 21, 23, 25, 27}
— New centroids: m;=3, m,=8.5, and m;=20.2
— Third Iteration

= Clusters:
- C,={1, 2, 3,4, 5}
- C,={6,7,8,9,10, 11, 14}
— C;5={16, 17, 19, 20, 21, 23, 25, 27}
= Re-calculated centroids: m;=3, m,=9.29, and m;=21

74 MONASH
@ University /8

k-Means: Step-By-Step Example

— Clusters:

= C,={1, 2,3,4,5}

- C,={6,7,8,9,10, 11, 14}

C;3={16, 17, 19, 20, 21, 23, 25, 27}
— New centroids: m;=3, m,=9.29, and m;=21
— Fourth Iteration

= Clusters:
- C;7{1,2,3,4,5, 6}
- C,={7,8,9, 10, 11, 14}
— C;5={16, 17, 19, 20, 21, 23, 25, 27}
= Re-calculated centroids: m;=3.5, m,=9.83, and m;=21

74 MONASH
@ University 79

k-Means: Step-By-Step Example

— Clusters:

C,={1, 2, 3, 4, 5, 6}

C,={7, 8, 9, 10, 11, 14}

C,={16, 17, 19, 20, 21, 23, 25, 27}
— New centroids: m;=3.5, m,=9.83, and m;=21
Fifth Iteration
No data movement from clusters (Process Terminated)

mq | mz | ma | C; C. Cs
6 7 8 1,2,3,4,5,6 | 7 8,9, 10, 11, 14, 16, 17, 19, 20, 23, 25, 27
35 | 7 169 | 1,2,3,4,5 | 6,78,9,10, 11 14, 16, 17,19, 20, 21, 23, 25, 27
85 | 202|1,2345 |6,78,910,11,14 | 16,17 19, 20, 21, 23, 25, 27
929 | 21 | 1,2,3,4,56 | 7.8,9,10,11,14 | 16,1719, 20, 21, 23, 25, 27
35 | 983 |21 |1,2,3,45,6]| 78,0910 1,14 | 16,1719, 20, 21, 23, 25, 27

Complexity = Session 5, 6, 7, 8

Chapter 17
vl Parallel Clustering and

Grid Databases

Classification

17.2 Parallel Clustering

DAVID TANIAR, CLEMENT H.C. LEUNG,
WENNY RAHAYU, and SUSHANT GOEL

WILEY

MONASH
@ University 31

Parallel K-means clustering

(a) Data Parallelism k-means

» Data parallelism of k-means —— —

partition 3

Processor | I Processor 2 [Processor 3]

Le

Final Clusters \ //

Dlaa

fa'.-A:‘_.u‘
. L
o

MONASH
University 82

Parallel K-means clustering

(b) Result Parallelism k-means

» Result Parallelism of k-means —— i

5
Data Data Data
partition | partition 2 partition 3
Processor 1 J Processor 2 I Processor 3 [

00
oo

Final Clusters ‘

4 MONASH
@ University 83

Product Recommendation

According to McKinsey study, 35% of what consumers purchase on
Amazon and 75% of what they watch on Netflix is driven by machine
learning—based product recommendations.

MONASH
® University 84

https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers

Flux Quiz 11
Collaboration Filtering: Walkthrough Example

Harry 4
John 5 3 4 ? 3
Rob 3 ? 4 4 3

Aim: Recommend top-2 movies
to Harry

74 MONASH
@ University 85

Collaborative Filtering Process

Data Collection -> Data Processing -> Calculate Referrals -> Derive Results

* Data collection: Collecting user behaviour and associated data items
* Data processing: Processing the collected data

e Recommendation Calculation: The recommended calculation method used to calculate
referrals

* Derive the result: Extract the similarity, sort it, and extract the top N to complete

MONASH
@ University 86

Collaboration Filtering: Walkthrough Example (user-based)

Step 1: Calculate the similarity between Harry and all other users

Harry 4
John 5 3 4 ? 3
Rob 3 ? 4 4 3

Cosine similarity

r,Iry Fuil
sim(u,u') = cos(0) = ir T|||: ” wu
ry, u \/Z Vi \/Z P‘M
4 VIONASH
@ University 87

Collaboration Filtering: Walkthrough Example (user-based)

Step 1: Calculate the similarity between Harry and all other users

Harry
John 5 3 4 ? 3
Rob 3 ? 4 4 3

Cosine similarity

. _ (4+3)+(5%4)+(4*3)
i = (4%5)+(2+3)+(4+3) Sim(Harry, Rob) = — ——
Slm(Harry: ‘JOhn) - sqrt(42+22+42)xsqrt(5%+3%+32) (y) sqrt(4°+5°+4°)*sqrt(3°+4°+3°)
= 0.97 = 1.00
4 MONASH 88
@’ University

Collaboration Filtering: Walkthrough Example (user-based)

Step 2: Predict the ratings of movies for Harry

Harry 4
John 5 3 4 ? 3
Rob 3 ? 4 4 3

Calculate kas a normalising factor

— 1 —
k= (0.97+1) 0.51

R(Harry, Superman) = k*((sim(Harry, John) * R(John, Superman)) + (sim(Harry, Rob) * R(Rob, Superman)))

= 0.51((0.97 * 4) + (1 * 4))
= 4.02

74 MONASH
@ University 89

Collaboration Filtering: Walkthrough Example (user-based)

Step 3: Select top-2 rated movies for Harry

Harry 4 4.02
John 5 3 4 ? 3
Rob 3 ? 4 4 3

Top-2(Harry, movies)= Batman, Superman

74 MONASH
@ University 90

Unit Overview

3. Velocity = Sessions 9, 10, 11

— How to handle and process Fast Streaming Data?

MONASH
® University 91

Windowing System in Unbounded Streams

A data stream is a real-time, continuous, ordered (implicitly by arrival time or explicitly by
timestamp) sequence of items.

Time-based Window %

k unit of time

v

N

tﬁo‘.L’ l‘rrow -k
Tuple-based Window
(Count-based Window))
= limit by number
of tuples
tﬁO‘.L’
P9 MONASH 97
& University

Stream Window - Time Based Window

Time

)
to t
o .. |1 |2 |3]a 54 |2 (1]
Overlapping Sliding Window
MONASH

University

Window size 2 seconds
Slides 1 second.

93

Stream Window - Time Based Window

Non-Overlapping Sliding Window

MONASH
University

® Window size is based on time, eg 2 seconds
® Window can be advanced by:
* t.-t,(window size)
® Duration less than the window size
(sliding window).
® In uniform data rate, the number of tuples will
be the same for each window.

94

Stream Window — Tuple Based Window

Window size is 3 tuples

tp_e o _tps Slide window by 1 tuple
I
= 112 |3 |4 |5 |4 |2 \I
L | || | J
t, te t ot
|
oo 1 (2 (3 |4 |5 |4
l | || | J
tn t7 t5 tl t0
MONASH 9

University

Event vs Processing time

" Event time: the time when the data is produced by the source.

" Processing time: the time when data is arrived at the processing server.

" |n ideal situation, event time = processing time.

" In real world event time is earlier than the processing time due to network delay.

" The delay can be uniformed (ideal situation) or non-uniform (most of real
network situation).

= Data may arrive in “burst” (bursty network).

MONASH <le
B> University

Velocity = Session 9, 10, 11

Joins In Data Streams

 Symmetric Hash Join
e M Join

e AM Join

o Handshake Join

P MONASH
K@”’ University 97

Hash Join

Stream R e M e S N
\ R join S

Stream S \ \

Hash Join:
= Hash every tuple in window S;
* Probe every tuple in window R; Hash Table S

What’s the problem?

Q9 MONASH
@ University 98

Symmetric Hash Join

Stream R

!

Step 1:
T

tuple r arrives

Stream S

Symmetric Hash Join Process:
= When a tuple rarrives at an input stream R:
= Probe rto the hash table S
= Hash tuple rinto hash table R
= [nsert new tuple rinto stream R

4 MONASH
@ University 99

!

Hash Table S

Hash Table R

R join S

Symmetric Hash Join Hash Table R

!

Stream R

Step 2:

R join S

Stream %

Produce join
result, if any

Probe rto
Hash Table S

Symmetric Hash Join Process:
= When a tuple rarrives at an input stream R:
= Probe rto the hash table S Hash Table S
= Hash tuple rinto hash table R
* |nsert new tuple rinto stream R

4§ MONASH
@ University 100

Symmetric Hash Join ash o Hash Table R

Stream q

_.—-—'—"r—'-'-'-

Step 3.

R join S

Stream S ﬁ

Symmetric Hash Join Process:
= When a tuple rarrives at an input stream R:
» Probe rto the hash table S Hash Table S
= Hash tuple rinto hash table R
= [nsert new tuple rinto stream R

4§ MONASH
@ University 101

Symmetric Hash Join

!

Stream R
Step 4: Insert rto
Stream R r
S
Stream S

Symmetric Hash Join Process:
= When a tuple rarrives at an input stream R:
* Probe rto the hash table S
» Hash tuple rinto hash table R
» [nsert new tuple rinto stream R

4§ MONASH
@ University 102

!

Hash Table S

Hash Table R

R join S

M-Join

Hash Table R

Stream R
Step 1:
_/9 r
tuple r arrives

S
Stream S

t
Stream T

M-Join Process:
= When a tuple rarrives at an input stream R:
= Probe rto all other hash tables
= Hash tuple rinto hash table R
= [nsert new tuple rinto stream R

4« MONASH
@ University 103

Vv

Hash Table §

Hash Table T

M-Join

Hash Table R

Stream R é

r+——oI|

\ \ Probe rto

s .| HhshTable S

tream S é

Step 2:

Hash Table S
Stream T Probe ﬁ

M-Join Process: Hash Tabl
= When a tuple rarrives at an input stream R:
* Probe rto all other hash tables Hash Table T
= Hash tuple rinto hash table R
» [nsert new tuple rinto stream R

104

Hash Table R

M-Join
Stream é
Step 3: P —
S
Stream S %
t
Stream T é

M-Join Process:
= When a tuple rarrives at an input stream R:
= Probe rto all other hash tables
= Hash tuple rinto hash table R
= [nsert new tuple rinto stream R

a4 VIONASH
@ University 105

Hash Table S

Hash Table T

M-Join

Stream R

Hash Table R

Step 3: Insert rto
Stream R | [

Stream S

Stream T

M-Join Process:
= When a tuple rarrives at an input stream R:
* Probe rto all other hash tables
» Hash tuple rinto hash table R
» |nsert new tuple rinto stream R

4« MONASH
@ University 106

v

Hash Table S

Hash Table T

AM-Join

Stream R —_

o Hash Table R
tuple rarrives

Step 1:

Stream S

Hash Table S

i

Stream T

AM-Join Process:
= When atuple r arrives at an input stream R:
= Probe rto the Bit-vector Hash Table (BiHT)
* Update BiHT
= Hash tuple rinto hash table R
= |nsert new tuple rinto stream R Hash Table T

yq4 MIONASH
3 University 107

AM-Join

Stream R q
Step 2:

r Hash Table R
S
Stream S %
probe r
to BiHT t
Hash Table S
107 Stream T é
011
- AM-Join Process:
= When atuple r arrives at an input stream R:
ul « Probe rto the Bit-vector Hash Table (BiHT)
BiHT = Update BiHT
= Hash tuple rinto hash table R
= |nsert new tuple rinto stream R Hash Table T

»q§ VIONASH
3 University 108

AM-Join

Stream R —_—

Step 3:
r Hash Table R
)
Stream S %
t
Hash Table S
07 Stream T ﬁ
011
. AM-Join Process:
update * When a tuple r arrives at an input stream R:
= BiHT - Probe rto the Bit-vector Hash Table (BiHT)
BiHT = Update BiHT
= Hash tuple rinto hash table R
* Insert new tuple rinto stream R Hash Table T
P8 MONASH 109
@' University

AM-Join

hash rto
Hash
Stream R é
Step 4:
=%€p 2. , LT Hash Table R
s

Stream S

Hash Table §

ot

o1 Stream T
011

AM-Join Process:

= When atuple r arrives at an input stream R:
* Probe rto the Bit-vector Hash Table (BiHT)

117

101

BiHT = Update BiIHT
= Hash tuple rinto hash table R
» Insert new tuple rinto stream R Hash Table T
=
7N MONASH
@' University 110

AM-Join

¥4 MONASH
@ University

Step 4:

107

01

171

101

BiHT

Stream R é
insert r to
StreamR | [
S
Stream 8 ﬁ
f
Stream T %

AM-Join Process:

= When a tuple r arrives at an input stream R:

= Probe rto the Bit-vector Hash Table (BiHT)

= Update BiHT
= Hash tuple rinto hash table R

= Insert new tuple rinto stream R

111

Hash Table R

Hash Table S

Hash Table T

Tuple Slide (Using M-Join)

Hash Table R

Stream R i @ Bl B BN BEER BN
Stream S P EEE EN EEEEEE N Tof:a(’é"g'%
Stream T | EEENE EN EBEN

Enow Enow —

M-Join (the real m-way join)
= Each stream has it's own hash table (SHJ)

»q4 VIONASH
Q University 112

Hash Table T

Hash Table S

Tuple Slide (Using M-Join)

4. hashr

1. tuple r arrive

Stream R N l:@l EE EE .|<\2. remove
expired
>[up|es

Hash Table R

Stream S # EIEE EN I\IIBF l‘/ To:fma(jggf%
\ 3 probe r
Stream T [| EEENE EN |
—
tow 3. prober T

M-Join (the real m-way join)
1. When r arrives:

2. Remove expired tuples (from all streams and
from all hash tables)

3. Probe rto all hash tables (except its own) Hash Table T
4. Hash rto hash table R

113

Hash Table S

Time Slide (Using M-Join)

k unit of time

Hash Table R

M

Stream R

m-way join

Stream S

Join(R,S,T)

Stream T

tﬂOW

How to slide the window?
= Tuple Slide

»- Time Slide

& MONASH
@ University 114

Hash Table S

tﬂOH-Lk

Hash Table T

Time Slide (Using M-Join)

- k unit of time
Stream R
Stream S
Stream T
—
shifted by x
t unit time f
now now—k
Time slide:

= The window is shifted by x unit time

= The big window is decomposed into multiple basic windows
= The big window is then shifted by 1 or more basic windows

" University

MONASH 115

Hash Table S

Hash Table T

Hash Table R

m-way join
Join(R,S,T)

Time Slide (Using M-Join)

Hash Table R

» 6 basic windows
Stream R r|
m-way join
Stream S s2 | s1 Join(R,S,T)
Stream T t2 |t
e —
shifted by 2

basic windows
1‘now
Time Slide (using M-Join):

= We use the current window (assume the previous expired basic
windows have been removed as part of the previous join process)

= Inthe above example, the latest 2 basic windows are new basic
windows

= Note that the hash tables do not yet have tuples from these 2
basic windows

tnouHr

9 MONASH
@’ University 116

Hash Table S

Hash Table T

Time Slide (Using M-Join)

6 basic windows

Hash Table R

Stream R

[

<

Stream S

—

Stream T

2 |t

\

e
shifted by 2

basic windows

tﬂDW

Time Slide (using M-Join):

= Process Stream R:

* Take all tuples from basic windows r1 and r2, and probe to

hash tables Sand T

* Take all tuples from basic windows r1 and r2 to hash table R

Inow—k

117

m-way join
Join(R,S,T)

Hash Table S

Hash Table T

Time Slide (Using M-Join)

6 basic windows

Hash Table R

Stream R Qi n)

m-way join

Stream S s2 | si

Join(R,S,T)

Stream T f2 |t

- —

shifted by 2
basic windows

fnow tnow—k
Time Slide (using M-Join):
* Process Stream R:

* Take all tuples from basic windows r1 and r2, and probe to
hash tables Sand T

» Take all tuples from basic windows r1 and r2 to hash table R

MONASH
University 118

& (|
5

Hash Table S

Hash Table T

Time Slide (Using M-Join)

6 basic windows

[
=

Hash Table R

Stream R rln

Stream S ﬁ s?)_\

\-._/\

Stream T 2 |t

shifted by 2
basic windows

tﬂOW
Time Slide (using M-Join):
* Process Stream S:

= Take all tuples from basic windows s1 and s2, and probe to
hash tables Rand T

= Take all tuples from basic windows s1 and s2 to hash table S

119

m-way join
Join(R,S,T)

Hash Table S

Hash Table T

Time Slide (Using M-Join)

6 basic windows

N
y

Hash Table R

Stream R rln

Stream S ﬁ s?)__h_'""‘x

Stream T L |H [E=Fi

shifted by 2
basic windows

tnuw Inow—k
Time Slide (using M-Join):
* Process Stream S:

= Take all tuples from basic windows s1 and s2, and probe to
hash tables Rand T

= Take all tuples from basic windows s1 and s2 to hash table S

79 MONASH
3 120

University

m-way join
Join(R,S,T)

Hash Table 8

Hash Table T

Time Slide (Using M-Join)

/v Hash Table R

L) 6 hasic windows -/
E ¥
Stream R r|n [
m-way join
Stream S s2 | s1 Join(R,8,T)
b’
Stream T L |h) e | == -2
shifted by 2
basic windows HaSh Tabie s
fnow tnow—k
Time Slide (using M-Join):
* Process Stream T:
= Take all tuples from basic windows #1 and f2, and probe to

hash tables S and R
* Take all tuples from basic windows 1 and {2 to hash table T

Hash Table T

121

Time Slide (Using M-Join)

Hash Table R

= 6 basic windows =
Stream R rln
m-way join
Stream S sz | &1 Join(R,S,T)
A
Stream T qfé f) —
IS”""‘“M Hash Table S

basic windows

t."}Ol\‘ tnow._ |

Time Slide (using M-Join):
* Process Stream T:

= Take all tuples from basic windows #1 and {2, and probe to
hash tables S and R

* Take all tuples from basic windows {1 and {2 to hash table T

Hash Table T

122

Handshake Join

Stream R
Vel
> vd
\n—ra—m—m — B |—r —r1/
/31— 32—33—34—35—35—3?\
o AN
% RN
N
Stream S
B Yona! 123

Handshake Join

Stream R
\ e
\ vd
N An
B rml—rmr@—mn MK/ —mn —r
/ S2—| S3— 84— S5 [— S6— 87 — SE\
AN
/ S1
A1 ~ Missing handshakes :
Think of at least 2 Stream S
solutions...
4 MONASH
@ University 124

Handshake Join (Solution 1)

Stream R
v
> v
N |- B r— n 4
A5 L2 18 SN
P N
P AN
v
Stream S
a4 VIONASH
@ University 125

Handshake Join (Solution 1)

Stream R
P e
\ / s /
Y — s2 | — S3 | — S4 | — N
/ S1 \
P BN
v
Stream S
a4 VIONASH
@ University 126

Handshake Join (Solution 1)

Stream R
A
/ s 7
\ rs [— M [— 3 | 1 /
/32_ — 83 — — S4 |— _35\
v N
| 81 N
v
Stream S
a4 VIONASH
@ University 127

Handshake Join (Solution 2)

Stream R
vl
> e
\n—m—ﬁ—ﬁl — R = —ﬁ/
Y S1—| S2— 83|84 | S5+ S8 — 3?\
p N
P AN
nd
Stream S
»q4 MONASH
@ University 123

Handshake Join (Solution 2)

Stream R
A
> v
\ry—rﬁ—m—m — B |—=mr —ﬁ/
| S| S2| S3[| S4 [S5 86 [ST
¥ N
P AN
vd
Stream S
a4 VIONASH
@ University 129

Handshake Join (Solution 2)

Stream R
P e
N Y r1 7
rB|— m|—rre[— MK MK —R — "
A S2 | S3[sS4 S5 | S8 ST [S8
/ S1 N
P AN
nd
Stream S
»q4 MONASH
@ University 130

Velocity = Session 9, 10, 11

Granularity Reduction In Data Streams

« Group By and Aggregation

MONASH
@ University 131

Granularity

¥ et
T

A
e i k.
e

Level 2

o Granularity is the level of detail at
which data are stored in a
database.

Level 1

» level-0, the bottom level indicating
no aggregation.

 Jevel-1 and level-2 with more
aggregation.

79 MONASH
®’ University 132

Flux Quiz 13

In a sales scenario, if one record is a one-month sales amount, a window of 6 months is
used to calculate the running 6-month average sales amount. In this case, the window size
IS 6 records, and the slide is every record. The number of records in the moving average
will be the same as the original number of records. If one year has 12 records of sales, the
moving average will also contain 12 records. Hence, no reduction in terms of the number
of records. This is a pure moving average (also known as rolling mean).

The above-mentioned case is an example of:

A. Overlapped Windows - No granularity reduction
B. Overlapped Windows - With granularity reduction

C. Non-Overlapped Windows - Granularity reduction

P§ MONASH 133
@ University

Mixed Levels of Granularity

= Different levels of granularity combined into one level.
= Mixed level of granularity can be two types:

» Temporal-based Mixed Levels of Granularity
- Time based.

= Spatial-based Mixed Levels of Granularity
- Space or location based.

74 MONASH
@ University 134

Mixed Levels of Granularity

= Temporal-based Mixed Levels of Granularity
- Time based.

Tne Hour Ome Hour
— —
wosows | | | L LI LTI e TTTTTTTITITTTITITTITITTITITITITTT
mmﬂ Day | Night l Daily | One Day |
Windows
Mndous | Day HEEEEEEEEEEEN Sio Hilad Lovel Windaw
(a) Mixed Level of Granularity between Day and Night (b) No Mixed Level
PN MONASH
¥ University 135

Sensor Arrays

A sensor array Is a group of sensors, usually deployed in a certain
geometry pattern.

= A network of distributed sensors.
= They add new dimension to the observation, and hence it helps to
estimate more parameters, to have better picture of the environment
being observed, and improve accuracy.
= Two categories:
1. Multiple sensors measuring the same things, and
2. Multiple sensors measuring different things, but they are
grouped together.

79 MONASH
® University 136

Sensor Arrays

= Multiple sensors measuring the same things
= Two methods to lower the granularity of sensor arrays that
measure the same thing:
- Method 1: Reduce and then Merge
- Method 2: Merge and then Reduce

74 MONASH
@ University 137

Sensor Arrays

= Multiple sensors measuring different things
- Sensors arrays can be a collection of sensors measuring different
things within the same environment.

= Example: A simple indoor sensor array, containing three sensors: air
guality, temperature, and humidity.

= Two methods to lower the granularity of sensor arrays that
measure the different thing:
- Method 1: Reduce, Normalize, and then Merge
- Method 2: Normalize, Merge and then Reduce

9 MONASH
® University 138

Unit Summary

1. Volume =» Sessions 1, 2, 3,4

— How to process Big Data Volume?

2. Complexity =» Sessions 5, 6, 7, 8
— How to apply machine learning algorithms to
every aspect of Big Data?

3. Velocity = Sessions 9, 10, 11

— How to handle and process Fast Streaming Data?

P MONASH
K@”’ University 139

4 MONASH
‘@ University

Thank You

Questions?

140

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	Data Partitioning (cont’d)
	Data Partitioning (cont’d)
	Data Partitioning (cont’d)
	幻灯片编号 14
	Search Algorithms (cont’d)
	Search Algorithms (cont’d)
	Search Algorithms (cont’d)
	幻灯片编号 18
	幻灯片编号 19
	Serial Join Algorithms (cont’d)
	Serial Join Algorithms (cont’d)
	Serial Join Algorithms (cont’d)
	Parallel Join Algorithms (cont’d)
	Parallel Join Algorithms (cont’d)
	Parallel Join Algorithms (cont’d)
	Parallel Join Algorithms (cont’d)
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	Parallel External Sort (cont’d)
	Parallel External Sort (cont’d)
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 39
	幻灯片编号 40
	幻灯片编号 41
	Parallel Group By (cont’d)
	Parallel Group By (cont’d)
	Parallel Group By (cont’d)
	幻灯片编号 45
	幻灯片编号 46
	幻灯片编号 47
	幻灯片编号 48
	幻灯片编号 49
	幻灯片编号 50
	幻灯片编号 51
	幻灯片编号 52
	幻灯片编号 53
	幻灯片编号 54
	幻灯片编号 55
	幻灯片编号 56
	幻灯片编号 57
	幻灯片编号 58
	幻灯片编号 59
	幻灯片编号 60
	幻灯片编号 61
	幻灯片编号 62
	幻灯片编号 63
	幻灯片编号 64
	幻灯片编号 65
	幻灯片编号 66
	幻灯片编号 67
	幻灯片编号 68
	幻灯片编号 69
	幻灯片编号 70
	幻灯片编号 71
	幻灯片编号 72
	幻灯片编号 73
	幻灯片编号 74
	幻灯片编号 75
	幻灯片编号 76
	幻灯片编号 77
	幻灯片编号 78
	幻灯片编号 79
	幻灯片编号 80
	幻灯片编号 81
	幻灯片编号 82
	幻灯片编号 83
	幻灯片编号 84
	幻灯片编号 85
	幻灯片编号 86
	幻灯片编号 87
	幻灯片编号 88
	幻灯片编号 89
	幻灯片编号 90
	幻灯片编号 91
	幻灯片编号 92
	Stream Window – Time Based Window
	Stream Window – Time Based Window
	Stream Window – Tuple Based Window
	Event vs Processing time
	幻灯片编号 97
	幻灯片编号 98
	幻灯片编号 99
	幻灯片编号 100
	幻灯片编号 101
	幻灯片编号 102
	幻灯片编号 103
	幻灯片编号 104
	幻灯片编号 105
	幻灯片编号 106
	幻灯片编号 107
	幻灯片编号 108
	幻灯片编号 109
	幻灯片编号 110
	幻灯片编号 111
	幻灯片编号 112
	幻灯片编号 113
	幻灯片编号 114
	幻灯片编号 115
	幻灯片编号 116
	幻灯片编号 117
	幻灯片编号 118
	幻灯片编号 119
	幻灯片编号 120
	幻灯片编号 121
	幻灯片编号 122
	幻灯片编号 123
	幻灯片编号 124
	幻灯片编号 125
	幻灯片编号 126
	幻灯片编号 127
	幻灯片编号 128
	幻灯片编号 129
	幻灯片编号 130
	幻灯片编号 131
	幻灯片编号 132
	Flux Quiz 13
	幻灯片编号 134
	幻灯片编号 135
	幻灯片编号 136
	幻灯片编号 137
	幻灯片编号 138
	幻灯片编号 139
	幻灯片编号 140

