
High-Performance
Parallel Database
Processing
and Grid Databases

High-Performance
Parallel Database
Processing
and Grid Databases
David Taniar
Monash University, Australia

Clement H.C. Leung
Hong Kong Baptist University and Victoria University, Australia

Wenny Rahayu
La Trobe University, Australia

Sushant Goel
RMIT University, Australia

A John Wiley & Sons, Inc., Publication

Copyright 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax
978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic formats.

Library of Congress Cataloging-in-Publication Data:

Taniar, David.
High-performance parallel database processing and grid databases / by David

Taniar, Clement Leung, Wenny Rahayu.
p. cm.

Includes bibliographical references.
ISBN 978-0-470-10762-1 (cloth : alk. paper)

1. High performance computing. 2. Parallel processing (Electronic computers)
3. Computational grids (Computer systems) I. Leung, Clement H. C. II. Rahayu,

Johanna Wenny. III. Title.
QA76.88.T36 2008
004’ .35—dc22

2008011010

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents

Preface xv

Part I Introduction

1. Introduction 3

1.1. A Brief Overview: Parallel Databases and Grid Databases 4
1.2. Parallel Query Processing: Motivations 5
1.3. Parallel Query Processing: Objectives 7

1.3.1. Speed Up 7
1.3.2. Scale Up 8
1.3.3. Parallel Obstacles 10

1.4. Forms of Parallelism 12

1.4.1. Interquery Parallelism 13
1.4.2. Intraquery Parallelism 14
1.4.3. Intraoperation Parallelism 15
1.4.4. Interoperation Parallelism 15
1.4.5. Mixed Parallelism—A More Practical Solution 18

1.5. Parallel Database Architectures 19

1.5.1. Shared-Memory and Shared-Disk Architectures 20
1.5.2. Shared-Nothing Architecture 22
1.5.3. Shared-Something Architecture 23
1.5.4. Interconnection Networks 24

1.6. Grid Database Architecture 26
1.7. Structure of this Book 29
1.8. Summary 30
1.9. Bibliographical Notes 30
1.10. Exercises 31

v

vi CONTENTS

2. Analytical Models 33

2.1. Cost Models 33
2.2. Cost Notations 34

2.2.1. Data Parameters 34
2.2.2. Systems Parameters 36
2.2.3. Query Parameters 37
2.2.4. Time Unit Costs 37
2.2.5. Communication Costs 38

2.3. Skew Model 39
2.4. Basic Operations in Parallel Databases 43

2.4.1. Disk Operations 44
2.4.2. Main Memory Operations 45
2.4.3. Data Computation and Data Distribution 45

2.5. Summary 47
2.6. Bibliographical Notes 47
2.7. Exercises 47

Part II Basic Query Parallelism

3. Parallel Search 51

3.1. Search Queries 51

3.1.1. Exact-Match Search 52
3.1.2. Range Search Query 53
3.1.3. Multiattribute Search Query 54

3.2. Data Partitioning 54

3.2.1. Basic Data Partitioning 55
3.2.2. Complex Data Partitioning 60

3.3. Search Algorithms 69

3.3.1. Serial Search Algorithms 69
3.3.2. Parallel Search Algorithms 73

3.4. Summary 74
3.5. Bibliographical Notes 75
3.6. Exercises 75

4. Parallel Sort and GroupBy 77

4.1. Sorting, Duplicate Removal, and Aggregate Queries 78

4.1.1. Sorting and Duplicate Removal 78
4.1.2. Scalar Aggregate 79
4.1.3. GroupBy 80

4.2. Serial External Sorting Method 80

CONTENTS vii

4.3. Algorithms for Parallel External Sort 83

4.3.1. Parallel Merge-All Sort 83
4.3.2. Parallel Binary-Merge Sort 85
4.3.3. Parallel Redistribution Binary-Merge Sort 86
4.3.4. Parallel Redistribution Merge-All Sort 88
4.3.5. Parallel Partitioned Sort 90

4.4. Parallel Algorithms for GroupBy Queries 92

4.4.1. Traditional Methods (Merge-All and Hierarchical
Merging) 92

4.4.2. Two-Phase Method 93
4.4.3. Redistribution Method 94

4.5. Cost Models for Parallel Sort 96

4.5.1. Cost Models for Serial External Merge-Sort 96
4.5.2. Cost Models for Parallel Merge-All Sort 98
4.5.3. Cost Models for Parallel Binary-Merge Sort 100
4.5.4. Cost Models for Parallel Redistribution Binary-Merge

Sort 101
4.5.5. Cost Models for Parallel Redistribution Merge-All Sort 102
4.5.6. Cost Models for Parallel Partitioned Sort 103

4.6. Cost Models for Parallel GroupBy 104

4.6.1. Cost Models for Parallel Two-Phase Method 104
4.6.2. Cost Models for Parallel Redistribution Method 107

4.7. Summary 109
4.8. Bibliographical Notes 110
4.9. Exercises 110

5. Parallel Join 112

5.1. Join Operations 112
5.2. Serial Join Algorithms 114

5.2.1. Nested-Loop Join Algorithm 114
5.2.2. Sort-Merge Join Algorithm 116
5.2.3. Hash-Based Join Algorithm 117
5.2.4. Comparison 120

5.3. Parallel Join Algorithms 120

5.3.1. Divide and Broadcast-Based Parallel Join Algorithms 121
5.3.2. Disjoint Partitioning-Based Parallel Join Algorithms 124

5.4. Cost Models 128

5.4.1. Cost Models for Divide and Broadcast 128
5.4.2. Cost Models for Disjoint Partitioning 129
5.4.3. Cost Models for Local Join 130

viii CONTENTS

5.5. Parallel Join Optimization 132

5.5.1. Optimizing Main Memory 132
5.5.2. Load Balancing 133

5.6. Summary 134
5.7. Bibliographical Notes 135
5.8. Exercises 136

Part III Advanced Parallel Query Processing

6. Parallel GroupBy-Join 141

6.1. Groupby-Join Queries 141

6.1.1. Groupby Before Join 142
6.1.2. Groupby After Join 142

6.2. Parallel Algorithms for Groupby-Before-Join
Query Processing 143

6.2.1. Early Distribution Scheme 143
6.2.2. Early GroupBy with Partitioning Scheme 145
6.2.3. Early GroupBy with Replication Scheme 146

6.3. Parallel Algorithms for Groupby-After-Join
Query Processing 148

6.3.1. Join Partitioning Scheme 148
6.3.2. GroupBy Partitioning Scheme 150

6.4. Cost Model Notations 151
6.5. Cost Model for Groupby-Before-Join Query Processing 153

6.5.1. Cost Models for the Early Distribution Scheme 153
6.5.2. Cost Models for the Early GroupBy with Partitioning

Scheme 156
6.5.3. Cost Models for the Early GroupBy with Replication

Scheme 158

6.6. Cost Model for “Groupby-After-Join” Query Processing 159

6.6.1. Cost Models for the Join Partitioning Scheme 159
6.6.2. Cost Models for the GroupBy Partitioning Scheme 161

6.7. Summary 163
6.8. Bibliographical Notes 164
6.9. Exercises 164

CONTENTS ix

7. Parallel Indexing 167

7.1. Parallel Indexing–an Internal Perspective on Parallel Indexing
Structures 168

7.2. Parallel Indexing Structures 169

7.2.1. Nonreplicated Indexing (NRI) Structures 169
7.2.2. Partially Replicated Indexing (PRI) Structures 171
7.2.3. Fully Replicated Indexing (FRI) Structures 178

7.3. Index Maintenance 180

7.3.1. Maintaining a Parallel Nonreplicated Index 182
7.3.2. Maintaining a Parallel Partially Replicated Index 182
7.3.3. Maintaining a Parallel Fully Replicated Index 188
7.3.4. Complexity Degree of Index Maintenance 188

7.4. Index Storage Analysis 188

7.4.1. Storage Cost Models for Uniprocessors 189
7.4.2. Storage Cost Models for Parallel Processors 191

7.5. Parallel Processing of Search Queries using Index 192

7.5.1. Parallel One-Index Search Query Processing 192
7.5.2. Parallel Multi-Index Search Query Processing 195

7.6. Parallel Index Join Algorithms 200

7.6.1. Parallel One-Index Join 200
7.6.2. Parallel Two-Index Join 203

7.7. Comparative Analysis 207

7.7.1. Comparative Analysis of Parallel Search Index 207
7.7.2. Comparative Analysis of Parallel Index Join 213

7.8. Summary 216
7.9. Bibliographical Notes 217
7.10. Exercises 217

8. Parallel Universal Qualification—Collection Join Queries 219

8.1. Universal Quantification and Collection Join 220
8.2. Collection Types and Collection Join Queries 222

8.2.1. Collection-Equi Join Queries 222
8.2.2. Collection–Intersect Join Queries 223
8.2.3. Subcollection Join Queries 224

8.3. Parallel Algorithms for Collection Join Queries 225
8.4. Parallel Collection-Equi Join Algorithms 225

8.4.1. Disjoint Data Partitioning 226

x CONTENTS

8.4.2. Parallel Double Sort-Merge Collection-Equi
Join Algorithm 227

8.4.3. Parallel Sort-Hash Collection-Equi Join Algorithm 228
8.4.4. Parallel Hash Collection-Equi Join Algorithm 232

8.5. Parallel Collection-Intersect Join Algorithms 233

8.5.1. Non-Disjoint Data Partitioning 234
8.5.2. Parallel Sort-Merge Nested-Loop Collection-Intersect Join

Algorithm 244
8.5.3. Parallel Sort-Hash Collection-Intersect Join Algorithm 245
8.5.4. Parallel Hash Collection-Intersect Join Algorithm 246

8.6. Parallel Subcollection Join Algorithms 246

8.6.1. Data Partitioning 247
8.6.2. Parallel Sort-Merge Nested-Loop Subcollection Join

Algorithm 248
8.6.3. Parallel Sort-Hash Subcollection Join Algorithm 249
8.6.4. Parallel Hash Subcollection Join Algorithm 251

8.7. Summary 252
8.8. Bibliographical Notes 252
8.9. Exercises 254

9. Parallel Query Scheduling and Optimization 256

9.1. Query Execution Plan 257
9.2. Subqueries Execution Scheduling Strategies 259

9.2.1. Serial Execution Among Subqueries 259
9.2.2. Parallel Execution Among Subqueries 261

9.3. Serial vs. Parallel Execution Scheduling 264

9.3.1. Nonskewed Subqueries 264
9.3.2. Skewed Subqueries 265
9.3.3. Skewed and Nonskewed Subqueries 267

9.4. Scheduling Rules 269
9.5. Cluster Query Processing Model 270

9.5.1. Overview of Dynamic Query Processing 271
9.5.2. A Cluster Query Processing Architecture 272
9.5.3. Load Information Exchange 273

9.6. Dynamic Cluster Query Optimization 275

9.6.1. Correction 276
9.6.2. Migration 280
9.6.3. Partition 281

9.7. Other Approaches to Dynamic Query Optimization 284
9.8. Summary 285

CONTENTS xi

9.9. Bibliographical Notes 286
9.10. Exercises 286

Part IV Grid Databases

10. Transactions in Distributed and Grid Databases 291

10.1. Grid Database Challenges 292
10.2. Distributed Database Systems and Multidatabase Systems 293

10.2.1. Distributed Database Systems 293
10.2.2. Multidatabase Systems 297

10.3. Basic Definitions on Transaction Management 299
10.4. Acid Properties of Transactions 301
10.5. Transaction Management in Various Database Systems 303

10.5.1. Transaction Management in Centralized and Homogeneous
Distributed Database Systems 303

10.5.2. Transaction Management in Heterogeneous Distributed Database
Systems 305

10.6. Requirements in Grid Database Systems 307
10.7. Concurrency Control Protocols 309
10.8. Atomic Commit Protocols 310

10.8.1. Homogeneous Distributed Database Systems 310
10.8.2. Heterogeneous Distributed Database Systems 313

10.9. Replica Synchronization Protocols 314

10.9.1. Network Partitioning 315
10.9.2. Replica Synchronization Protocols 316

10.10. Summary 318
10.11. Bibliographical Notes 318
10.12. Exercises 319

11. Grid Concurrency Control 321

11.1. A Grid Database Environment 321
11.2. An Example 322
11.3. Grid Concurrency Control 324

11.3.1. Basic Functions Required by GCC 324
11.3.2. Grid Serializability Theorem 325
11.3.3. Grid Concurrency Control Protocol 329
11.3.4. Revisiting the Earlier Example 333
11.3.5. Comparison with Traditional Concurrency Control

Protocols 334

xii CONTENTS

11.4. Correctness of GCC Protocol 336
11.5. Features of GCC Protocol 338
11.6. Summary 339
11.7. Bibliographical Notes 339
11.8. Exercises 339

12. Grid Transaction Atomicity and Durability 341

12.1. Motivation 342
12.2. Grid Atomic Commit Protocol (Grid-ACP) 343

12.2.1. State Diagram of Grid-ACP 343
12.2.2. Grid-ACP Algorithm 344
12.2.3. Early-Abort Grid-ACP 346
12.2.4. Discussion 348
12.2.5. Message and Time Complexity Comparison Analysis 349
12.2.6. Correctness of Grid-ACP 350

12.3. Handling Failure of Sites with Grid-ACP 351

12.3.1. Model for Storing Log Files at the Originator and
Participating Sites 351

12.3.2. Logs Required at the Originator Site 352
12.3.3. Logs Required at the Participant Site 353
12.3.4. Failure Recovery Algorithm for Grid-ACP 353
12.3.5. Comparison of Recovery Protocols 359
12.3.6. Correctness of Recovery Algorithm 361

12.4. Summary 365
12.5. Bibliographical Notes 366
12.6. Exercises 366

13. Replica Management in Grids 367

13.1. Motivation 367
13.2. Replica Architecture 368

13.2.1. High-Level Replica Management Architecture 368
13.2.2. Some Problems 369

13.3. Grid Replica Access Protocol (GRAP) 371

13.3.1. Read Transaction Operation for GRAP 371
13.3.2. Write Transaction Operation for GRAP 372
13.3.3. Revisiting the Example Problem 375
13.3.4. Correctness of GRAP 377

13.4. Handling Multiple Partitioning 378

13.4.1. Contingency GRAP 378
13.4.2. Comparison of Replica Management Protocols 381
13.4.3. Correctness of Contingency GRAP 383

CONTENTS xiii

13.5. Summary 384
13.6. Bibliographical Notes 385
13.7. Exercises 385

14. Grid Atomic Commitment in Replicated Data 387

14.1. Motivation 388

14.1.1. Architectural Reasons 388
14.1.2. Motivating Example 388

14.2. Modified Grid Atomic Commitment Protocol 390

14.2.1. Modified Grid-ACP 390
14.2.2. Correctness of Modified Grid-ACP 393

14.3. Transaction Properties in Replicated Environment 395
14.4. Summary 397
14.5. Bibliographical Notes 397
14.6. Exercises 398

Part V Other Data-Intensive Applications

15. Parallel Online Analytic Processing (OLAP) and Business
Intelligence 401

15.1. Parallel Multidimensional Analysis 402
15.2. Parallelization of ROLLUP Queries 405

15.2.1. Analysis of Basic Single ROLLUP Queries 405
15.2.2. Analysis of Multiple ROLLUP Queries 409
15.2.3. Analysis of Partial ROLLUP Queries 411
15.2.4. Parallelization Without Using ROLLUP 412

15.3. Parallelization of CUBE Queries 412

15.3.1. Analysis of Basic CUBE Queries 413
15.3.2. Analysis of Partial CUBE Queries 416
15.3.3. Parallelization Without Using CUBE 417

15.4. Parallelization of Top-N and Ranking Queries 418
15.5. Parallelization of Cume Dist Queries 419
15.6. Parallelization of NTILE and Histogram Queries 420
15.7. Parallelization of Moving Average and Windowing Queries 422
15.8. Summary 424
15.9. Bibliographical Notes 424
15.10. Exercises 425

xiv CONTENTS

16. Parallel Data Mining—Association Rules and Sequential Patterns 427

16.1. From Databases To Data Warehousing To Data Mining:
A Journey 428

16.2. Data Mining: A Brief Overview 431

16.2.1. Data Mining Tasks 431
16.2.2. Querying vs. Mining 433
16.2.3. Parallelism in Data Mining 436

16.3. Parallel Association Rules 440

16.3.1. Association Rules: Concepts 441
16.3.2. Association Rules: Processes 444
16.3.3. Association Rules: Parallel Processing 448

16.4. Parallel Sequential Patterns 450

16.4.1. Sequential Patterns: Concepts 452
16.4.2. Sequential Patterns: Processes 456
16.4.3. Sequential Patterns: Parallel Processing 459

16.5. Summary 461
16.6. Bibliographical Notes 461
16.7. Exercises 462

17. Parallel Clustering and Classification 464

17.1. Clustering and Classification 464

17.1.1. Clustering 464
17.1.2. Classification 465

17.2. Parallel Clustering 467

17.2.1. Clustering: Concepts 467
17.2.2. k-Means Algorithm 468
17.2.3. Parallel k-Means Clustering 471

17.3. Parallel Classification 477

17.3.1. Decision Tree Classification: Structures 477
17.3.2. Decision Tree Classification: Processes 480
17.3.3. Decision Tree Classification: Parallel Processing 488

17.4. Summary 495
17.5. Bibliographical Notes 498
17.6. Exercises 498

Permissions 501

List of Conferences and Journals 507

Bibliography 511

Index 541

Preface

The sizes of databases have seen exponential growth in the past, and such growth
is expected to accelerate in the future, with the steady drop in storage cost accom-
panied by a rapid increase in storage capacity. Many years ago, a terabyte database
was considered to be large, but nowadays they are sometimes regarded as small,
and the daily volumes of data being added to some databases are measured in
terabytes. In the future, petabyte and exabyte databases will be common.

With such volumes of data, it is evident that the sequential processing paradigm
will be unable to cope; for example, even assuming a data rate of 1 terabyte per
second, reading through a petabyte database will take over 10 days. To effectively
manage such volumes of data, it is necessary to allocate multiple resources to it,
very often massively so. The processing of databases of such astronomical propor-
tions requires an understanding of how high-performance systems and parallelism
work. Besides the massive volume of data in the database to be processed, some
data has been distributed across the globe in a Grid environment. These massive
data centers are also a part of the emergence of Cloud computing, where data
access has shifted from local machines to powerful servers hosting web appli-
cations and services, making data access across the Internet using standard web
browsers pervasive. This adds another dimension to such systems.

Parallelism in databases has been around since the early 1980s, when
many researchers in this area aspired to build large special-purpose database
machines—databases employing dedicated specialized parallel hardware.
Some projects were born, including Bubba, Gamma, etc. These came and
went. However, commercial DBMS vendors quickly realized the importance
of supporting high performance for large databases, and many of them have
incorporated parallelism and grid features into their products. Their commitment
to high-performance systems and parallelism, as well as grid configurations,
shows the importance and inevitability of parallelism.

In addition, while traditional transactional data is still common, we see
an increasing growth of new application domains, broadly categorized as
data-intensive applications. These include data warehousing and online analytic
processing (OLAP) applications, data mining, genome databases, and multiple
media databases manipulating unstructured and semistructured data. Therefore,
it is critical to understand the underlying principle of data parallelism, before
specialized and new application domains can be properly addressed.

xv

xvi PREFACE

This book is written to provide a fundamental understanding of parallelism in
data-intensive applications. It features not only the algorithms for database opera-
tions but also quantitative analytical models, so that performance can be analyzed
and evaluated more effectively.

The present book brings into a single volume the latest techniques and principles
of parallel and grid database processing. It provides a much-needed, self-contained
advanced text for database courses at the postgraduate or final year undergraduate
levels. In addition, for researchers with a particular interest in parallel databases
and related areas, it will serve as an indispensable and up-to-date reference. Prac-
titioners contemplating building high-performance databases or seeking to gain a
good understanding of parallel database technology too will find this book valuable
for the wealth of techniques and models it contains.

STRUCTURE OF THE BOOK

This book is divided into five parts. Part I gives an introduction to the topic, includ-
ing the rationale behind the need for high-performance database processing, as well
as basic analytical models that will be used throughout the book.

Part II, consisting of three chapters, describes parallelism for basic query opera-
tions. These include parallel searching, parallel aggregate and sorting, and parallel
join. These are the foundation of query processing, whereby complex queries can
be decomposed into any of these atomic operations.

Part III, consisting of the next four chapters, focuses on more advanced query
operations. This part covers groupby-join operations, parallel indexing, parallel
object-oriented query processing, in particular, collection join, and query schedul-
ing and optimization.

Just as the previous two parts deal with parallelism of read-only queries, the next
part, Part IV, concentrates on transactions, also known as write queries. We use
the grid environment to study transaction management. In grid transaction man-
agement, the focus is mainly on grid concurrency control, atomic commitment,
durability, as well as replication.

Finally, Part V introduces other data-intensive applications, including data
warehousing, OLAP, business intelligence, and parallel data mining.

ACKNOWLEDGMENTS

The authors would like to thank the publisher, John Wiley & Sons, for agreeing
to embark on this exciting journey. In particular, we would like to thank Paul
Petralia, Senior Editor, for supporting this project. We would also like to thank
Whitney Lesch and Anastasia Wasko, Assistants to the Editor, for their endless
efforts to ensure that we remained on track from start to completion. Without their
encouragement and reminders, we would not have been able to finish this book.

PREFACE xvii

We also thank Bruna Pomella, who proofread the entire manuscript, for com-
menting on ambiguous sentences and correcting grammatical mistakes.

Finally, we would like to express our sincere thanks to our respective univer-
sities, Monash University, Victoria University, Hong Kong Baptist University, La
Trobe University, and RMIT, where the research presented in this book was con-
ducted. We are grateful for the facilities and time that we received during the
writing of this book. Without these, the book would not have been written in the
first place.

David Taniar
Clement H.C. Leung
Wenny Rahayu
Sushant Goel

Part I

Introduction

Chapter1

Introduction

Parallel databases are database systems that are implemented on parallel com-
puting platforms. Therefore, high-performance query processing focuses on query
processing, including database queries and transactions, that makes use of paral-
lelism techniques applied to an underlying parallel computing platform in order to
achieve high performance.

In a Grid environment, applications need to create, access, manage, and distribute
data on a very large scale and across multiple organizations. The main challenges
arise due to the volume of data, distribution of data, autonomy of sites, and hetero-
geneity of data resources. Hence, Grid databases can be defined loosely as being
data access in a Grid environment.

This chapter gives an introduction to parallel databases, parallel query processing,
and Grid databases. Section 1.1 gives a brief overview. In Section 1.2, the motivations
for using parallelism in database processing are explained. Understanding the moti-
vations is a critical starting point in exploring parallel database processing in depth.
This will answer the question of why parallelism is necessary in modern database
processing.

Once we understand the motivations, we need to know the objectives or the goals
of parallel database processing. These are explained in Section 1.3. The objectives
will become the main aim of any parallel algorithms in parallel database systems,
and this will answer the question of what it is that parallelism aims to achieve in
parallel database processing.

Once we understand the objectives, we also need to know the various kinds of par-
allelism forms that are available for parallel database processing. These are described
in Section 1.4. The forms of parallelism are the techniques used to achieve the objec-
tives described in the previous section. Therefore, this section answers the questions
of how parallelism can be performed in parallel database processing.

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

3

4 Chapter 1 Introduction

Without an understanding of the kinds of parallel technology and parallel
machines that are available for parallel database processing, our introductory
discussion on parallel databases will not be complete. Therefore, in Section 1.5, we
introduce various parallel architectures available for database processing.

Section 1.6 introduces Grid databases. This includes the basic Grid architecture
for data-intensive applications, and its current technological status is also outlined.

Section 1.7 outlines the components of this book, including parallel query pro-
cessing, and Grid transaction management.

1.1 A BRIEF OVERVIEW: PARALLEL DATABASES
AND GRID DATABASES

In 1965, Intel cofounder Gordon Moore predicted that the number of transistors
on a chip would double every 24 months, a prediction that became known pop-
ularly as Moore’s law. With further technological development, some researchers
claimed the number would double every 18 months instead of 24 months. Thus it
is expected that the CPU’s performance would increase roughly by 50–60% per
year. On the other hand, mechanical delays restrict the advancement of disk access
time or disk throughput, which reaches only 8–10%. There has been some debate
regarding the accuracy of these figures. Disk capacity is also increasing at a much
higher rate than that of disk throughput. Although researchers do not agree com-
pletely with these values, they show the difference in the rate of advancement of
each of these two areas.

In the above scenario, it becomes increasingly difficult to use the available disk
capacity effectively. Disk input/output (I/O) becomes the bottleneck as a result
of such skewed processing speed and disk throughput. This inevitable I/O bottle-
neck was one of the major forces that motivated parallel database research. The
necessity of storing high volumes of data, producing faster response times, scal-
ability, reliability, load balancing, and data availability were among the factors
that led to the development of parallel database systems research. Nowadays, most
commercial database management systems (DBMS) vendors include some parallel
processing capabilities in their products.

Typically, a parallel database system assumes only a single administrative
domain, a homogeneous working environment, and close proximity of data
storage (i.e., data is stored in different machines in the same room or building).
Below in this chapter, we will discuss various forms of parallelism, motivations,
and architectures.

With the increasing diversity of scientific disciplines, the amount of data col-
lected is increasing. In domains as diverse as global climate change, high-energy
physics, and computational genomics, the volume of data being measured and
stored is already scaling terabytes and will soon increase to petabytes. Data can

1.2 Parallel Query Processing: Motivations 5

be best collected locally for certain applications like earth observation and astron-
omy experiments. But the experimental analysis must be able to access the large
volume of distributed data seamlessly. The above requirement emphasizes the need
for Grid-enabled data sources. It should be easy and possible to quickly and auto-
matically install, configure, and disassemble the data sources along with the need
for data movement and replication.

The Grid is a heterogeneous collaboration of resources and thus will contain
a diverse range of data resources. Heterogeneity in a data Grid can be due to the
data model, the transaction model, storage systems, or data types. Data Grids pro-
vide seamless access to geographically distributed data sources storing terabytes
to petabytes of data with proper authentication and security services.

The development of a Grid infrastructure was necessary for large-scale com-
puting and data-intensive scientific applications. A Grid enables the sharing, selec-
tion, and aggregation of a wide variety of geographically distributed resources
including supercomputers, storage systems, data sources, and specialized devices
owned by different organizations for solving large-scale resource-intensive prob-
lems in science, engineering, and commerce. One important aspect is that the
resources—computing and data—are owned by different organizations. Thus the
design and evolution of individual resources are autonomous and independent of
each other and are mostly heterogeneous.

Based on the above discussions, this book covers two main elements, namely,
parallel query processing and Grid databases. The former aims at high perfor-
mance of query processing, which is mainly read-only queries, whereas the latter
concentrates on Grid transaction management, focusing on read as well as write
operations.

1.2 PARALLEL QUERY PROCESSING: MOTIVATIONS

It is common these days for databases to grow to enormous sizes and be accessed
by a large number of users. This growth strains the ability of single-processor
systems to handle the load. When we consider a database of 10 terabyte in size,
simple processing using a single processor with the capability of processing with
a speed of 1 megabyte/second would take 120 days and nights of processing time.
If this processing time needs to be reduced to several days or even several hours,
parallel processing is an alternative answer.

10 TB D 10 ð 1024 ð 1024 MB D 1;048;576 MB

10;048;576 MB=1 MB=sec ³ 10;048;576 seconds

³ 174;760 minutes

³ 2910 hours

³ 120 days and nights

6 Chapter 1 Introduction

Because of the performance benefits, and also in order to maintain higher through-
put, more and more organizations turn to parallel processing. Parallel machines
are becoming readily available, and most RDBMS now offer parallelism features
in their products.

But what is parallel processing, and why not just use a faster computer to speed
up processing?

Computers were intended to solve problems faster than a human being
could—this is the reason for their being invented. People continue to want
computers to do more and more and to do it faster. The design of computers has
now become more complex than ever before, and with the improved circuitry
design, improved instruction sets, and improved algorithms to meet the demand
for faster response times, this has been made possible by the advances in
engineering. However, even with the advances in engineering that produce these
complex, fast computers, there are speed limitations. The processing speed
of processors depends on the transmission speed of information between the
electronic components within the processor, and this speed is actually limited by
the speed of light. Because of the advances in technology, particularly fiber optics,
the speed at which the information travels is reaching the speed of light, but it
cannot exceed this because of the limitations of the medium. Another factor is
that, because of the density of transistors within a processor; it can be pushed only
to a certain limit.

These limitations have resulted in the hardware designers looking for another
alternative to increase performance. Parallelism is the result of these efforts. Par-
allel processing is the process of taking a large task and, instead of feeding the
computer this large task that may take a long time to complete, the task is divided
into smaller subtasks that are then worked on simultaneously. Ultimately, this
divide-and-conquer approach aims to complete a large task in less time than it
would take if it were processed as one large task as a whole. Parallel systems
improve processing and I/O speeds by using multiple processors and disks in par-
allel. This enables multiple processors to work simultaneously on several parts of
a task in order to complete it faster than could be done otherwise.

Additionally, database processing works well with parallelism. Database pro-
cessing is basically an operation on a database. When the same operation can be
performed on different fragments of the database, this creates parallelism; this in
turn creates the notion of parallel database processing.

The driving force behind parallel database processing includes:

ž Querying large databases (of the order of terabytes) and
ž Processing an extremely large number of transactions per second (of the order

of thousands of transactions per second).

Since parallel database processing works at the query or transaction level, this
approach views the degree of parallelism as coarse-grained. Coarse-grained paral-
lelism is well suited to database processing because of the lesser complexity of its
operations but needs to work with a large volume of data.

1.3 Parallel Query Processing: Objectives 7

1.3 PARALLEL QUERY PROCESSING: OBJECTIVES

The primary objective of parallel database processing is to gain performance
improvement. There are two main measures of performance improvement. The
first is throughput—the number of tasks that can be completed within a given time
interval. The second is response time—the amount of time it takes to complete a
single task from the time it is submitted. A system that processes a large number
of small transactions can improve throughput by processing many transactions in
parallel. A system that processes large transactions can improve response time as
well as throughput by performing subtasks of each transaction in parallel.

These two measures are normally quantified by the following metrics: (i) speed
up and (ii) scale up.

1.3.1 Speed Up

Speed up refers to performance improvement gained because of extra processing
elements added. In other words, it refers to running a given task in less time by
increasing the degree of parallelism. Speed up is a typical metric used to measure
performance of read-only queries (data retrieval). Speed up can be measured by:

Speed up D elapsed time on uniprocessor

elapsed time on multiprocessors

A linear speed up refers to performance improvement growing linearly with
additional resources—that is, a speed up of N when the large system has N times
the resources of the smaller system. A less desirable sublinear speed up is when
the speed up is less than N . Superlinear speed up (i.e., speed up greater than N)
is very rare. It occasionally may be seen, but usually this is due to the use of a
suboptimal sequential algorithm or some unique feature of the architecture that
favors the parallel formation, such as extra memory in the multiprocessor system.

Figure 1.1 is a graph showing linear speed up in comparison with sublinear
speed up and superlinear speed up. The resources in the x-axis are normally mea-
sured in terms of the number of processors used, whereas the speed up in the y-axis
is calculated with the above equation.

Since superlinear speed up rarely happens, and is questioned even by experts
in parallel processing, the ultimate goal of parallel processing, including parallel
database processing, is to achieve linear speed up. Linear speed up is then used as
an indicator to show the efficiency of data processing on multiprocessors.

To illustrate a speed up calculation, we give the following example: Suppose a
database operation processed on a single processor takes 100 minutes to complete.
If 5 processors are used and the completion time is reduced to 20 minutes, the
speed up is equal to 5. Since the number of processors (5 processors) yields the
same speed up (speed up D 5), a linear speed up is achieved.

If the elapsed time of the job with 5 processors takes longer, say around 33
minutes, the speed up becomes approximately 3. Since the speed up value is less
than the number of processors used, a sublinear speed up is obtained.

8 Chapter 1 Introduction

Speed up

Linear-Speed Up

Sublinear Speed up

Resources

Superlinear Speed Up

N

N

Figure 1.1 Speed up

In an extremely rare case, the elapsed time of the job with 5 processors may be
less than 20 minutes—say, for example, 16.5 minutes; then the speed up becomes
6. This is a superlinear speed up, since the speed up (speed up D 6) is greater than
the number of processors (processors D 5).

1.3.2 Scale Up

Scale up refers to the handling of larger tasks by increasing the degree of paral-
lelism. Scale up relates to the ability to process larger tasks in the same amount
of time by providing more resources (or by increasing the degree of parallelism).
For a given application, we would like to examine whether it is viable to add more
resources when the workload is increased in order to maintain its performance.
This metric is typically used in transaction processing systems (data manipulation).
Scale up is calculated as follows.

Scale up D uniprocessor elapsed time on small system

multiprocessor elapsed time on larger system

Linear scale up refers to the ability to maintain the same level of performance
when both the workload and the resources are proportionally added. Using the
above scale up formula, scale up equal to 1 is said to be linear scale up. A sub-
linear scale up is where the scale up is less than 1. A superlinear scale up is rare,
and we eliminate this from further discussions. Hence, linear scale up is the ulti-
mate goal of parallel database processing. Figure 1.2 shows a graph demonstrating
linear/sublinear scale up.

There are two kinds of scale up that are relevant to parallel databases, depending
on how the size of the task is measured, namely: (i) transaction scale up, and (ii)
data scale up.

1.3 Parallel Query Processing: Objectives 9

Scale up Linear Scale Up

Sublinear Scale Up

Workload
(Resources increase proportionally to workload)

1

0

Figure 1.2 Scale up

Transaction Scale Up

Transaction scale up refers to the increase in the rate at which the transactions
are processed. The size of the database may also increase proportionally to the
transactions’ arrival rate.

In transaction scale up, N -times as many users are submitting N -times as many
requests or transactions against an N -times larger database. This kind of scale
up is relevant in transaction processing systems where the transactions are small
updates.

To illustrate transaction scale up, consider the following example: Assume it
takes 10 minutes to complete 100 transactions on a single processor. If the number
of transactions to be processed is increased to 300 transactions, and the number
of processors used is also increased to 3 processors, the elapsed time remains the
same; if it is 10 minutes, then a linear scale up has been achieved (scale up D 1).

If, for some reason, even though the number of processors is already increased
to 3 it takes longer than 10 minutes, say 15 minutes, to process the 300 transactions,
then the scale up becomes 0.67, which is less than 1, and hence a sublinear scale
up is obtained.

Transaction processing is especially well adapted for parallel processing, since
different transactions can run concurrently and independently on separate proces-
sors, and each transaction takes a small amount of time, even if the database grows.

Data Scale Up

Data scale up refers to the increase in size of the database, and the task is a large
job whose runtime depends on the size of the database. For example, when sorting
a table whose size is proportional to the size of the database, the size of the database
is the measure of the size of the problem. This is typically found in online analyti-
cal processing (OLAP) in data warehousing, where the fact table is normally very
large compared with all the dimension tables combined.

To illustrate data scale up, we use the following example: Suppose the fact table
of a data warehouse occupies around 90% of the space in the database. Assume

10 Chapter 1 Introduction

the job is to produce a report that groups data in the fact table according to some
criteria specified by its dimensions.

For example, the processing of this operation on a single processor takes one
hour. If the size of the fact table is then doubled up, it is sensible to double up the
number of processors. If the same process now takes one hour, a linear scale up
has been achieved.

If the process now takes longer than one hour, say for example 75 minutes, then
the scale up is equal to 0.8, which is less than 1. Therefore, a sublinear scale up is
obtained.

1.3.3 Parallel Obstacles

A number of factors work against efficient parallel operation and can diminish both
speed up and scale up, particularly: (i) start up and consolidation costs, (ii) inter-
ference and communication, and (iii) skew.

Start Up and Consolidation Costs

Start up cost is associated with initiating multiple processes. In a parallel opera-
tion consisting of multiple processes, the start up time may overshadow the actual
processing time, adversely affecting speed up, especially if thousands of processes
must be started. Even when there is a small number of parallel processes to be
started, if the actual processing time is very short, the start up cost may dominate
the overall processing time.

Consolidation cost refers to the cost associated with collecting results obtained
from each processor by a host processor. This cost can also be a factor that prevents
linear speed up.

Parallel processing normally starts with breaking up the main task into multiple
subtasks in which each subtask is carried out by a different processing element.
After these subtasks have been completed, it is necessary to consolidate the results
produced by each subtask to be presented to the user. Since the consolidation pro-
cess is usually carried out by a single processing element, normally by the host
processor, no parallelism is applied, and consequently this affects the speed up of
the overall process.

Both start up and consolidation refer to sequential parts of the process and can-
not be parallelized. This is a manifestation of the Amdahl law, which states that the
compute time can be divided into the parallel part and the serial part, and no matter
how high the degree of parallelism in the former, the speed up will be asymp-
totically limited by the latter, which must be performed on a single processing
element.

For example, a database operation consists of a sequence of 10 steps, 8 of which
can be done in parallel, but 2 of which must be done in sequence (such as start
up and consolidation operations). Compared with a single processing element, an
8-processing element machine would attain a speed up of not 8 but somewhere
around 3, even though the processing element cost is 8 times higher.

1.3 Parallel Query Processing: Objectives 11

To understand this example, we need to use some sample figures. Assume that 1
step takes 1 minute to complete. Using a single processor, it will take 10 minutes,
as there are 10 steps in the operation. Using an 8-processor machine, assume each
step is allocated into a separate processor and it takes only 1 minute to complete
the parallel part. However, the two sequential steps need to be processed by a
single processor, and it takes 2 minutes. In total, it takes 3 minutes to finish the
whole job using an 8-processor machine. Therefore, the speed up is 3.33, which
is far below the linear speed up (speed up D 8). This example illustrates how the
sequential part of the operations can jeopardize the performance benefit offered by
parallelism.

To make matters worse, suppose there are 100 steps in the operation, 20 of
which are sequential parts. Using an 80-processor machine, the speed up is some-
what under 5, far below the linear speed up of 80. This can be proven in a similar
manner.

Using a single-processor machine, the 100-step job is completed in 100 minutes.
Using an 80-processor machine, the elapsed time is 21 minutes (20 minutes for the
sequential part and 1 minute for the parallel part). As a result, the speed up is equal
to 4.8 (speed up D 100/21 D 4:76). Figure 1.3 illustrates serial and parallel parts
in a processing system.

Interference and Communication

Since processes executing in a parallel system often access shared resources, a
slowdown may result from the interference of each new process as it competes
with existing processes for commonly held resources. Both speed up and scale up
are affected by this phenomenon.

Very often, one process may have to communicate with other processes. In a
synchronized environment, the process wanting to communicate with others may
be forced to wait for other processes to be ready for communication. This waiting
time may affect the whole process, as some tasks are idle waiting for other tasks.

Figure 1.4 gives a graphical illustration of the waiting period incurred during the
communication and interference among parallel processes. This illustration uses
the example in Figure 1.3. Assume there are four parallel processes. In Figure 1.4,
all parallel processes start at the same time after the first serial part has been

Serial Part Parallel Part Serial Part

Figure 1.3 Serial part vs.
parallel part

12 Chapter 1 Introduction

waiting

waiting

waiting

Serial Part 1

Parallel Part

Serial Part 2

1

2

3

4

waiting

waiting

waiting

waiting

Figure 1.4 Waiting period

completed. After parallel part 1 has been going for a while, it needs to wait until
parallel part 2 reaches a certain point in the future, after which parallel process
1 can continue. The same thing happens to parallel part 4, which has to wait for
parallel part 3 to reach a certain point. The latter part of parallel part 4 also has to
wait for parallel part 3 to completely finish. This also happens to parallel part 3,
which has to wait for parallel part 2 to be completed. Since parallel part 4 finishes
last, all other parallel parts have to wait until the final serial part finishes off the
whole operation. All the waiting periods and their parallel part dependencies are
shown in Figure 1.4 by dashed lines.

Skew

Skew in parallel database processing refers to the unevenness of workload parti-
tioning. In parallel systems, equal workload (load balance) among all processing
elements is one of the critical factors to achieve linear speed up. When the load of
one processing element is heavier than that of others, the total elapsed time for a
particular task will be determined by this processing element, and those finishing
early would have to wait. This situation is certainly undesirable.

Skew in parallel database processing is normally caused by uneven data dis-
tribution. This is sometimes unavoidable because of the nature of data that is
not uniformly distributed. To illustrate a skew problem, consider the example in
Figure 1.5. Suppose there are four processing elements. In a uniformly distributed
workload (Fig. 1.5(a)), each processing element will have the same elapsed time,
which also becomes the elapsed time of the overall process. In this case, the elapsed
time is t1. In a skewed workload distribution (Fig. 1.5(b)), one or more processes
finish later than the others, and hence, the elapsed time of the overall process is
determined by the one that finishes last. In this illustration, processor 2 finishes at
t2, where t2 > t1, and hence the overall process time is t2.

1.4 FORMS OF PARALLELISM

There are many different forms of parallelism for database processing, including
(i) interquery parallelism, (ii) intraquery parallelism, (iii) interoperation paral-
lelism, and (iv) intraoperation parallelism.

1.4 Forms of Parallelism 13

(a) Uniform Workload Distribution (b) Skewed Workload Distribution

Elapsed Time

Processing Workload

1 2 3 4

t1

Processing Workload

1 2 3 4

t1

t2

Elapsed Time

Figure 1.5 Balanced workload vs. unbalanced workload (skewed)

Processor
1

Query
1

Processor
2

Processor
3

Processor
n

Query
2

Query
3

Query
n

Result
1

Result
2

Result
3

Result
n Figure 1.6 Interquery parallelism

1.4.1 Interquery Parallelism

Interquery parallelism is “parallelism among queries”—that is, different queries
or transactions are executed in parallel with one another. The primary use of inter-
query parallelism is to scale up transaction processing systems (i.e., transaction
scale up) in supporting a large number of transactions per second.

Figure 1.6 gives a graphical illustration of interquery parallelism. Each pro-
cessor processes a query/transaction independently of other processors. The data
that each query/transaction uses may be from the same database or from different
databases.

In comparison with single-processor database systems, these queries/transac-
tions will form a queue, since only one query/transaction can be processed at any
given time, resulting in longer completion time of each query/transaction, even

14 Chapter 1 Introduction

though the actual processing time might be very short. With interquery paral-
lelism, the waiting time of each query/transaction in the queue is reduced, and
subsequently the overall completion time is improved.

It is clear that transaction throughput can be increased by this form of paral-
lelism, by employing a high degree of parallelism through additional processing
elements, so that more queries/transactions can be processed simultaneously. How-
ever, the response time of individual transactions is not necessarily faster than it
would be if the transactions were run in isolation.

1.4.2 Intraquery Parallelism

A query to a database, such as sort, select, project, join, etc, is normally divided into
multiple operations. Intraquery parallelism is an execution of a single query in par-
allel on multiple processors and disks. In this case, the multiple operations within
a query are executed in parallel. Therefore, intraquery parallelism is “parallelism
within a query.”

Use of intraquery parallelism is important for speeding up long-running queries.
Interquery parallelism does not help in this task, since each query is run sequen-
tially.

Figure 1.7 gives an illustration of an intraquery parallelism. A user invokes a
query, and in processing this, the query is divided into n subqueries. Each subquery
is processed on a different processor and produces subquery results. The results
obtained with each processor need to be consolidated in order to generate final
query results to be presented to the user. In other words, the final query results are
the amalgamation of all subquery results.

Processor
1

Sub-
query

1.1

Processor
2

Processor
3

Processor
n

Query
1

Sub-
query

1.2

Sub-
query

1.3

Sub-
query

1.n

Sub-
result
1.1

Sub-
result
1.2

Sub-
result
1.3

Sub-
result
1.n

Result
1

Figure 1.7 Intraquery parallelism

1.4 Forms of Parallelism 15

Execution of a single query can be parallelized in two ways:

ž Intraoperation parallelism. We can speed up the processing of a query by
parallelizing the execution of each individual operation, such as parallel sort,
parallel search, etc.

ž Interoperation parallelism. We can speed up the processing of a query by
executing in parallel the different operations in a query expression, such as
simultaneously sorting and searching.

1.4.3 Intraoperation Parallelism

Since database operations work on tables containing large data sets of records, we
can parallelize the operations by executing them in parallel on different subsets
of the table. Hence, intra-operation parallelism is often called partitioned paral-
lelism—that is, parallelism due to the data being partitioned.

Since the number of records in a table can be large, the degree of parallelism
is potentially enormous. Consequently, intra-operation parallelism is natural in
database systems.

Figure 1.8 gives an illustration of intraoperation parallelism. This is a con-
tinuation of the previous illustration of intraquery parallelism. In intraoperation
parallelism, an operation, which is a subset of a subquery, works on different data
fragments to create parallelism. This kind of parallelism is also known as “Single
Instruction Multiple Data” (SIMD), where the same instruction operation works
on different parts of the data.

The main issues of intraoperation parallelism are (i) how the operation can be
arranged so that it can perform on different data sets, and (ii) how the data is par-
titioned in order for an operation to work on it. Therefore, in database processing,
intraoperation parallelism raises the need for formulating parallel versions of basic
sequential database operations, including: (i) parallel search, (ii) parallel sort, (iii)
parallel group-by/aggregate, and (iv) parallel join. Each of these parallel algorithms
will be discussed in the next few chapters.

1.4.4 Interoperation Parallelism

Interoperation parallelism is where parallelism is created by concurrently execut-
ing different operations within the same query/transaction. There are two forms
of interoperation parallelism: (i) pipelined parallelism and (ii) independent paral-
lelism.

Pipeline Parallelism

In pipelining, the output records of one operation A are consumed by a second
operation B, even before the first operation has produced the entire set of records

16 Chapter 1 Introduction

Processor
1

Sub-
query

1.1

Query
1

Sub-
query

1.2

Sub-
query

1.3

Sub-
query

1.n

Operation
l

Operation
m

Processor
2

Data Fragment 1

Intraoperation Parallelism

Processor
k

Data Fragment 2

Data Fragment k

Figure 1.8 Intraoperation parallelism

in its output. It is possible to run A and B simultaneously on different processors,
such that B consumes records in parallel with A producing them.

Pipeline parallelism is influenced by the practice of using an assembly line in the
manufacturing process. In parallel database processing, multiple operations form
some sort of assembly line to manufacture the query results.

The major advantage of pipelined execution is that we can carry out a sequence
of such operations without writing any of the intermediate results to disk.

Figure 1.9 illustrates pipeline parallelism, where a subquery involving k opera-
tions forms in a pipe. The results from each operation are passed through the next
operation, and the final operation will produce the final query results.

Bear in mind that pipeline parallelism is not sequential processing, even though
the diagram seems to suggest this. Each operation works with a volume of data.
The operation takes one piece of data at a time, processes it, and passes it to
the next operation. Each operation does not have to wait to finish processing all
data allocated to it before passing them to the next operation. The latter is actu-
ally a sequential processing. To emphasize the difference between sequential and

1.4 Forms of Parallelism 17

Processor
1

Operation
1

Processor
2

Pipeline Parallelism

Processor
k

Operation
2

Operation
k

Sub-
Result

1.1

Sub-
query

1.1

Query
1

Sub-
query

1.2

Sub-
query

1.3

Sub-
query

1.n

Figure 1.9 Pipeline parallelism

pipeline parallelism, we use a dotted arrow to illustrate pipeline parallelism, show-
ing that each piece of data is passed through the pipe as soon as it has been
processed.

Pipelined parallelism is useful with a small number of processors but does not
scale up well for various reasons:

ž Pipeline chains generally do not attain sufficient length to provide a high
degree of parallelism. The degree of parallelism in pipeline parallelism
depends on the number of operations in the pipeline chain. For example,
a subquery with 8 operations forms an assembly line with 8 operators, and
the maximum degree of parallelism is therefore equal to 8. The degree of
parallelism is then severely limited by the number of operations involved.

ž It is not possible to pipeline those operators that do not produce output until
all inputs have been accessed, such as the set-difference operation. Some
operations simply cannot pass temporary results to the next operation without
having fully completed the operation. In short, not all operations are suitable
for pipeline parallelism.

18 Chapter 1 Introduction

ž Only marginal speed up is obtained for the frequent cases in which one opera-
tor’s execution cost is much higher than that of the others. This is particularly
true when the speed of each operation is not uniform. One operation that takes
longer than the next operation will regularly require the subsequent operation
to wait, resulting in a lower speed up. In short, pipeline parallelism is suitable
only if all operations have uniform data unit processing time.

Because the above limitations, when the degree of parallelism is high, the
importance of pipelining as a source of parallelism is secondary to that of
partitioned parallelism.

Independent Parallelism

Independent parallelism is where operations in a query that do not depend on one
another can be executed in parallel, for example, Table 1 join Table 2 join Table 3
join Table 4. In this case, we can process Table 1 join Table 2 in parallel with Table
3 join Table 4.

Figure 1.10 illustrates independent parallelism. Multiple operations are inde-
pendently processed in different processors accessing different data fragments.

Like pipelined parallelism, independent parallelism does not provide a high
degree of parallelism, because of the possibility of a limited number of independent
operations within a query, and is less useful in a highly parallel system, although
it is useful with a lower degree of parallelism.

1.4.5 Mixed Parallelism—A More Practical Solution

In practice, a mixture of all available parallelism forms is used. For example, a
query joins 4 tables, namely, Table 1, Table 2, Table 3, and Table 4. Assume that
the order of the join is Table 1 joins with Table 2 and joins with Table 3 and finally
joins with Table 4. For simplicity, we also assume that the join attribute exists in
the two consecutive tables. For example, the first join attribute exists in Table 1
and Table 2, and the second join attribute exists in Table 2 and Table 3, and the last
join attribute exists in Table 3 and Table 4. Therefore, these join operations may
form a bushy tree, as well as a left-deep or a right-deep tree.

A possible scenario for parallel processing of such a query is as follows.

ž Independent parallelism:
The first join operation between Table 1 and Table 2 is carried out in parallel
with the second join operation between Table 3 and Table 4.

Result1 D Table 1 join Table 2, in parallel with
Result2 D Table 3 join Table 4.

ž Pipelined parallelism:
Pipeline Result1 and Result2 into the computation of the third join. This
means that as soon as a record is formed by the first two join operations (e.g.,
Result1 and Result2), it is passed to the third join, and the third join can start

1.5 Parallel Database Architectures 19

Processor
1

Operation
2

Operation
m

Processor
2

Data Fragment 1

Independent Parallelism

Processor
k

Data Fragment 2

Data Fragment k

Operation
1

Sub-
query

1.1

Query
1

Sub-
query

1.2

Sub-
query

1.3

Sub-
query

1.n

Figure 1.10 Independent parallelism

the operation. In other words, the third join operation does not wait until the
first two joins produce their results.

ž Intraoperation parallelism:
Each of the three join operations above is executed with a partitioned paral-
lelism (i.e., parallel join). This means that each of the join operations is by
itself performed in parallel with multiple processors.

Figure 1.11 gives a graphical illustration of a mixed parallelism of the above
example.

1.5 PARALLEL DATABASE ARCHITECTURES

The motivation for the use of parallel technology in database processing is influ-
enced not only by the need for performance improvement, but also by the fact that
parallel computers are no longer a monopoly of supercomputers but are now in
fact available in many forms, such as systems consisting of a small number but
powerful processors (e.g., SMP machines), clusters of workstations (e.g., loosely

20 Chapter 1 Introduction

Pipeline
Parallelism

Intraoperation Parallelism
(Parallel join)

Intraoperation Parallelism
(Parallel join)

Intraoperation Parallelism
(Parallel join)

Join
1

Table 1

Mixed Parallelism

Table 2

Table 3

Table 4

Join
2

Join
3

Final
Results

Independent
Parallelism

Figure 1.11 Mixed parallelism

coupled shared-nothing architectures), massively parallel processors (MPP), and
clusters of SMP machines (i.e., hybrid architectures).

It is common for parallel architectures especially used for data-intensive
applications to be classified according to several categories: (i) shared-memory,
(ii) shared-disk, (iii) shared-nothing, and (iv) shared-something.

1.5.1 Shared-Memory and Shared-Disk
Architectures

Shared-memory architecture is an architecture in which all processors share a com-
mon main memory and secondary memory. When a job (e.g., query/transaction)
comes in, the job is divided into multiple slave processes. The number of slave
processes does not have to be the same as the number of processors available in
the system. However, normally there is a correlation between the maximum num-
ber of slave processes and the number of processors. For example, in Oracle 8
parallel query execution, the maximum number of slave processes is 10ð number
of CPUs.

Since the memory is shared by all processors, processor load balancing is rela-
tively easy to achieve, because data is located in one place. Once slave processes
have been created, each of them can then request the data it needs from the central
main memory. The drawback of this architecture is that it suffers from memory and
bus contention, since many processors may compete for access to the shared data.
Shared-memory architectures normally use a bus interconnection network. Since
there is a limit to the capacity that a bus connection can handle, data/message
transfer along the bus can be limited, and consequently it can serve only a lim-
ited number of processors in the system. Therefore, it is quite common for a

1.5 Parallel Database Architectures 21

shared-memory machine to be equipped with no more than 64 processors in a
computer system box.

In shared-disk architecture, all processors, each of which has its own local
main memory, share the disks. Shared-disk architecture is very similar to
shared-memory architecture in the sense that the secondary memory is shared, not
the main memory.

Because of the local main memory in each processor that keeps active data, data
sharing problems can be minimized and load balancing can largely be maintained.
On the other hand, this architecture suffers from congestion in the interconnection
network when many processors are trying to access the disks at the same time.

The way a job is processed is also very similar. Once slave processes have been
created, each process requests the data to be loaded from the shared disk. Once the
data is loaded, it is kept in its processor’s main memory. Therefore, the main differ-
ence between shared-disk and shared-memory architecture is the memory hierar-
chy that is being shared. From a memory hierarchy point of view, shared-memory
and shared-disk architecture share the same principle. In shared-memory architec-
ture, although “everything” (e.g., main memory and secondary memory) seems to
be shared, each processor may have its own cache, which nowadays can be quite
large (e.g., up to 4 megabytes). If we then assume that this cache acts similarly to
main memory in a shared-disk architecture, then the difference between these two
architectures is narrowed.

In the context of the computing platform, shared-memory and shared-disk archi-
tectures are normally found in Symmetric Multi Processor (SMP) machines. A typ-
ical SMP machine consists of several CPUs, ranging from 2 to 16 CPUs. A larger
number of CPUs is not too common because of the scaling up limitation. Each CPU
maintains its own cache, and the main-memory is shared among all the CPUs. The
sizes of main-memory and caches may vary from machine to machine. Multiple
disks may be attached to an SMP machine, and all CPUs have the same access
to them. The operating system normally allocates tasks according to the schedule.
Once a processor is idle, a task in the queue will be immediately allocated to it. In
this way, balancing is relatively easy to achieve. Figure 1.12 gives an illustration
of an SMP architecture.

Bus

CPU-1

Cache

CPU-2

Cache

CPU-n

Cache

Disks
Main-Memory

CPU-3

Cache

Figure 1.12 An SMP architecture

22 Chapter 1 Introduction

1.5.2 Shared-Nothing Architecture

A shared-nothing architecture provides each processor with a local main memory
and disks. The problem of competing for access to the shared data will not occur
in this system, but load balancing is difficult to achieve even for simple queries,
since data is placed locally in each processor and each processor may have an
unequal load. Because each processor is independent of others, it is often claimed
that scaling up the number of processors without adversely affecting performance
is achievable.

The way a shared-nothing architecture is used in parallel database processing
is that when a job comes in, it comes into a processor in the system. Depending
on the type of machine, this processor might be a host processor. In other cases,
there is the notion of a host processor, meaning that any processor can receive a
job. The processor that receives the job then splits the job into multiple processes
to be allocated to each processor. Once each processor has its share of a piece of
the job, it loads the data from its own local disk and starts (e.g., computation or
data distribution when required) processing it.

The load imbalance problem is not only due to the size of local data in each
processor that might be different from that of other processors, but also due to the
need for data redistribution during processing of the job. Data redistribution is nor-
mally based on some distribution function, which is influenced by the value of the
data, and this may further create workload imbalance. The skewness problem has
been a major challenge in database processing using a shared-nothing architecture.

Shared-nothing architecture ranges from the workstation farm to Massively Par-
allel Processing (MPP) machines. The range is basically divided by the speed of
the network, which connects the processing units (i.e., CPUs containing primary
and secondary memory). For a workstation farm, the network is a slower Ethernet;
whereas for MPP, the interconnection is done via a fast network or system bus.
Whether it be a slow or fast network, the processing units communicate among
each other via the network, as they do not share common data storage (i.e., main
memory or secondary memory). Because the data storage is not shared but local-
ized, shared-nothing architecture is often called distributed-memory architecture.
Figure 1.13 shows a typical shared-nothing architecture.

Interconnected Network

CPU-1

Memory

CPU-2

Memory

CPU-n

Memory

Disks

CPU-3

Memory

Disks Disks Disks

Figure 1.13 A shared-nothing architecture

1.5 Parallel Database Architectures 23

1.5.3 Shared-Something Architecture

A shared-something architecture compromises the extensibility limitation of
shared-memory architecture and the load balancing problem of shared-nothing
architecture. This architecture is a mixture of shared-memory and shared-nothing
architectures. There are a number of variations to this architecture, but basically
each node is shared-memory architecture connected to an interconnection network
a la shared-nothing architecture. As each shared-memory (i.e., SMP machine)
maintains a group of processing elements, a collection of these groups is often
called a “cluster,” which in this case means clusters of SMP architecture.
Figure 1.14 shows the architecture of clusters of SMP.

Obvious features of a shared-something architecture include flexibility in the
configuration (i.e., number of nodes, size of nodes) and lower network commu-
nication traffic as the number of nodes is reduced. Intraquery parallelization can
be isolated to a single multiprocessor shared-memory node, as it is far easier to
parallelize a query in a shared-memory than in a distributed system and moreover,
the degree of parallelism on a single shared-memory node may be sufficient for
most applications. On the other hand, interquery parallelization is consequently
achieved through parallel execution among nodes.

The popularity of cluster architectures is also influenced by the fact that
processor technology is moving rapidly. This also means that a powerful computer
today will be out of date within a few years. Consequently, computer prices are
falling not only because of competitiveness but also because of the above facts.
Therefore, it becomes sensible to be able to plug in new processing elements to
the current system and to take out the old ones. To some degree, this can be done
to an SMP machine, considering its scaling limitations and that only identical
processors can be added into it. With MPP machines, although theoretically not
imposing scaling limitations, their configurations are difficult to alter, and hence
they cannot keep up with up-to-date technology, despite the high price of MPP
machines. On the other hand, SMP machines are becoming popular because of

Interconnected Network

SMP SMP SMP

Bus

CPU-1

Cache

Disk
Main-Memory

CPU-2

Cache

CPU-3

Cache

CPU-n

Cache

Figure 1.14 Cluster of SMP architectures

24 Chapter 1 Introduction

Bus

PE

PE

PE

Figure 1.15 Bus interconnection
network

their competitiveness in relative pricing and power, so it becomes easier and
more feasible to add SMP machines to an interconnection network. Therefore, the
cluster of SMP becomes demanding.

1.5.4 Interconnection Networks

Regardless of the kind of architectures, when several processors are connected,
they are connected in an interconnection network. There are several types of inter-
connection networks for parallel computing systems. In this section, we cover the
three most popular interconnection networks, namely, (i) bus, (ii) mesh, and (iii)
hypercube.

Bus

A bus can be illustrated as a single communication line, which connects a number
of processing elements (PEs). We use the notion of processing element here, as it
can be a single processor or a processor with its own local memory. Figure 1.15
gives an illustration of a bus interconnection network.

With a bus interconnection network, all the system components can send data
on and receive data from a single communication bus. Bus architectures work well
for small numbers of processors. However, they do not scale well with increasing
parallelism since the bus can handle communication from only one component at
a time. A bus interconnection network is normally used in the SMP architectures.

Mesh

The processing elements are arranged as nodes in a Grid, and each processing
element is connected to all its adjacent components in the Grid. Figure 1.16 gives
an illustration of a mesh structure. In this example, the mesh is a 3 ð 4 structure.

Processing elements that are not directly connected can communicate with one
another by routing messages via a sequence of intermediate nodes that are directly
connected to one another. For example, the processing element at the top left-hand
corner wanting to send a message to the processing element at the bottom right
hand corner in Figure 1.16 must pass through several intermediate processing
elements.

1.5 Parallel Database Architectures 25

Figure 1.16 Mesh interconnection network

The number of communication links grows as the number of components grows,
and the communication capacity of a mesh therefore scales better with increasing
parallelism.

Hypercube

The processing elements are numbered in binary, and a processing element is con-
nected to another if the binary representations of their numbers differ in exactly
one. Thus each of the n components is connected to log(n) other components.

Figure 1.17 gives two examples of a hypercube interconnection network. In
a 2-dimensional hypercube, it is exactly the same as a 2 ð 2 mesh structure. In
a 3-dimensional hypercube, the processing elements are connected as in a cube.
Theoretically, the degree of dimension in a hypercube can be arbitrary. To visualize
a higher degree of dimension, a 4-dimensional hypercube, it looks like a cube
inside a bigger cube (possibly like a room), in which the corner of the inner cube
is connected with the corner of the outer cube. In a 5-dimensional hypercube, the
4-dimensional hypercube is inside another bigger cube, and so on.

In a hypercube connection, a message from a processing element can reach
any other processing element by going via at most log(n) links, where n is the
number of processing elements connected in a hypercube interconnection network.
For example, in a 2-dimensional hypercube, there are 4 processing elements, and

2-dimensional

3-dimensional

Figure 1.17 Hypercube
interconnection network

26 Chapter 1 Introduction

therefore the longest route from one processing element to another is equal to
log(4) D 2. In a 3-dimensional hypercube connecting 8 processing elements, the
longest route takes only 3 links. It can be concluded that the degree of the dimen-
sion also determines the longest route from one processing element to the other.

1.6 GRID DATABASE ARCHITECTURE

Although the Grid technology has attracted much research attention during the last
decade, it is only recently that data management in Grids including data Grid and
Grid databases have attracted research attention. This was because the underlying
middleware architecture, such as Globus, Legion, etc., had not been established.

Figure 1.18 shows the general architecture of databases working in a Grid envi-
ronment. The Grid database architecture typically works in a wide area, spanning
multiple institutions, and has autonomous and heterogeneous environment. Global
data-intensive collaborative applications such as earth observation and simulation,
weather forecasting, functional genomics, etc. will need to access geographically
distributed data without being aware of the exact location of interesting data.

Various Grid services, for example, metadata repository services, lookup ser-
vices, replica management services, etc., shown in Figure 1.18 will help to provide
seamless access to data. Accounting services will be helpful in calculating the
cost of using the resources held by other organizations. Authorization and security
services will set the level of authorization and security required to access other
organizations’ resources. This depends on the extent to which the organizations
are trusted. Various trust models have been developed for accessing resources.
Apart from basic services, other application-specific services can be developed
and plugged into the middleware. All these services together constitute the Grid
middleware.

Data Source 1 Data Source 2 Data Source 3 … Data Source n

Grid Infrastructure

Metadata Repository Storage Systems

Scheduling

Replica Management

Authorization

Security

Accounting

Transport

Lookup
Other

Middleware
Services

Virtualization layer

Data-intensive applications Data-intensive applications

Figure 1.18 Data-intensive applications working in Grid database architecture

1.6 Grid Database Architecture 27

Grid middleware provides a complete suite of software for delivering various
services, such as resource discovery, metadata management, job and queue
management, security, encryption, authentication, file transfer, remote process
management, storage access, Quality of Service, replica and coherency control,
etc. Middleware toolkits are being developed to provide high-level services. The
Globus toolkit is the most accepted Grid middleware, and is still evolving rapidly.

The middleware infrastructure is still evolving, but there is an understanding
of the basic functionalities of existing middleware in the form of Globus, Con-
dor, Legion, etc. Recent progress in data management in Grids is evident from the
efforts of the Data Access and Integration Working-Group (DAIS-WG) and the
Transaction Management Research-Group (TM-RG) of the GGF, a standardization
body for Grids.

Apart from core Grid services mentioned above, user-level Grid middleware
consists of programming tools and application development environment for man-
aging global resources with the help of resource brokers. The transaction man-
agement protocols are lower-level correctness protocols, and they use some of the
higher-level services from the middleware.

Most of the efforts in data management in Grid architecture have been
focused on providing high-level services for locating the data, efficient access
methods, transporting the data, making the replication decision, data caching,
etc. This book introduces lower-level traditional transactional requirements
and demonstrates how the Grid infrastructure affects the working of individual
sites. It focuses on maintaining data consistency at individual data sites when
these sites join the Grid infrastructure to make resources available to a wide
and collaborative environment, while maintaining autonomy. It explores the
lower-level transactional requirements of Grid databases rather than providing a
higher-level service to the user.

All resources, for example, computational resources, storage resources, net-
work, programs, etc., are represented as service in Open Grid Service Architecture
(OGSA). A service-oriented approach is also used for the abstraction of under-
lying data stored in different types of data resources. Data virtualization is used
to denote such abstraction of data resources. The Grid Data Distribution (GDD)
model supports dynamic and efficient data distribution for providing data ser-
vices. Figure 1.19 shows the data virtualization approach. The interfaces shown
are OGSA’s data service interface.

Data virtualization will help in accessing data stored on different physical
media, maintained in different syntaxes, managed by different software systems,
and made available by different protocols. Attempts to standardize the virtual-
ization approach are being made by various Research- and Working-Groups of
the GGF.

Referring to Figure 1.19, from the data management perspective, an important
point is that Grids do not have Direct Attached Storage (DAS). Earlier computing
infrastructures, such as monolithic, open, and distributed, all have DAS. A research
survey carried out on storage systems shows that about 53% of businesses use DAS
as their storage medium; 58% of organizations consider interoperability to be a

28 Chapter 1 Introduction

Database XML
File

Systems

Resource Manager
(Data Virtualization with

help of Descriptors)

D
 a

 t
a

 A
 c

 c
 e

 s
 s

D
 a

 t
 a

 F

 a
 c

 t
 o

 r
 y

D
 a

 t
 a

M

 a
 n

 a
 g

 e
 m

 e
 n

 t

…

Data Service Interfaces

Perhaps Other Interfaces

Figure 1.19 Data virtualization
approach in Grid environment

critical issue. While interoperability and DAS have contradictory requirements, the
good news is that more than 60% of organizations are considering moving toward
network-based storage systems. This will make the integration of data sources con-
venient with the Grid.

Most of the work done in Data Grid infrastructure assumes the existence of file
systems like Network File System (NFS) for data storage. Considering the global
vision of Grids, it is believed that Grids must also integrate database systems into
the infrastructure to support a wide range of applications. Hence, databases offer a
much richer set of operations such as queries and transactions.

Oracle has launched its Grid-enabled database systems, denoted with a suffix
g in its versions. Oracle’s Real Application Cluster (RAC) can run the application
workload on a cluster of servers. Two main distinct features are (i) integrated clus-
terware and (ii) automatic workload management. Integrated clusterware provides
cluster connectivity, messaging and locking, recovery, etc. Automatic workload
management provides the dynamic allocation of workloads to the servers. Allo-
cation rules can be dynamically and automatically defined to allocate processing
resources. Thus the main focus is on providing dynamic load balancing and allo-
cation of workloads. It is greatly different from the autonomous, heterogeneous,
and cross-institution working environment, or DAIS-WG or TM-RG. The ear-
lier versions were not designed for heterogeneous and global Grids, but for intra-
institutional dynamic workload management.

1.7 Structure of this Book 29

1.7 STRUCTURE OF THIS BOOK

This book covers two main elements, namely:

1. Parallel Query Processing and

2. Grid Transaction Management

The first element on parallel query processing mainly deals with real-only
queries, whereas the second element on Grid databases deals with read as well as
write transactions.

The book is structured in four parts: Part I gives an introduction to the topic,
including this chapter. Since an analytical model is an important part of perfor-
mance evaluation of any system, an introduction of analytical models will also be
included in this part.

Part II and Part III concentrate on Parallel Query Processing. These parts
feature parallel algorithms and approaches for all important database processing
operations. This ranges from the very basic database operations, such as data
searching and sorting, to the most complex database operations involving com-
plex database computation, like universal quantifier, complex join, etc. Under-
standing these algorithms is critical in order to fully comprehend how parallel
database processing works and enhances the performance of modern database
applications. Basically, Part II describes the basic of query parallelism including
parallel search, parallel sort, and parallel join, whereas Part III focuses on more
complex query parallelism, such as groupby-join, indexing, universal quantifica-
tion, and scheduling.

An understanding of the pseudocode of parallel algorithms is not enough to
fully comprehend the behavior of each parallel algorithm and its contribution to
performance improvement. We need to be able to describe their cost models. Ana-
lytical models for each parallel algorithm can be used to understand the internal
components of each algorithm, to predict the performance of each algorithm, and
to compare with other algorithms. Extensive cost models are also included in each
chapter to describe the behavior of each parallel query processing method.

Part IV focuses on the second element of this book, namely, Grid Transaction
Management. This covers the ACID properties of transactions as well as repli-
cation in a Grid environment. Transaction issues such as consistency, atomicity
and recovery, which are more relevant in a database environment, are brought
into focus. Data consistency issues are addressed in the presence of write trans-
actions.

The final part, Part V, presents other data intensive applications in which par-
allelism might be applied in order to achieve high performance. These include
parallel Online Analytical Processing (parallel OLAP) and parallel data mining
techniques. The use of parallelism in these data-intensive applications is unavoid-
able because of the large volume of data to be processed.

30 Chapter 1 Introduction

1.8 SUMMARY

This chapter focuses on three fundamental questions in parallel query processing,
namely, why, what, and how, plus one additional question based on the technolog-
ical support. The more complete questions and their answers are summarized as
follows.

ž Why is parallelism necessary in database processing?
Because there is a large volume of data to be processed and reasonable
(improved) elapsed time for processing this data is required.

ž What can be achieved by parallelism in database processing?
The objectives of parallel database processing are (i) linear speed up and
(ii) linear scale up. Superlinear speed up and superlinear scale up may happen
occasionally, but they are more of a side effect, rather than the main target.

ž How is parallelism performed in database processing?
There are four different forms of parallelism available for database process-
ing: (i) interquery parallelism, (ii) intraquery parallelism, (iii) intraoperation
parallelism, and (iv) interoperation parallelism. These may be combined in
parallel processing of a database job in order to achieve a better performance
result.

ž What facilities of parallel computing can be used?
There are four different parallel database architectures: (i) shared-memory,
(ii) shared-disk, (iii) shared-nothing, and (iv) shared-something architectures.

Distributed computing infrastructure is fast evolving. The architecture was
monolithic in 1970s, and since then, during the last three decades, developments
have been exponential. The architecture has evolved from monolithic, to open,
to distributed, and lately virtualization techniques are being investigated in the
form of Grid computing. The idea of Grid computing is to make computing a
commodity. Computer users should be able to access the resources situated around
the globe without knowing the location of the resource. And a pay-as-you-go
strategy can be applied in computing, similar to the state-of-the-art gas and
electricity distribution strategies. Data storages have reached petabyte size
because of the increase in collaborative computing and the amount of data being
gathered by advanced applications. The working environment of collaborative
computing is hence heterogeneous and autonomous.

1.9 BIBLIOGRAPHICAL NOTES

The work in parallel databases began in around the late 1970s and the early 1980s.
The term “Database Machine” was used, which focused on building special paral-
lel machines for high-performance database processing. Two of the first papers
in database machines were written by Su (SIGMOD 1978), entitled “Database
Machines,” and by Hsiao (IEEE Computer 1979), entitled “Database Machines are

1.10 Exercises 31

Coming, Database Machine are Coming.” A similar introduction was also given by
Langdon (IEEE TC 1979) and by Hawthorn (VLDB 1980). A more complete sur-
vey on database machine was given by Song (IEEE Database Engineering Bulletin
1981). The work on the database machine was compiled and published as a book
by Ozkarahan (1986). Although the rise of database machines was welcomed by
many researchers, a critique was presented by Boral and DeWitt (1983). A few
database machines were produced in the early 1980s. The two notable database
machines were Gamma, led by DeWitt et al. (VLDB 1986 and IEEE TKDE 1990),
and Bubba (Haran et al., IEEE TKDE 1990).

In the 1990s, the work on database machines was then translated into “Parallel
Databases”. One of the most prominent papers was written by DeWitt and Gray
(CACM 1992). This was followed by a number of important papers in parallel
databases, including Hawthorn (PDIS 1993) and Hameurlain and Morvan (DEXA
1996). A good overview on research problems and issues was given by Valduriez
(DAPD 1993), and a tutorial on parallel databases was given by Weikum (ICDT
1995).

Ongoing work on parallel databases is supported by the availability of parallel
machines and architectures. An excellent overview on parallel database architec-
ture was given by Bergsten, Couprie, and Valduriez (The Computer Journal 1993).
A thorough discussion on the shared-everything and shared-something architec-
tures was presented by Hua and Lee (PDIS 1991) and Valduriez (ICDE 1993).
More general parallel computing architectures, including SIMD and MIMD archi-
tectures, can be found in widely known books by Almasi and Gottlieb (1994) and
by Patterson and Hennessy (1994).

A new wave of Grid databases started in the early 2000s. A direction on this
area is given by Atkinson (BNCOD 2003), Jeffery (EDBT 2004), Liu et al. (SIG-
MOD 2003), and Malaika et al. (SIGMOD 2003). One of the most prominent
works in Grid databases is the DartGrid project by Chen, Wu et al., who have
reported their project in Concurrency and Computation (2006), at the GCC confer-
ence (2004), at the Computational Sciences conference (2004), and at the APWeb
conference (2005).

Realizing the importance of parallelism in database processing, many com-
mercial DBMS vendors have included some parallel processing capabilities in
their products, including Oracle (Cruanes et al. SIGMOD 2004) and Informix
(Weininger SIGMOD 2000). Oracle has also implemented some grid facilities
(Poess and Othayoth VLDB 2005). The work on parallel databases continues with
recent work on shared cache (Chandrasekaran and Bamford ICDE 2003).

1.10 EXERCISES

1.1. Assume that a query is decomposed into a serial part and a parallel part. The serial
part occupies 20% of the entire elapsed time, whereas the rest can be done in parallel.
Given that the one-processor elapsed time is 1 hour, what is the speed up if 10 pro-
cessors are used? (For simplicity, you may assume that during the parallel processing
of the parallel part the task is equally divided among all participating processors).

32 Chapter 1 Introduction

1.2. Under what conditions may superlinear speed up be attained?

1.3. Highlight the differences between speed up and scale up.

1.4. Outline the main differences between transaction scale up and data scale up.

1.5. Describe the relationship between the following:

ž Interquery parallelism
ž Intraquery parallelism

1.6. Describe the relationship between the following:

ž Scale up
ž Speed up

1.7. Skewed workload distribution is generally undesirable. Under what conditions that
parallelism (i.e. the workload is divided among all processors) is not desirable.

1.8. Discuss the strengths and weaknesses of the following parallel database architectures:

ž Shared-everything
ž Shared-nothing
ž Shared-something

1.9. Describe the relationship between parallel databases and Grid databases.

1.10. Investigate your favourite Database Management Systems (DBMS) and outline what
kind of parallelism features have been included in their query processing.

1.11. For the database in the previous exercise, investigate whether the DBMS supports the
Grid features.

Chapter2

Analytical Models

Analytical models are cost equations/formulas that are used to calculate the elapsed
time of a query using a particular parallel algorithm for processing. A cost equation
is composed of variables, which are substituted with specific values at runtime
of the query. These variables denote the cost components of the parallel query
processing.

In this chapter, we briefly introduce basic cost components and how these are
used in cost equations. In Section 2.1, an introduction to cost models including their
processing paradigm is given. In Section 2.2, basic cost components and cost nota-
tions are explained. These are basically the variables used in the cost equations. In
Section 2.3, cost models for skew are explained. Skew is an important factor in paral-
lel database query processing. Therefore, understanding skew modeling is a critical
part of understanding parallel database query processing. In Section 2.4, basic cost
calculation for general parallel database processing is explained.

2.1 COST MODELS

To measure the effectiveness of parallelism of database query processing, it is nec-
essary to provide cost models that can describe the behavior of each parallel query
algorithm. Although the cost models may be used to estimate the performance of a
query, it is the primary intention to use them to describe the process involved and
for comparison purposes. The cost models also serve as tools to examine every
cost factor in more detail, so that correct decisions can be made when adjusting
the entire cost components to increase overall performance. The cost is primarily
expressed in terms of the elapsed time taken to answer a query.

The processing paradigm is processor farming, consisting of a master processor
and multiple slave processors. Using this paradigm, the master distributes the work
to the slaves. The aim is to make all slaves busy at any given time, that is, the

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

33

34 Chapter 2 Analytical Models

workload has been divided equally among all slaves. In the context of parallel
query processing, the user initiates the process by invoking a query through the
master. To answer the query, the master processor distributes the process to the
slave processors. Subsequently, each slave loads its local data and often needs to
perform local data manipulation. Some data may need to be distributed to other
slaves. Upon the completion of the process, the query results obtained from each
slave are presented to the user as the answer to the query.

2.2 COST NOTATIONS

Cost equations consist of a number of components, in particular:

ž Data parameters
ž Systems parameters
ž Query parameters
ž Time unit costs
ž Communication costs

Each of these components is represented by a variable, to which a value is
assigned at runtime. The notations used are shown in Table 2.1.

Each cost component is described and explained in more detail in the following
sections.

2.2.1 Data Parameters

There are two important data parameters:

ž Number of records in a table (jRj/ and
ž Actual size (in bytes) of the table (R/

Data processing in each processor is based on the number of records. For
example, the evaluation of an attribute is performed at a record level. On the other
hand, systems processing, such as I/O (read/write data from/to disk) and data
distribution in an interconnected network, is done at a page level, where a page
normally consists of multiple records.

In terms of their notations, for the actual size of a table, a capital letter, such as
R, is used. If two tables are involved in a query, then the letters R and S are used
to indicate tables 1 and 2, respectively. Table size is measured in bytes. Therefore,
if the size of table R is 4 gigabytes, when calculating a cost equation variable R
will be substituted by 4 ð 1024 ð 1024 ð 1024.

For the number of records, the absolute value notation is used. For example,
the number of records of table R is indicated by jRj. Again, if table S is used in
the query, jSj denotes number of records of this table. In calculating the cost of an
equation, if there are 1 million records in table R, variable jRj will have a value of
1,000,000.

2.2 Cost Notations 35

Table 2.1 Cost notations

Symbol Description

Data parameters

R Size of table in bytes

Ri Size of table fragment in bytes on processor i

|R | Number of records in table R

|Ri| Number of records in table R on processor i

Systems parameters

N Number of processors

P Page size

H Hash table size

Query parameters

π Projectivity ratio

σ Selectivity ratio

Time unit cost

IO Effective time to read a page from disk

tr Time to read a record in the main memory

tw Time to write a record to the main memory

td Time to compute destination

Communication cost

mp Message protocol cost per page

ml Message latency for one page

In a multiprocessor environment, the table is fragmented into multiple proces-
sors. Therefore, the number of records and actual table size for each table are
divided (evenly or skewed) among as many processors as there are in the system.
To indicate fragment table size in a particular processor, a subscript is used. For
example, Ri indicates the size of the table fragment on processor i . Subsequently,
the number of records in table R on processor i is indicated by jRi j. The same
notation is applied to table S whenever it is used in a query.

As the subscript i indicates the processor number, R1 and jR1j are fragment
table size and number of records of table R in processor 1, respectively. The values
of R1 and jR1j may be different from (or the same as), say for example, R2 and
jR2j. However, in parallel database query processing, the elapsed time of a query
processing is determined by the longest time spent in a processor. In calculating the
elapsed time, we are concerned only with the processors having the largest number
of records to process. Therefore, for i D 1 : : : n, we choose the largest Ri and jRi j
to represent the longest elapsed time of the heaviest load processor. If table R is

36 Chapter 2 Analytical Models

already divided evenly to all processors, then calculating Ri and jRi j is easy, that
is, divide R and jRj by number of processors, respectively. However, when the
table is not evenly distributed (skewed), we need to determine the largest fragment
of R to be used in Ri and jRi j. Skew modeling is explained later in this chapter.

2.2.2 Systems Parameters

In parallel environments, one of the most important systems parameters is the num-
ber of processors. In the cost equation, the number of processors is symbolized by
N . For example, N D 16 indicates that there are 16 processors to be used to process
a query.

To calculate Ri and jRi j, assuming the data is uniformly distributed, both R and
jRj are divided by N to get Ri and jRi j. For example, there are 1 million records
(jRj D 1;000;000) using 10 processors (N D 10). The number of records in any
processors is jRi j D jRj=N (jRi j D 1;000;000=10 D 100;000 records).

If the data is not uniformly distributed, jRi j denotes the largest number of
records in a processor. Realistically, jRi j must be larger than jRj=N , or in other
words, the divisor must be smaller than N . Using the same example as above,
jRi j must be larger than 100,000 records (say for example 200,000 records). This
shows that the processor having the largest record population is the one with
200,000 records. If this is the case, jRi j D 200;000 records is obtained by dividing
jRj D 1;000;000 by 5. The actual number of the divisor must be modeled correctly
to imitate the real situation.

There are two other important systems parameters, namely:

ž Page size (P/ and
ž Hash table size (H/

Page size, indicated by P , is the size of one data page in bytes, which contains
a batch of records. When records are loaded from disk to main memory, it is not
loaded record by record, but page by page.

To calculate the number of pages of a given table, divide the table size by the
page size. For examples, R D 4 gigabytes (D 4 ð 10243 bytes) and P D 4 kilo-
bytes (D 4 ð 1024 bytes), R=P D 10242 number of pages. Since the last page
may not be a full page, the division result must normally be rounded up.

Hash table size, indicated by H , is the maximum size of the hash table that can
fit into the main memory. This is normally measured by the maximum number of
records. For example, H D 10;000 records.

Hash table size is an important parameter in parallel query processing of large
databases. As mentioned at the beginning of this book, parallelism is critical for
processing large databases. Since the database is large, it is likely that the data
cannot fit into the main memory all at once, because normally the size of the main
memory is much smaller than the size of a database. Therefore, in the cost model
it is important to know the maximum capacity of the main memory, so that it can
be precisely calculated how many times a batch of records needs to be swapped in

2.2 Cost Notations 37

and out from the main memory to disk. The larger the hash table, the less likely
that record swapping will be needed, thereby improving overall performance.

2.2.3 Query Parameters

There are two important query parameters, namely:

ž Projectivity ratio (π) and
ž Selectivity ratio (σ)

Projectivity ratio π is the ratio between the projected attribute size and the orig-
inal record length. The value of π ranges from 0 to 1. For example, assume that the
record size of table R is 100 bytes and the output record size is 45 bytes. In this
case, the projectivity ratio π is 0.45.

Selectivity ratio σ is a ratio between the total output records, which is deter-
mined by the number of records in the query result, and the original total number
of records. Like π, selectivity ratio σ also ranges from 0 to 1. For example, sup-
pose initially there are 1000 records (jRi j D 1000 records), and the query produces
4 records. The selectivity ratio σ is then 4/1000 D 1=250 D 0:004.

Selectivity ratio σ is used in many different query operations. To distinguish
one selectivity ratio from the others, a subscript can be used. For example, σp

in a parallel group-by query processing indicates the number of groups produced
in each processor. Using the above example, the selectivity ratio σ of 1/250 (σD
0:004) means that each group in that particular processor gathers an average of 250
original records from the local processor.

If the query operation involves two tables (like in a join operation), a selectivity
ratio can be written as σj , for example. The value of σj indicates the ratio between
the number of records produced by a join operation and the number of records
of the Cartesian product of the two tables to be joined. For example, jRi j D 1000
records and jSi j D 500 records; if the join produces 5 records only, then the join
selectivity ratio σj is 5=.1;000 ð 500/ D 0:00001.

Projectivity and selectivity ratios are important parameters in query processing,
as they are associated with the number of records before and after processing; addi-
tionally, the number of records is an important cost parameter, which determines
the processing time in the main memory.

2.2.4 Time Unit Costs

Time unit costs are the time taken to process one unit of data. They are:

ž Time to read from or write to a page on disk (IO),
ž Time to read a record from main memory (tr),
ž Time to write a record to main memory (tw),
ž Time to perform a computation in the main memory, and
ž Time to find out the destination of a record (td).

38 Chapter 2 Analytical Models

Time to read/write a page from/to disk is basically the time associated with an
input/output process. The variable used in the cost equation is denoted by IO. Note
that IO works at the page level. For example, to read a whole table from disk to
main memory, divide table size and page size, and then multiply by the IO unit
cost (R=P ð IO). In a multiprocessor environment, this becomes Ri =P ð IO.

The time to write the query results into a disk is very much reduced as only a
small subset of Ri is selected. Therefore, in the cost equation, in order to reduce
the number of records as indicated by the query results, Ri is normally multiplied
by other query parameters, such as π and σ.

Times to read/write a record in/to main memory are indicated by tr and tw,
respectively. These two unit costs are associated with reading records, which are
already in the main memory. These two unit costs are also used when obtaining
records from the data page. Note now that these two unit costs work at a record
level, not at a page level.

The time taken to perform a computation in the main memory varies from one
computation type to another, but basically, the notation is t followed by a subscript
that denotes the type of computation. Computation time in this case is the time
taken to compute a single process in the CPU. For example, the time taken to hash
a record to a hash table is shown as th , and the time taken to add a record to current
aggregate value in a group by operation is denoted as ta .

Finally, the time taken to compute the destination of a record is denoted by td .
This unit cost is used when a record needs to be distributed or transferred from one
processor to another. Record distribution/transfer is normally dictated by a hash
or a range function, depending on which data distribution method is being used.
Therefore, in order for each record to be transferred, it needs to determine where
this record should go, and td is used for this purpose.

2.2.5 Communication Costs

Communication costs can generally be categorized into the following elements:

ž Message protocol cost per page (m p/ and
ž Message latency for one page (ml/

Both elements work at a page level, as with the disk. Message protocol cost
is the cost associated with the initiation for a message transfer, whereas message
latency is associated with the actual message transfer time.

Communication costs are divided into two major components, one for the
sender and the other for the receiver. The sender cost is the total cost for sending
records in pages, which is calculated by multiplying the number of pages to be
sent and both communication unit costs mentioned above. For example, to send
the whole table R, the cost would be R=P ð .m p C ml/. Note that the size of the
table must be divided by the page size in order to calculate the number of pages
being sent. The unit cost for the sending is the sum of the two communication cost
components.

2.3 Skew Model 39

At the receiver end, the receiver cost is the total cost of receiving records in
pages, which is calculated by multiplying number of pages received and the mes-
sage protocol cost per page only. Note that in the receiver cost, the message latency
is not included. Therefore, continuing the above example, the receiving cost would
be R=P ð m p.

In a multiprocessor environment, the sending cost is the cost of sending data
from one processor to another. The sending cost will come from the heaviest loaded
processor, which sends the largest volume of data. Assume the number of pages to
be sent by the heaviest loaded processor is p1; the sending cost is p1 ð .m p C ml/.
However, the receiving cost is not just simply p1 ð .m p/, since the maximum page
size sent by the heaviest loaded processor may likely be different from the max-
imum page size received by the heaviest loaded processor. As a matter of fact,
the heaviest loaded sending processor may also be different from the heaviest
loaded receiving processor. Therefore, the receiving cost equation may look like
p2 ð .m p/, where p1 6D p2. This might be the case especially if p1 D jRj=N=P
and p2 involves skew and therefore will not equally be divided. However, when
both p1 and p2 are heavily skewed, the values of p1 and p2 may be modeled as
equal, even though the processor holding p1 is different from that of p2. But from
the perspective of parallel query processing, it does not matter whether or not the
processor is the same.

As has been shown above, the most important cost component is in fact p1 and
p2, and these must be accurately modeled to reflect the accuracy of the communi-
cation costs involved in a parallel query processing.

2.3 SKEW MODEL

Skew has been one of the major problems in parallel processing. Skew is defined as
the nonuniformity of workload distribution among processing elements. In parallel
external sorting, there are two different kinds of skew, namely:

ž Data skew and
ž Processing skew

Data skew is caused by the unevenness of data placement in a disk in each local
processor, or by the previous operator. Unevenness of data placement is caused by
the fact that data value distribution, which is used in the data partitioning function,
may well be nonuniform because of the nature of data value distribution. If initial
data placement is based on a round-robin data partitioning function, data skew
will not occur. However, it is common for database processing not to involve a
single operation only. It sometimes involves many operations, such as selection
first, projection second, join third, and sort last. In this case, although initial data
placement is even, other operators may have rearranged the data—some data are
eliminated, or joined, and consequently, data skew may occur when the sorting is
about to start.

40 Chapter 2 Analytical Models

Processing skew is caused by the processing itself, and may be propagated by
the data skew initially. For example, a parallel external sorting processing consists
of several stages. Somewhere along the process, the workload of each processing
element may not be balanced, and this is called processing skew. Note that even
when data skew may not exist at the start of the processing, skew may exist at a
later stage of processing. If data skew exists in the first place, it is very likely that
processing skew will also occur.

Modeling skew is known to be a difficult task, and often a simplified assumption
is used. A number of attempts to model skewness in parallel databases have been
reported. Most of them use the Zipf distribution model.

Skew is measured in terms of different sizes of fragments that are allocated to
the processors for the parallel processing of the operation. Given the total number
of records jRj, the number of processors N , and a skew factor θ; the size of the i th
fragment jRi j can be represented by:

jRi j D jRj
iθ ð

NP

jD1

1
jθ

where 0 � θ � 1 (2.1)

The symbol θ denotes the degree of skewness, where θ D 0 indicates no skew
and θ D 1 highly skewed. Clearly, when θ D 0, the fragment sizes follow a discrete
uniform distribution with jRi j D jRj

N . This is an ideal distribution, as there is no
skew. In contrast, when θ D 1 indicating a high degree of skewness, the fragment
sizes follow a pure Zipf distribution. Here, the above equation becomes:

jRi j D jRj
i ð

NP

jD1

1
j

D jRj
i ð HN

³ jRj
i ð .γ C ln N /

(2.2)

where γ D 0:57721 (Euler’s constant) and HN is the harmonic number, which
may be approximated by (γ C ln N). In the case of θ > 0, the first fragment jR1j is
always the largest in size, whereas the last one jRN j is always the smallest. (Note
that fragment i is not necessarily allocated at processor i .) Here, the load skew is
given by:

jRmaxj D jRj
NP

jD1

1
jθ

(2.3)

For simplicity and generality of notation, we use jRi j instead of jRmaxj. When
there is no skew,

jRi j D jRj
N

(2.4)

and when it is highly skewed, jRi j D jRj
NP

jD1

1
jθ

. To illustrate the difference between

these two equations, we use the example shown in Figures 2.1 and 2.2. In this

2.3 Skew Model 41

No Skew

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8

Processor Number

N
u

m
b

er
 o

f R
ec

o
rd

s
(

R
i

)

Figure 2.1 Uniform distribution (no skew)

Highly Skewed

0

10000

20000

30000

40000

N
u

m
b

er
 o

f R
ec

o
rd

s
(

R
i

)

1 2 3 4 5 6 7 8

Processor Number

Figure 2.2 Highly skewed distribution

example, jRj D 100;000 records, and N D 8 processors. The x-axis indicates
the load of each processor (processors are numbered consecutively), whereas the
y-axis indicates the number of records (jRi j/ in each processor. In the no-skew
graph (Fig. 2.1), θ is equal to zero, and as there is no skew the load of each
processor is uniform as expected—that is, 12,500 records each.

In the highly skewed graph (Fig. 2.2), we use θ D 1 to model a high-skew
distribution. The most heavily loaded processor holds more than 36,000 records,
whereas the least loaded processor holds around 4500 records only. In the graph,
the load decreases as the processor number increases. However, in real imple-
mentation, the heaviest load processor does not necessarily have to be the first
processor, whereas the lightest load processor does not necessarily have to be the
last processor. From a parallel query processing viewpoint, it does not matter which
processor has the heaviest load. The important thing is that we can predict the
heaviest load among all processors, as this will be used as the indicator for the
processing time.

In extreme situations, the heaviest loaded processor can hold all the records
(e.g., 100,000 records), whereas all other processors are empty. Although this is
possible, in real implementation, it may rarely happen. And this is why a more

42 Chapter 2 Analytical Models

Comparison

0

5000

10000

15000

20000

25000

30000

35000

40000

q = 1.0 q = 0.8 q = 0.5 q = 0

N
u

m
b

er
 o

f R
ec

o
rd

s
(

R
i

)

1 2 3 4 5 6 7 8

Processor

Figure 2.3 Comparison between highly skewed, less skewed, and no-skew distributions

realistic distribution model is used, such as the Zipf model, which has been
well-regarded as being suitable for modeling data distribution in parallel database
systems.

Figures 2.1 and 2.2 actually show the two extremes, namely highly skewed and
no skew at all. In practice, the degree of skewness may vary between θ D 0 and
θ D 1. Figure 2.3 shows a comparison of four distributions with skewness ratio
of θ D 1:0, 0.8, 0.5, and 0.0. From this graph, we note that the heaviest loaded
processor holds from around 36,000 records to 12,500 records, depending on the
skewness ratio. In modeling and analysis, however, it is normally assumed that
when the distribution is skewed, it is highly skewed (θ D 1), as we normally use
the worst-case performance to compare with the no-skew case.

In the example above, as displayed in Figures 2.1–2.3, we use N D 8 proces-
sors. The heaviest load processor using a skew distribution is almost 3 times as
much as that of the no-skew distribution. This difference will be widened as more
processors are used. Figure 2.4 explains this phenomenon. In this graph, we show
the load of the heaviest processor only. The x-axis indicates the total number of
processors in the system, which varies from 4 to 256 processors (N /, whereas the
y-axis shows the number of records in the heaviest load processor (jRi j). From this
graph, it clearly shows that when there are 4 processors, the highly skewed load
is almost double that of the no-skew load. With 32 processors, the difference is
almost 8 times as much (the skewed load is 8 times as much as the no-skew load).
This gap continues to grow—for example with 256 processors, the difference is
more than 40 times.

In terms of their equations, the difference between the no-skew and highly
skewed distributions lies in the divisor of the equation. Table 2.2 explains the
divisor used in the two extreme cases. This table shows that in the no-skew
distribution, jRj is divided by N to get jRi j. On the other hand, in a highly skewed

2.4 Basic Operations in Parallel Databases 43

No-Skew vs. Highly Skewed Distribution
R= 100,000 records

0

10000

20000

30000

40000

50000

Number of Processors (N)

N
u

m
b

er
 o

f
R

ec
o

rd
s

(
R

i
)

No Skew 25000 12500 6250 3125 1563 781 391

Highly Skew 48077 36765 29586 24631 21097 18416 16340

4 8 16 32 64 128 256

Figure 2.4 Comparison between the heaviest loaded processors using no-skew and highly skewed
distributions

Table 2.2 Divisors (with vs. without skew)

N 4 8 16 32 64 128 256

Divisor without skew 4 8 16 32 64 128 256

Divisor with skew 2.08 2.72 3.38 4.06 4.74 5.43 6.12

distribution, jRj is divided by a corresponding divisor shown in the last row in
order to obtain jRi j.

The divisor with the high skew remains quite steady compared with the one
without skew. This indicates that skew can adversely affect the performance to a
great extent. For example, the divisor without skew is 256 when the total number
of processors is 256, whereas that with the high skew is only 6.12. Assuming that
the total number of records is 100,000, the workload of each processor when the
distribution is uniform (i.e., θ D 0) is around 390 records. In contrast, the most
overloaded processor in the case of highly skewed distribution (i.e., θ D 1) holds
more than 16,000 records. Our data skew and processing skew models adopt the
above Zipf skew model.

2.4 BASIC OPERATIONS IN PARALLEL DATABASES

Operations in parallel database systems normally follow these steps:

ž Data loading (scanning) from disk,
ž Getting records from data page to main memory,

44 Chapter 2 Analytical Models

ž Data computation and data distribution,
ž Writing records (query results) from main memory to data page, and
ž Data writing to disk

2.4.1 Disk Operations

The first step corresponds to the last step, where data is read from and written to
the disk. As mentioned above in this chapter, disk reading and writing is based on
page (i.e., I/O page). Several records on the same page are read/written as a whole.

The cost components for disk operations are the size of database fragment in
the heaviest loaded processor (Ri or a reduced version of Ri), page size (P/, and
the I/O unit cost (IO). Ri and jPj are needed to calculate the number of pages to
be read/written, whereas IO is the actual unit cost.

If all records are being loaded from a disk, then we use Ri to indicate the size
of the table read. If the records have been initially stored and distributed evenly to
all disks, then we use a similar equation to Equation (2.4) to calculate Ri , where
Ri D R=N .

However, if the initial records have not been stored evenly in all disks, then it
is skewed, and a skew model must be used. As aforementioned, in performance
modelling, when it is skewed, we normally assume it is highly skewed with θ D
1:0. Therefore, we use an equation similar to Equation 2.3 to determine the value
of Ri , which gives Ri D R=.γ C ln N /.

Once the correct value of Ri has been determined, we can calculate the total
cost of reading the data page from the disk as follows:

scanning cost D Ri =P ð IO (2.5)

The disk writing cost is similar. The main difference is that we need to determine
the number of pages to be written, and this can be far less than Ri , as some or many
data have been eliminated or summarized by the data computation process.

To adjust Equation (2.5) for the writing cost, we need to introduce cost vari-
ables that imitate the data computation process in order to determine the number
of records in the query results. In this case, we normally use the selectivity ratio
σ and the projectivity ratio π. The use of these parameters in the disk writing cost
depends on the algorithms, but normally the writing cost is as follows:

writing cost D .data computation variables ð Ri /=P ð IO (2.6)

where the value of the data computation variables is between 0.0 and 1.0. The value
of 0.0 indicates that no records exist in the query results, whereas 1.0 indicates that
all records are written back.

Equations 2.5 and 2.6 are general and basic cost models for disk operations. The
actual disk costs depend on each parallel query operation, and will be explained in
due course in relevant chapters.

2.4 Basic Operations in Parallel Databases 45

2.4.2 Main Memory Operations

Once the data has been loaded from the disk, the record has to be removed from
the data page and placed in main memory (the cost associated with this activity
is called select cost). This step also corresponds to the second last step—that is,
before the data is written back to the disk, the data has to be transferred from main
memory to the data page, so that it will be ready for writing to the disk (this is
called query results generation cost).

Unlike disk operations, main memory operations are based on records, not on
pages. In other words, jRi j is used instead of Ri .

The select cost is calculated as the number of records loaded from the disk times
the reading and writing unit costs to the main memory (tr and tw). The reading unit
cost is used to model the reading operation of records from the data page, whereas
the writing unit cost is to actually write the record, which has been read from the
data page, to main memory. Therefore, a select cost is calculated as follows:

select cost D jRi j ð .tr C tw/ (2.7)

Equations 2.3 and 2.4 can be used to estimate jRi j, in the case of skew and
no-skew data distribution, respectively.

The query results generation cost is similar to the select cost, like the disk writ-
ing cost is to the disk reading cost. In the query results generation cost, there are
two main important differences in particular. One is that the unit time cost is the
writing cost (tw) only, and no reading cost (tr) is involved. The main reason is that
the reading time for the record is already part of the computation, and only the
writing to the data page is modeled. The other important element, which is the
same as for the disk writing cost, is that the number of records in the query results
must be modeled correctly, and additional variables must be included. A general
query results generation cost is as follows:

query results generation cost D .data computation variables ð jRi j/ ð tw (2.8)

The query results generation operation may occur many times depending on
the algorithm. The intermediate query results generation cost in this case is the
cost associated with the temporary query results at the end of each step of data
computation operations. The cost of generating the final query results is the cost
associated with the final query results.

2.4.3 Data Computation and Data Distribution

The main process in any parallel database processing is the middle step, consist-
ing of data computation and data distribution. What we mean by data computation
is the performance of some basic database operations, such as searching, sort-
ing, grouping, filtering of data. Here, the term computation is used in the context
of database operation. Data distribution is simply record transmission from one
processor to another.

46 Chapter 2 Analytical Models

There is no particular order for data computation and data distribution. It
depends on the algorithms. Some algorithms do not perform any processing once
the data has been loaded from its local disk and redistribute the data immediately
to other processors depending on some distribution function. Some other
algorithms perform initial data computation on the local data before distributing
it to other processors for further data computation. Data computation and data
distribution may be carried out in several steps, also depending on the algorithms.

Data Computation

As data computation works in main memory, the cost is based on the number of
records involved in the computation and the unit computation time itself. Each
data computation operation may involve several basic costs, such as unit costs for
hashing, for adding the current record to the aggregate value, and so on. However,
generally, the data computation cost is a product of the number of records involved
in the computation (jRi j/ and the data computation unit costs (tx , where x indicates
the total costs for all operations involved). Hence, a general data computation cost
takes the form:

data computation cost D jRi j ð .tx / (2.9)

Equation (2.9) assumes that the number of records involved in the data compu-
tation is jRi j. If the number of records has been reduced because of previous data
computation, then we must insert additional variables to reduce jRi j. Also, the data
computation unit cost tx must be spelled out in the equation, which may be a sum
of several unit costs. If skew or no skew is assumed, jRi j can be calculated by the
previous Equations (2.3) and (2.4) as appropriate.

Data Distribution

Data distribution involves two costs: the cost associated with determining where
each record goes and the actual data transmission itself. The former, as it works in
main memory, is based on the number of records, whereas the latter is based on
the number of pages.

The destination cost is calculated by the number of records to be transferred
(jRi j/ and the unit cost for calculating the destination (td/. The value of td depends
on the complexity involved in calculating the destination, which is usually influ-
enced by the complexity of the distribution function (e.g., hash function). A general
cost equation for determining the destination is as follows:

determining the destination cost D jRi j ð .td / (2.10)

Again, if jRi j has been reduced, additional cost variables must be included.
Also, an appropriate assumption must be made whether jRi j involves skew or no
skew.

The data transmission itself, which is explained above in Section 2.2.5, is
divided into the sending cost and the receiving cost.

2.7 Exercises 47

2.5 SUMMARY

This chapter is basically centered on the basic cost models to analytically model
parallel query processing. The basic elements of cost models include:

ž Basic cost notations, which includes several important parameters, such as
data parameters, systems parameters, query parameters, time unit costs, and
communication costs

ž Skew model, using a Zipf distribution model
ž Basic parallel database processing costs, including general steps of parallel

database processing, such as disk costs, main memory costs, data computation
costs, and data distribution costs

2.6 BIBLIOGRAPHICAL NOTES

Two excellent books on performance modeling are Leung (1988) and Jain (1991).
Although the books are general computer systems performance modeling and anal-
ysis books, some aspects may be used in parallel database processing. A general
book on computer architecture is Hennessy and Patterson (1990), where the details
of a low-level architecture are discussed.

Specific cost models for parallel database processing can be found in
Hameurlain and Morvan (DEXA 1995), Graefe and Cole (ACM TODS 1995),
Shatdal and Naughton (SIGMOD 1995), and Ganguly, Goel, and Silberschatz
(PODS 1996). Different authors use different cost models to model and analyze
their algorithms. The analytical models covered in this book are based on those
by Shatdal and Naughton (1995). In any database performance modeling, the use
of certain distributions is inevitable. Most of the work in this area uses the Zipf
distribution model. The original book was written by Zipf himself in 1949.

Performance modeling, analysis, and measurement are tightly related to bench-
marking. There are a few benchmarking books, including Gray (1993) and O’Neil
(1993). A more specific benchmarking for parallel databases is presented by Jelly
et al. (BNCOD 1994).

2.7 EXERCISES

2.1. When are R and jRj used?
Explain the difference between the two notations.

2.2. If the processing cost is dependent on the number of records, why is P used, instead
of just using the number of records in the processing cost calculation?

2.3. When is H used in the processing cost calculation?

2.4. When calculating the communication costs, why is R used, instead of jRj?
2.5. If 150 records are retrieved from a table containing 50,000 records, what is the selec-

tivity ratio?

48 Chapter 2 Analytical Models

2.6. If a query displays (projects) 4 attributes (e.g., employee ID, employee last name,
employee first name, and employee DOB), what is the projectivity ratio of this query,
assuming that the employee table has 20 attributes in total?

2.7. Explain what the Zipf model is, and why it can be used to model skew in parallel
database processing.

2.8. If the number of processors is N D 100, using the Zipf model, what is the divisor
when the skewness degree θ D 1?

2.9. What is the select cost, and why is it needed?

2.10. Discuss why analytical models are useful to examine the query processing cost com-
ponents. Investigate your favorite DBMS and find out what kind of tools are available
to examine the query processing costs.

Part II

Basic Query
Parallelism

Chapter3

Parallel Search

Searching is a common task in our everyday lives and may involve activities such
as searching for telephone numbers in a directory, locating words in a dictionary,
checking our appointment diary for a given day/time, etc., etc. Searching is also a
key activity in database applications. Searching is the task of locating a particular
record within a collection of records. Searching is one of the most primitive, yet most
of the time the most accessed, operations in database applications. In this chapter, we
focus on search operations.

In Section 3.1, search queries are expressed in SQL. A search classification is
also given based on the searching predicate in the SQL. As parallel search is very
much determined by data partitioning, in Section 3.2 various data partitioning meth-
ods are discussed. These include single-attribute-based data partitioning methods,
no-attribute-based data partitioning methods, and multiattribute-based partitioning
methods. The first two are categorized as basic data partitioning, whereas the latter
is called complex data partitioning.

Section 3.3 studies serial and parallel search algorithms. Serial search algorithms,
together with data partitioning, form parallel search algorithms. Therefore, under-
standing these two key elements is an important aspect of gaining a comprehensive
understanding of parallel search algorithms.

3.1 SEARCH QUERIES

The search operation in databases is represented by the selection operation.
Selection is one of the most common relational algebra operations. It is a unary
operation in which the operator takes one operand only—a table. Selection is an
operation that selects specified records based on a given criteria. The result of
the selection is a horizontal subset (records) of the operand. Figure 3.1 gives a

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

51

52 Chapter 3 Parallel Search

Input Table Result Table

Selection

Figure 3.1 Selection operation

graphical illustration of a selection operation. The selected records are indicated
with shading.

In SQL, a selection operation is implemented in a Where clause where the
selection criteria (predicates) are specified. Queries having a selection operation
alone are then called “selection queries.” In other words, selection queries are
nothing but search queries—queries that serve the purpose of searching records
from single tables. In this book, we refer to selection queries as “search queries.”
Depending on the search predicates, we categorize search queries into (i) exact
match search, (ii) range search, and (iii) multiattribute search.

3.1.1 Exact-Match Search

An exact match Search query is a query where the selection predicate on attribute
attr is to check for an exact match between a search attribute attr and a given
value. An example of an exact match query is “retrieve student details with student
identification number 23.” The input table in this case is table Student, and the
selection predicate is Student ID Sid D 23. The query written in SQL for the above
query is given as follows.

Query 3.1:
Select *
From STUDENT
Where Sid D 23;

The resulting table of an exact match query can contain more than one record,
depending on whether there are duplicate values in the search attribute. In this
case, since the search predicate is on the primary key, the resulting table con-
tains one record only. However, if the search predicate is on a nonprimary key
attribute in which duplicate values are allowed, it is likely that the resulting table
will contain more than one record. For example, the query “retrieve student details
with last name Robinson” may return multiple records. The SQL is expressed as
follows:

Query 3.2:
Select *
From STUDENT
Where Slname D ‘Robinson’;

3.1 Search Queries 53

3.1.2 Range Search Query

A range search query is a query where the search attribute attr value in the
query result may contain more than single unique values. Range queries fall into
two categories:

ž Continuous range search query and
ž Discrete range search query

In the continuous range search query, the search predicates contain a continuous
range check, normally with continuous range-checking operators, such as < , �, >

, ½, !D, Between, Not, and Like operators. On the other hand, the discrete range
search query uses discrete range check operators, such as In and Or operators.

An example of a continuous range search query is “retrieve student details for
students having GPA more than 3.50”. The query in this case uses a > operator to
check the Sgpa. The SQL of this query is given below.

Query 3.3:
Select *
From STUDENT
Where Sgpa > 3.50;

An example of a discrete range search query is “retrieve student details of
students doing Bachelor of Computer Science (BCS) or Bachelor of Information
Systems (BInfSys)”. The search operator used in this query is an In operator,
which basically checks whether the degree is either BCS or BInfSys. The SQL is
written as follows.

Query 3.4:
Select *
From STUDENT
Where Sdegree IN (‘BCS’, ‘BInfSys’);

Note the main difference between the two range queries—the continuous range
search query checks for a particular range and the values within this range are
continuous, whereas the discrete range search query checks for multiple discrete
values that may or may not be within a particular range. Both these queries are
called range queries simply because the search operation checks for multiple val-
ues, as opposed to a single value as in the exact match queries.

A general range search query may contain the property of both continuous and
discrete range search queries; that is, the search predicates contain some discrete
range search predicates, such as

Query 3.5:
Select *
From STUDENT
Where Sdegree IN (‘BCS’, ‘BinfSys’)
And Sgpa > 3.50;

In this case (Query 3.5), the first predicate is a discrete range predicate as in
Query 3.4, whereas the second predicate is a continuous range predicate as in

54 Chapter 3 Parallel Search

Query 3.3. Therefore, the resulting table contains only those excellent BCS and
BInfSys students (measured by greater than 3.50 in their GPAs).

3.1.3 Multiattribute Search Query

Both exact match and range search queries as given in Queries 3.1–3.4 involve
single attributes in their search predicates. If multiple attributes are involved, we
call this query a multiattribute search query. Each attribute in the predicate can be
either an exact match predicate or a range predicate.

Multiattribute search query can be classified into two types, depending on
whether AND or OR operators are used in linking each of the simple predicates.
Complex predicates involving AND operators are called conjunctive predicates,
whereas predicates involving OR operators are called disjunctive predicates. When
AND and OR operators exist, it is common for the predicate to be normalized in
order to form a conjunctive prenex normal form (CPNF).

An example of a multiattribute search query is “retrieve student details with
the surname ‘Robinson’ enrolled in either BCS or BInfSys”. This query is sim-
ilar to Query 3.2 above, with further filtering in which only BCS and BInfSys
are selected. The first predicate is an exact match predicate on attribute Slname,
whereas the second predicate is a discrete range predicate on attribute Sdegree.
These simple predicates are combined in a form of CPNF. The SQL of the above
query is as follows.

Query 3.6:
Select *
From STUDENT
Where Slname D ‘Robinson’
And Sdegree IN (‘BCS’, ‘BInfSys’);

3.2 DATA PARTITIONING

Data partitioning is used to distribute data over a number of processing elements.
Each processing element is then executed simultaneously with other processing
elements, thereby creating parallelism. Data partitioning is the basic step of par-
allel query processing, and this is why, before we discuss in detail how parallel
searching algorithms can be done, an understanding of data partitioning is critical.

Depending on the architecture, data partitioning can be done physically or log-
ically. In a shared-nothing architecture, data is placed permanently over several
disks, whereas in a shared-everything (i.e., shared-memory and shared-disk) archi-
tecture, data is assigned logically to each processor. Regardless of the adopted
architecture, data partitioning plays an important role in parallel query processing
since parallelism is achieved through data partitioning.

Basically, there are two data partitioning techniques: (i) basic data partitioning
and (ii) complex data partitioning. Both of them will be discussed next.

3.2 Data Partitioning 55

3.2.1 Basic Data Partitioning

There are two basic types of data partitioning:

ž Vertical data partitioning and
ž Horizontal data partitioning

Figure 3.2 gives a graphical illustration of both of these.
Vertical partitioning partitions the data vertically across all processors. Each

processor has a full number of records of a particular table, but with partial
attributes. Because each processor has different fields/attributes, when searching a
particular field/attribute value, only those processors that hold that field/attribute
will participate in the searching process. Therefore, processors that do not
hold that particular field/attribute become idle. This model is more common in
distributed database systems, where the network/communication is slow, than in
parallel database systems, where processing elements are more tightly coupled
through a fast interconnection network. The rationale for using parallelism in
database systems is to distribute the processing tasks among all processors, so that
the query elapsed time is reduced to a minimum. Processor participation in the
whole process is crucial. Even more important, the degree of participation must
be as even as possible.

Horizontal partitioning is a model in which each processor holds a partial num-
ber of complete records of a particular table. A query that evaluates a particular
attribute value will require all processors to participate. Hence, the degree of paral-
lelism improves. This model is more common to parallel database systems, where
communication is fast and processor participation in the whole process is often
crucial to performance. The horizontal method has been used by most existing
parallel relational database systems. There are a number of well-known horizontal
partitioning strategies, namely:

ž Round-robin data partitioning,
ž Hash data partitioning,
ž Range data partitioning, and
ž Random-unequal data partitioning

(a) Vertical Partitioning (b) Horizontal Partitioning

Table Table

Figure 3.2 Vertical and horizontal
data partitioning

56 Chapter 3 Parallel Search

Round-Robin

Round-robin data partitioning is the simplest data partitioning method, whereby
each record in turn is allocated to a processing element in a clockwise manner.
This means that the first record of a table to be partitioned is distributed to the first
processing element, the second record to the second processing element, and so
on. Once the last processing element has obtained a record, the record distribution
will start again in the first processing element. At the end of data distribution,
each processing element will receive a roughly equal partition, except that the last
round of record distribution might not reach the last processing element, if the total
number of records is not divisible by the number of processing elements. Figure 3.3
gives an illustration of round-robin data partitioning.

Since round-robin data partitioning distributes the data evenly among all pro-
cessing elements, it is also known as “equal partitioning.” Round-robin is a spe-
cial case of a more general “random-equal partitioning,” where each processor
receives an equal share of the original table, regardless of the way the partition-
ing is actually done; for example, divide the table into equal subtables and then
distribute each subtable to a separate processing element.

The main advantages of round-robin or random-equal partitioning are that the
data is distributed evenly. Since the aim of parallel processing, especially parallel
database processing, is to achieve load balance in order to reduce the elapsed time
of a job, then this data partitioning supports that objective.

Although the division of the records is equal, records within one partition are not
grouped semantically. The records are grouped simply to achieve equal partitions
in each processor. This is the main drawback of round-robin. Say, for example,
that we want to find records with a particular property such as students with the
surname “Brown”, then all processors must be activated, although probably only a
few of the processing elements will produce the desired results. There is no way to
tell in advance which processing elements hold these records. As start-up costs and
processor involvement costs are expensive, especially if these processing elements
at the end do not produce anything, these will incur unnecessary overheads. It
would be convenient if only those processing elements that were likely to produce
results were involved in the processing. However, this is certainly unachievable
with round-robin as the data partitioning does not have any semantics.

Proc.
1

Proc.
n

Proc.
2

1 2 n n+1 n+2 2n
Data:

Processors:

Figure 3.3 Round-robin data partitioning

3.2 Data Partitioning 57

Hash

In order to make a partition more meaningful (by grouping records having the same
semantics or features), partitioning must be based on a particular attribute. One
type of attribute-based partitioning is hash partitioning, where a hash function is
applied. The result of this hash function determines the processor where the record
will be placed. As a result, records within one partition have the same hash value.
Figure 3.4 gives a graphical illustration of a hash data partitioning.

This arrangement is best for exact match retrieval based on the partitioning
attribute, where the processor containing the desired records can be accessed
directly, provided that the hash function is based on the attribute that is also the
same attribute of the exact retrieval. In this case, only selected processing elements
are activated as they hold the candidate records, while other processing elements
are not required to work, thereby reducing the total cost. Those processing
elements that are idle during this particular job may be available to process
other jobs.

An example of an exact match retrieval using a hash data partitioning is as
follows. For example, the hash function is based on attribute Student ID, and the
search is to find the student with Student ID 98555. This Student ID is hashed,
using the same hash function for the data partitioning. The result of this hashing
determines where the record is located, and the processing element that holds this
record will be activated and the desired record searched. This is an example of an
exact match retrieval using a hash data partitioning.

A problem of hash partitioning involves processing records of a certain range,
where hash partitioning cannot directly detect the location of a record. Suppose the
above search is modified in order to find all students with Student IDs ranging from
98555 to 99555. With a hashing method, it is not possible to hash each individual
Student ID value within that range, and we do not have prior knowledge about the
maximum value for a Student ID starting with 98. Even if we did, it would be time
consuming to hash each individual Student ID just to determine in which processor
each record is located. Consequently, hash data partitioning is not suitable for range
searching.

Proc
1 Proc

nProc 2

Data:

Processors:

hash function

Figure 3.4 Hash data partitioning

58 Chapter 3 Parallel Search

Another disadvantage is exhibited in the graphical illustration of hash partition-
ing in Figure 3.4. Note that the load of each processing element might likely be
skewed, because of the data value distribution, which is very likely to be non-
uniform. From a searching operation point of view, it might not be a great deal
as explained above. But from the perspective of other operations, it may have
an adverse impact on performance, because the initial data allocated is already
skewed.

Range

Range partitioning spreads records based on a given range of the partitioning
attribute. For example, the student table is partitioned based on Student Last Name
according to the following range distribution: last names starting with letters A to
C go to the first processing element, last names starting from D to G to the second
processing element, and so on. Figure 3.5 gives a graphical illustration of range
data partitioning.

A consequence of this range data partitioning is that the processing of records
on a particular range of the partitioning attribute can be directed to a small subset
of processors containing the desired range of records. For example, retrieval of
students with last name Robert something (e.g., Roberts, Robertson, Roberton,
Roberta, etc.) can be directed to the processing element that holds records starting
with an “R”. Another example might be a retrieval of students whose last names
start with letters A to F , and this query can be directed to processors 1 and 2 only.

It can be seen here that range partitioning is particularly suitable for range
retrieval. However, both hash and range partitioning risk data skew. In the illus-
tration in Figure 3.5 (as well as Fig. 3.4 for hash partitioning), the load of each
processing element might not be balanced and uniform. This may impact nega-
tively upon the performance of some other operations, as the initial data placement
is already skewed.

Furthermore, retrieval processing based on a nonpartitioning attribute cannot
make use of hash/range partitioning. For example, if the partitioning (either in
range or hash) is based on attribute Student ID and the query is based on Student
Name, then the query will not be able to make use of the benefits offered by range

Data:

Processors:

A-C D-G W-Z

Proc n

Proc
2Proc

1

range function

Figure 3.5 Range data partitioning

3.2 Data Partitioning 59

or hash partitioning, because the attribute used in data partitioning is different from
that in the query. In this case, all processors must be activated and used to process
the query. As a matter of fact, both range and hash partitioning in this case produce
more disadvantages, as the initial data allocation in each processing element is
nonuniform. In other words, all processors are used for processing, and since the
load of each processor is different, the completion time of each processor will not
be equal, and the longest finishing time becomes the query elapsed time.

Random-Unequal

The last basic data partitioning method is random-unequal data partitioning. As
its name states, there are two important facts about the random-unequal data parti-
tioning method:

ž The partitioning is not based on the same attribute as the retrieval processing
is based on (the partitioning might be a hash or a range partitioning method on
a nonretrieval processing attribute, or the partitioning method is just simply
unknown) and

ž The size of each partition is likely to be unequal. The word “random” in the
name indicates that the records within each partition are not grouped seman-
tically, but are randomly allocated.

Random-unequal partitioning method is common, especially when the
operation is actually an operation based on temporary results obtained from
the previous operations. The initial partitioning method used may have lost its
semantics through a pipeline of operators. Figure 3.6 gives an illustration of a
random-unequal data partitioning.

Comparative Summary

The above four basic data partitioning methods can actually be categorized into
(i) attribute-based data partitioning and (ii) non-attribute-based data partitioning.
Attribute-based data partitioning uses hash and range data partitioning methods,
whereas non-attribute-based data partitioning uses random-equal (round-robin)

Proc
nProc

2Proc 1

Data:

Processors:

unknown function

Figure 3.6 Random-unequal data partitioning

60 Chapter 3 Parallel Search

Table 3.1 Attribute-based versus non-attribute-based data partitioning

Attribute-Based Partitioning Non-Attribute-Based Partitioning

Based on a particular attribute Not based on any attribute

Has grouping semantics No grouping semantics

Skew Balanced

and random-unequal data partitioning methods. Table 3.1 gives a comparative
summary of the attribute-based and non-attribute-based data partitioning methods.

A general conclusion from Table 3.1 is that if the search is based on the same
attribute as the data partitioning (attribute-based partitioning), then the search can
benefit from some advantages offered by the attribute-based partitioning, such as
an exact match search using a hash data partitioning or a range search using a
range data partitioning. If the search attribute is different from that of the partition-
ing attribute, then a non-attribute-based partitioning, especially the random-equal
(round-robin) is the best option. Random-unequal is explained here because, in
many cases, the data is already partitioned and the query has to pick up from wher-
ever the data is already located.

3.2.2 Complex Data Partitioning

The basic data partitioning methods above either are based on a single attribute
or no attribute is used as the basis of the partitioning. A more complex data parti-
tioning, which is still based on a single attribute, is to combine several basic data
partitioning methods. One is based on a variation of the range partitioning, called
hybrid-range partitioning strategy (HRPS). This partitioning technique attempts to
compromise the features of range partitioning with hash and round-robin partition-
ing, resulting in all small partitions being distributed in a round-robin fashion. This
technique uses a grid file structure to store partitions, where rows and columns of
the grid file use hash and range partitioning techniques. This method is capable of
supporting both range and exact match retrievals

The problem of data placement that is based on a single attribute is that when
a query includes any operations based on anything other than the partitioning
attribute, the features of the used partitioning technique will not apply, since the
query must be directed to all processors. To overcome this problem, multiattribute
partitioning is used. In this section, two multiattribute data partitioning methods
are introduced, namely MAGIC (Multiattribute Grid Declustering), and BERD
(Bubba’s Extended Range Declustering).

Hybrid-Range Partitioning Strategy (HRPS)

HRPS strikes a compromise between the sequential execution paradigm of range
partitioning and the load balancing/intraquery parallelism characteristics of the

3.2 Data Partitioning 61

hash and round-robin partitioning methods. With the hybrid-range partitioning
strategy, a table is partitioned into many small logical fragments so that each frag-
ment contains a distinct range of the partitioning attribute value. The number of
fragments is independent of the number of processors in the configuration. The
HRPS partitions a table into fragments based on the following criteria:

ž Each fragment contains approximately FC records.
ž Each fragment contains a unique range of values of the partitioning attribute.

The variable FC is determined based on the processing capability of the sys-
tem and the resource requirements of the queries that access the table, rather than
the number of processors in the configuration. Variable FC is calculated by the
following equation:

FC D RecordsPerQAve

M
(3.1)

where RecordsPerQAve is the average number of records retrieved and processed
by each query, and M is the number of processors that should participate in the
execution of an average query.

The general steps of the HRPS are as follows:

ž The table must be sorted on the partitioning attribute.
ž The table can then be partitioned such that each fragment contains approxi-

mately FC records.
ž The fragments are distributed among the processors in a round-robin fashion,

ensuring that M adjacent fragments will be assigned to different processors.

For example, assume there are 10,000 student records, the partitioning attribute
is Student ID, which is unique for each student, and the value of the Student ID
ranges from 1 to 10,000. Assume that the average query accessing this table uses
a range predicate on the partitioning attribute to retrieve and process 500 records
(Records Per Q D 500). Queries on the student table normally access students per
year enrolment, and we assume it averages around 500 records. Assume that the
optimal performance is achieved when 5 processors are used (M D 5). Therefore,

FC D RecordsPerQAve

M
D 100

Therefore, the table will be partitioned into 100 fragments. The next step is
the distribution the fragments to the participating processors. Here, there are three
possibilities (cases):

ž M D N

ž M > N

ž M < N

where N is the number of processors in the configuration and M is the number of
processors participating in the query execution.

62 Chapter 3 Parallel Search

ž Case 1: M D N
For example, M D N D 5 processors. Since fragments of the table are

assigned in a round-robin fashion among processors, the query will overlap
either 5 or 6 fragments. In either case, all processors will be used to execute
the query.

Comparing the HRPS with hash partitioning, the hash partitioning method
will also use all N processors, since it cannot localize the execution of a range
query.

Comparing this with range partitioning, the range partitioning method will
also partition the table into 5 fragments. For example, range 1–2000 goes
to processing element 1, range 2001–4000 goes to processor 2, and so on.
Figure 3.7 illustrates the way in which the fragments are distributed among
the 5 processing elements and provides a comparison with the range parti-
tioning method.

Since the range of a query falls within the range of a single fragment, and
most of the tile overlaps the range of two fragments some of the time, the
query will be directed to either 1 or 2 processors only. For example, a query
retrieving students with Student ID between 1250 and 1750 will need only
processor 1 to work, whereas a different query retrieving Student ID between
5900 and 6400 will need only processors 3 and 4 to work.

On the other hand, with the HRPS, a query retrieving 500 students will be
evenly spread among the five processors, and hence a shorter elapsed time
can be expected.

ž Case 2: M > N
For example, M D 5 and N D 2. In this case, the first fragment goes to

processor 1, the second to processor 2, the third back to processor 1, and so
on. Since, on average, the query will retrieve 500 consecutive records, the
query using a HRPS method will still use all N processors (e.g., 2 processors
in this case) because it enforces the constraint that the M adjacent fragments
be assigned to different processors whenever possible.

Conversely, the range partitioning method in this case partitions the table
into two fragments, significantly increasing the probability of a query being
directed to only one processor.

HRPS 1-100 101-200 201-300 301-400 401-500

: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

9501-9600 9601-9700 9701-9800 9801-9900 9901-10000

Range 1-2000 2001-4000 4001-6000 6001-8000 8001-10000

Figure 3.7 Case 1 (M D N) and a comparison with the range partitioning method

3.2 Data Partitioning 63

HRPS 1-100 101-200

201-300 301-400

: : : : : :

: : : : : :

9801-9900 9901-10000

Range 1-5000 5001-10000

Figure 3.8 Case 2 (M > N) and a comparison with the range partitioning method

Figure 3.8 gives a comparative illustration of HRPS and range partitioning
methods. Say, for example, to retrieve records 1250 to 1750, with the range
method only the first processor is used, whereas with the HRPS method the
two processors will be used. Hence, the latter will reduce the elapsed time of
the query.

ž Case 3: M < N
For example, M D 5 but N D 10 processors. The HRPS will distribute the

100 fragments of the table across all N processors in order to ensure that all
available resources are used so as to maximize the throughput of the system
when executing multiple queries concurrently. However, since the range of
query will overlap only 5 or 6 fragments, each individual query is localized to
almost the optimal number of processors. For example, a query retrieving Stu-
dent IDs ranging from 1250 to 1750 will require 6 processors to work—that
is processors 3 to processors 8 (see Fig. 3.9).

Conversely, the hash partitioning strategy will send the query to all N pro-
cessors, incurring the start up, communication, and termination overheads
associated with executing the query on more processors than absolutely nec-
essary.

The range partitioning strategy will again execute the query on only 1 or
2 processors, again using fewer than the optimal number of processors. In
the above case (see Figure 3.9 again), the query will make use of processor 2
only, which contains values ranging from 1001 and 2000.

Based on the three cases above, the advantages of the HRPS can be summarized
as follows.

ž Support for Small Tables
Because the number of fragments created by the HRPS method is depen-

dent on the processing capability of the system and the resource requirements
of the workload and is independent of the number of processors in the mul-
tiprocessors, if the number of fragments of a table is less than the number of
processors, then the table will automatically be partitioned across a subset of
the processors.

H
R

P
S

1-
10

0
10

1-
20

0
20

1-
30

0
30

1-
40

0
40

1-
50

0
50

1-
60

0
60

1-
70

0
70

1-
80

0
80

1-
90

0
90

1-
10

00

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

::
:

90
01

-9
10

0
91

01
-9

20
0

92
01

-9
30

0
93

01
-9

40
0

94
01

-9
50

0
95

01
-9

60
0

96
01

-9
70

0
97

01
-9

80
0

98
01

-9
90

0
99

01
-1

00
00

R
a
n

g
e

1-
10

00
10

01
-2

00
0

20
01

-3
00

0
30

01
-4

00
0

40
01

-5
00

0
50

01
-6

00
0

60
01

-7
00

0
70

01
-8

00
0

80
01

-9
00

0
90

01
-1

00
00

F
ig

u
re

3
.9

C
as

e
3

(M
<

N
)

an
d

a
co

m
p

ar
is

o
n

w
it

h
th

e
ra

n
g

e
p

ar
ti

ti
o

n
in

g
m

et
h

o
d

64

3.2 Data Partitioning 65

ž Support for Tables with Nonuniform Distributions of the Partitioning
Attribute Values
Because the cardinality of each fragment is not based on the value of the
partitioning attribute value, once the HRPS determines the cardinality of each
fragment, it will partition a table based on that value.

For example, assume a table has a cardinality of 100,000 records and
assume that 4000 of these records have 2 as their partitioning attribute value.
Assume also that the cardinality of each fragment should be 1000 records.
After sorting the table on the partitioning attribute, the records with a parti-
tioning attribute value of 2 will be distributed among 4–5 fragments, which
will each be assigned to a different processor. Thus, if the query is an exact
match query looking for a value 2, the query will be directed to 4 processors
(rather than 1 processor, had the table been partitioned with either hash or
range partitioning methods).

MAGIC (Multiattribute Grid Declustering)

MAGIC is a data partitioning method based on multiple attributes. MAGIC can
use two or more attributes of a table to partition its records across multiple pro-
cessors and disks. The main idea behind a multiattribute data partitioning is that
it can support search queries based on either of the data partitioning attributes. In
single-attribute data partitioning, search queries must also be based on the same
attribute in order to make use of the benefits offered by the data partitioning. With
multiattribute data partitioning, search queries can be broadened as more attributes
are available for the search. Another benefit of MAGIC is that it is able to support
range search as well as exact match on each of the partitioning attributes.

To understand how MAGIC works, assume there are two very frequent queries.
The first query retrieves student details based on the student’s last name, whereas
the second query is a range query to retrieve students with a range of Student ID
values. For example:

Query 1 (one-half of the accesses):
Equality predicate on the Student Last Name attribute, such as
Slname D ‘Roberts’

Query 2 (the other half):
Range predicate on the Student ID attribute, such as
Sid > 98555 AND Sid < 98600

Assume both queries produce only a few records. MAGIC partitioning works
as follows:

ž Create a two-dimensional grid with the two partitioning attributes as its
dimension (e.g., Slname for the column and Sid for the row).

ž Depending on the number of processing elements available in the system,
the number of cells in the grid must be equal to the number of processing
elements.

66 Chapter 3 Parallel Search

Table 3.2 MAGIC data partitioning
Slname

A–D E–H I–L M–P Q–T U–Z
98000–98100 1 2 3 4 5 6

98101–98200 7 8 9 10 11 12

Sid 98201–98300 13 14 15 16 17 18

98301–98400 19 20 21 22 23 24

98401–98500 25 26 27 28 29 30

98501–98600 31 32 33 34 35 36

ž Determine the range value for each column and row.
ž Allocate a processor in each cell in the grid.

Table 3.2 illustrates the MAGIC partitioning method. In this example, there are
36 processing elements, and the Slname range partitioning is based on the first let-
ter of the student’s last name, whereas the Sid range partitioning is based on the
Student ID. The number in each cell determines the processor number, which con-
tains student records that fall into the category determined by the column (Slname
range) and the row (Sid range). For simplicity, the range of Sid used in this example
is limited from 98000 to 98600, and there are 36 processing elements in the sys-
tem. In this example, for instance, processor 8 holds student records with Slname
between “E” and “H” and Sid between 98101 and 98200.

In order to evaluate the efficiency of MAGIC, let us compare it with hash par-
titioning. The comparison is based on the above two queries, which dominate the
query accesses. Since the hash partitioning method is a single-attribute-based data
partitioning, we assume that the hash partitioning is based on the Slname attribute.

ž Query 1 (exact match on Slname)
The hash partitioning method can localize the execution of this query to

a single processor, since this is an exact match query and hash partition-
ing is very suitable for exact matching of queries. Therefore, the queries on
“Roberts” will need to use a single processor, as the “Roberts” records have
been hashed and placed in a single location.

The MAGIC partitioning method will use 6 processors to execute
this query because its selection predicate maps to one column of the
two-dimensional directory. In this case, the query will use processing
numbers 5, 11, 17, 23, 29, and 35 (see Table 3.2)—that is, those in the
second last column of the grid directory.

ž Query 2 (range query on Sid)
Since the hash partitioning method is based on Slname and this query is

based on a different attribute, namely Sid, the hash partitioning method must
direct this query to all 36 processing elements.

The MAGIC partitioning method directs this query to 6 processors since
its predicate value maps to 1 row of the grid directory and the entries of each
row have been assigned to 6 different processors. In this case, the predicate

3.2 Data Partitioning 67

98555 < Sid < 98600 will use processors 31 to 36 (the last row of the grid
directory).

In order to make a comparison with range partitioning, suppose the STUDENT
table has been range partitioned on the Sid attribute. In this case, the second query
would have used one processor. However, the first query would have been executed
by all 36 processors, since the query is not based on the partitioning attribute.

Therefore, the use of a single-attribute-based partitioning like range or hash
partitioning favors only one of the two queries and is not suitable for the other
query. In contrast, MAGIC does not favor any particular query, but on average
it uses fewer processors for both queries. In the above example, MAGIC uses an
average of 6 processors, while the range and the hash partitioning methods both
use an average of 18.5 processors.

Ideally, however, a single processor should have been used for each query since
they both have minimal resource requirements. Approximating the optimal number
of processors by a closer margin has two important benefits:

ž The average response time of both queries is reduced because query initiation
overhead is reduced.

ž Using fewer processors increases the overall throughput of the system since
the “freed” processors can be used to execute additional queries.

BERD (Bubba’s Extended Range Declustering)

BERD is another multiattribute partitioning method. The method is used in the
Bubba Database Machine. BERD uses two levels of data partitioning, called pri-
mary and secondary data partitioning. Therefore, two attributes must be nominated
as the partitioning attributes.

The first step of the BERD partitioning method is to partition the table based
on the primary partitioning attribute, and the partitioning method used is a range
partitioning. Table 3.3 gives an example of primary partitioning in BERB. Here, the
Sid attribute is used as the primary partitioning attribute. For simplicity, we provide
only a few records in each partition, and each partition is based on a certain range.

The second step is that each fragment above is scanned and an auxiliary “table”
is constructed from the attribute value of the secondary partitioning attribute and
a list of processors containing the original records. In this example, the Slname

Table 3.3 Primary partitioning in BERD
Sid Slname Sid Slname Sid Slname

98001 Robertson 98105 Black 98250 Chan

98050 Williamson 98113 White 98270 Tan

98001–98100 98101–98200 98201–98300

68 Chapter 3 Parallel Search

Table 3.4 Auxiliary table in the secondary partitioning

Slname Processor

Robertson 1

Black 2

Chan 3

Williamson 1

White 2

Tan 3

attribute is used as a secondary partitioning attribute. Table 3.4 depicts the auxiliary
table (called Table IndexB)

The third step is that this auxiliary table is range partitioned on the secondary
partitioning attribute (e.g., Slname). For example, A–K goes to processor 1, L–T
to processor 2, and the rest to processor 3. Therefore, Students Black and Chan go
to processor 1, Robertson and Tan to processor 2, and Williamson and White to the
last processor.

The final step is to place the fragments resulting from the first step above (frag-
ments of the Student Table) and the fragments resulting from the third step above
(fragments of the auxiliary table). Table 3.5 shows the result of this step. Each
processor now has two portions: a fragment of IndexB and a fragment of table
Student.

The number of processors actually used by a query depends on the correlation
between the primary and secondary partitioning attribute values. A high correlation
between primary and secondary partitioning attribute values means that there is a
large portion where the auxiliary fragment located at one processor has entries
pointing to the same processor where this fragment is located. If there is a high

Table 3.5 BERD partitioning combining the primary partitions and the secondary
partitions

IndexB

Black 2

Chan 3

Student

98001 Robertson

98050 Williamson

IndexB

Robertson 1

Tan 3

Student

98005 Black

98113 White

IndexB

Williamson 1

White 2

Student

98250 Chan

98270 Tan

3.3 Search Algorithms 69

correlation, then the query is directed to only a few processors. Otherwise, the
query may be directed to all processors.

For queries with an exact match predicate on the secondary partitioning
attribute, the auxiliary table provides enough information to direct the execution
of a query to at least one (high correlation between the two partitioning attribute
values) and at most two processors (two correlation). For example, an exact match
for student “Chan” will direct the first process to the first processor, and then goes
to the third processor, where record “Chan” is actually located.

For range queries, such as Sid between 98150 and 98170, the primary partition-
ing provides enough information to direct the query to the necessary fragments.

3.3 SEARCH ALGORITHMS

Before discussing parallel search, it is important to know how searching is done
serially. Serial search algorithms, plus data partitioning, will become the basis for
parallel search algorithms.

3.3.1 Serial Search Algorithms

Depending on how the records are arranged, there are two kinds of serial search:
(i) linear search and (ii) binary search.

Linear Search

Linear search is the simplest and most direct approach to searching. Given an
unsorted table of records, linear search scans the entire table, one record at a time,
searching for a given record. Since this is performed for each record one by one
until either the desired record is found or the end of table is reached, linear search
is also known as an “exhaustive search.”

To facilitate an understanding of a linear search algorithm, Figure 3.10 shows
a Java code for linear search. For simplicity of the program, an integer array will
serve as data records, and each element in the array will represent one key.

The complexity of the algorithm is normally calculated by counting the number
of comparisons. The number of comparisons can then be used as an indication of
the length of time that the program will run. There are several cases, in particular
for unsuccessful search, successful search, and average search.

ž Unsuccessful Search: n comparisons, where n is the number of records.
ž Successful Search: k comparisons, where k is the position where the desired

record is found in the table. Thus the best time for a successful search is 1
comparison, and the worst is n comparisons.

ž Average: Total number of comparisons of linear search running for n times
is: 1 C 2 C 3 C Ð Ð Ð C n D 1

2 n.n C 1)

70 Chapter 3 Parallel Search

Algorithm: Linear Search

int position D -1; /* Not Found position */
public int linear�search (int []data, int key)
{
/* Java arrays have a 0 offset */
for (int i D 0; i < data.length; iCC)
if (data[i] D D key)
{
position D i;
break;

}
return position;

}

Figure 3.10 Linear search

Thus the average number of comparisons is:
1
2 n.nC1/

n D 1
2 .n C 1). Since

(nC1) and n do not differ significantly for large n, the complexity of a linear
search is roughly equal to O(n/2), where the O symbol is normally used to
measure the complexity of an algorithm.

In terms of cost models for estimating the elapsed time of a linear search, these
can be expressed as follows.

ž Scanning cost: the cost of loading half of the records (on average) from disk
to main memory:

1
2 ð R=P ð IO

ž Select cost: the cost of obtaining a record from data page:

1
2 ð jRj ð .tr C tw/

ž Comparison cost: the cost of comparing a record with the search predicate:

1
2 ð jRj ð tc

where tc is a time unit cost for search predicate comparison.
ž Result generation cost: the cost to write records found to the data page:

σð jRj ð tw

where σ is the search query selection ratio. The product of σand jRj is equal
to one for an exact match query and the search attribute values are unique.
In other words, the product of these two variables estimates the number of
records in the query result.

3.3 Search Algorithms 71

ž Disk writing cost: the cost to write query results into the disk:

σð R=P ð IO

The total cost is the sum of the costs of scanning, selecting the data page, mak-
ing a comparison, generating results, and disk writing.

Binary Search

Binary search requires that the list be already completely in order. A binary search
starts by comparing the key with the middle entry of an ordered table. If they
match, it returns the index of this element. Otherwise, processing continues, using
either the lower or upper half of the table (depending on the value of the key). In
essence, we eliminate half the table with only one comparison.

Figure 3.11 shows a simple Java code for a binary search. Again, for simplicity,
the input table is represented as an array of integers, and the record to be searched
for is indicated by the variable key. The program first initializes three variables,
namely lower, middle, and upper, each of which points to the respective elements
in the array. The main comparison is done between the key and the middle element.
Further comparisons are done by updating the values of lower or upper depending
on the result of the previous unsuccessful comparison.

The complexity of a binary search can be explained as follows. If the algorithm
fails to locate the desired record during the first iteration of its loop, it divides the
list in half and repeats the process. At this point, the comparison cost is 1 plus the
cost of processing the remaining half. This is O.1 C O.n=2/), where n represents
the number of elements in the table.

The cost of a failed second pass is much the same: 1 plus the cost of processing
half of the remaining entries, that is, O(1 C 1 C O(n/4)). We can continue in this
manner building upon each successive term. In other words, with each failed iter-
ation, we add 1 to our formula and divide n again by the next power of 2. Hence,
the complexity of a binary search is:

f .1/ D 1 if n D 1 then f .1/ D 1

f .n/ D 1 C f .n=2/

The second formula can be expanded to:

f .n/ D 1 C f .n=2/

D 1 C 1 C f .n=22/

D 1 C 1 C 1 C f .n=23/

D : : : : : : : : :

f .n/ D log2.n/ C 1

The additional 1 term is to compensate for the fact that in general log2.n) might
not compute to an even integer. As a result, a binary search might perform one
additional comparison. Thus this yields a complexity of O(log2.n/).

72 Chapter 3 Parallel Search

Algorithm: Binary Search

int position D -1; /* Not Found position */
public int binary_search (int []data, int key)
{
int lower D 0;
int middle D 0;
int upper D data.length – 1;

while (lower < D upper)
{
middle D (lower C upper) / 2;
if (key D D data[middle])
{
/* successful search */
position D middle;
break;

}
else if (key > data[middle])
/* reduce to the top half of the list */
lower D middle C 1;

else
/* reduce to the bottom half of the list */
upper D middle - 1;

}
return position;

}

Figure 3.11 Binary search

The cost models for binary search are very similar to those of linear search. The
main difference is actually already indicated by the O notation, where the linear
search has a component of 1=2, whereas the binary search is log2. Therefore, the
complete cost models for a binary search are as follows.

Scanning cost D log2.R/=P ð IO

Select cost D log2.jRj/ ð .tr C tw/

Comparison cost D log2.jRj/ ð tc
Result generation cost D σð jRj ð tw

Disk writing cost D σð R=P ð IO

The log2 cost component in the first three cost equations above indicates the
worst case of a binary search, in which log2.jRj) number of records should be read
and evaluated. The last two cost equations are the same as those for a linear search,
since, whatever searching method is used, the number of records generated by the
query should be the same; hence, result generation and disk writing costs should
be the same for both linear search and binary search.

3.3 Search Algorithms 73

3.3.2 Parallel Search Algorithms

Parallel search algorithms have three main elements: (i) processor activation or
involvement, (ii) local searching method, and (iii) key comparison.

Processor Activation or Involvement

Processor activation or involvement indicates the number of processors to be used
by the algorithm. This can be illustrated as follows. If one already knows where the
data to be sought are stored, then there is no point in activating all other processors
in the searching process, since most of them will not produce the requested data
anyway. However, if one does not know in which processor the requested data is
stored, then there is no option but to search all processors.

Processor activation or involvement is dependent upon the data partitioning
method that is used to partition the data. Note that here data parallelism is used,
whereby a parallel search algorithm is applied to different portions of the data, and
the final results are consolidated from all processors that produce the requested
data.

Processor activation or involvement is also dependent upon the type of selection
query that is performed, that is, whether it is an exact match or a range selection.

Table 3.6 shows the processor activation or involvement of parallel search algo-
rithms. Note that in some cases, only one processor is all that is needed, for
example, if the search is an exact match query and the data is already partitioned
with a range partitioning. In other words, the location of the data to be searched
for is already known. Consequently, only the processor that holds the data needs to
be used. In this case, there is no parallelism. In fact, parallelism will not be of any
use, since the involvement of other processors will only be an additional burden
because they will not produce any results anyway.

Local Searching Method

The local searching method is the searching method to be applied to the proces-
sor(s) involved in the searching process. The local searching method to be used
is dependent upon the data ordering. If the data has already been sorted, then a
binary search is applied, or if the data has not been sorted, then a linear search
must be conducted. This is applicable regardless of the type of search query, that

Table 3.6 Processor activation or involvement of parallel search algorithms

Data Partitioning Methods

Random- Hash Range Random-
Equal Unequal

Exact Match All 1 1 All

Range Continuous All All Selected All

Selection Discrete All Selected Selected All

74 Chapter 3 Parallel Search

Table 3.7 Local searching method of parallel search algorithms

Records Ordering

Ordered Unordered

Exact Match Binary Search Linear Search

Range Continuous Binary Search Linear Search

Selection Discrete Binary Search Linear Search

is, whether it is an exact match or a range selection. Table 3.7 shows the local
searching method for parallel search algorithms.

It can be deduced from the local searching method above that parallelism in
the search algorithm is based on data parallelism, whereby parallelism is achieved
because the data is partitioned, and the same search algorithm is applied to different
parts of the data. The final results are consolidated from those processors which
produce the requested data.

Key Comparison

Searching basically consists of comparing the data from the table with the condi-
tion specified by the user. When a match is found, there are two options: whether
to continue the comparison process in order to find more matches, or whether to
stop the entire process. It is obvious that the key comparison is dependent upon
whether the search attribute values are, or are not, unique. If the attribute values
to be searched are not unique, it is imperative to continue the searching process
since further matches might be found. Table 3.8 shows the key comparison based
on whether or not the requested data is unique.

Note that the comparison will stop when a match is found if the query is an
exact match and the attribute values are unique. For example, if a certain student
ID is searched, and assuming that there is no duplicate of the student ID, then if
the requested student ID is already found, there is no need to continue with the
searching process. For all other types of search queries, the comparison process
will not stop until all data has been examined.

3.4 SUMMARY

This chapter addresses the most basic parallel database operation, namely parallel
search. Some key points from this chapter include:

Table 3.8 Key comparison of parallel search algorithms

Search Attribute Values

Unique Duplicate

Exact Match Stop Continue

Range Continuous Continue Continue

Selection Discrete Continue Continue

3.6 Exercises 75

ž Searching in SQL is provided through the Where clause in the SQL’s
Select-From-Where queries.

ž Search predicates indicate the type of search operation, whether it is an exact
match, range (continuous or discrete), or multiattribute search.

ž Data partitioning is a basic mechanism of parallel search, whereby the search
operator can concentrate on different data fragments. Data partitioning meth-
ods can be single-attribute-based partitioning, no-attribute-based partitioning,
or multiattribute-based partitioning.

ž Parallel search algorithms have three main components: processor involve-
ment, local searching method, and key comparison. Processor involvement in
the search is determined by the type of data partitioning of the table, the local
searching method is decided by the ordering of the table, and key comparison
may or may not continue after one match has been found.

3.5 BIBLIOGRAPHICAL NOTES

Bell (1984) describes the complexity and difficulties of data placement problems.
Ghandeharizadeh et al. proposed a number of data partitioning methods for par-
allel databases, including hybrid-range (VLDB 1990), multiattribute partitioning
(SIGMOD 1992), and MAGIC (IEEE TPDS 1994). Other data partitioning meth-
ods for parallel databases have been reported by Hua and Lee (VLDB 1990) and
Ibá nez-Espiga and Williams (DEXA 1992). Data placement used by the Bubba
Database Machine was presented by Copeland (SIGMOD 1988).

In recent years, data partitioning and placement have been adopted by new
database domains, such as data warehouses and multidimensional, XML data, and
the Grid. Furtado (2004) discussed data partitioning the context of data ware-
houses; Stöhr et al. (2000) and Sun et al. (1998) presented data partitioning for
multidimensional databases. The work on XML data partitioning can be found in
Tang et al. (2005) and Zhu and Lü (2001), whereas Kido et al. (2006) focused on
XPath. Watson (2005) discussed data locality and distribution in the context of grid
databases.

The basic searching techniques can be found in the classic book by Knuth
(1973). Most recent work in searching exists in nontraditional database systems,
such as spatial and geo-spatial databases (Gao et al. 2006; Tamura et al. 2001),
video databases (Geisler 2003), and time series databases (Duan et al. 2006; Qiao
et al. 2006).

3.6 EXERCISES

3.1. Why is horizontal data partitioning more appropriately used in parallel database sys-
tems?

3.2. Why is random-unequal data partitioning categorized as a non-attribute-based data
partitioning? Illustrate your answer with an example.

76 Chapter 3 Parallel Search

3.3. Explain why attribute-based data partitioning methods do not directly help parallel
search in most cases.

3.4. HRPS combines range and round-robin (i.e., random-equal) data partitioning. One
of the advantages of HRPS is that the method is capable of supporting both range
and exact match retrievals. Explain this statement. Use an example to illustrate your
points.

3.5. MAGIC also supports both range and exact match retrievals. Explain this statement
and use an example to illustrate how it works.

3.6. Given a data set D D f55; 30; 68; 39; 1; 4; 49; 90; 34; 76; 82; 56; 31; 25; 78; 56; 38;

32; 88; 9; 44; 98; 11; 70; 66; 89; 99; 22; 23; 26g, three processors, and a random-
equal data partitioning, illustrate how the parallel searching of data item 78 is carried
out.

3.7. Use the same data set D as in the previous exercise, also with three processors. Let us
now adopt range data partitioning. Illustrate how the parallel searching of data items
between 70 and 79 can be carried out.

3.8. Use the same data set D as in Exercise 3.6 above, but now use a hash data partition-
ing. Illustrate how to do a parallel search of data items 10, 20, 30, : : : , 90.

3.9. Given the same data set D as in Exercise 3.6 above, suppose a binary search algo-
rithm is to be used. Assume that there are three processors available. What is the most
suitable data partitioning for this operation? Show step by step how parallel binary
search works in finding data item 78.

3.10. Investigate your favorite DBMS that supports parallelism, and see how parallel search
is expressed in SQL.

Chapter4

Parallel Sort and GroupBy

Apart from searching, sorting is one of the most common operations in database
processing. Sorting is also widely known in various forms in computer science. The
topic of sorting in traditional data structure and algorithm subjects is divided into
two areas, namely, internal and external sorting.

Internal sorting is where sorting takes place totally within main memory. The data
to be sorted is assumed to be small and fits into main memory. A number of inter-
nal sorting methods, both serial and parallel, have been explored, including parallel
quick sort, parallel heap sort, etc.

External sorting on the other hand is where the volume of data to be sorted is large
and resides in secondary memory. Thus external sorting is also known as file sorting.
In databases, since data is stored in tables (or files) and its volume is normally very
large, database sorting is therefore mostly external sorting. Therefore, in this chapter,
we focus on parallel external sorting methods for parallel database systems.

The second part of this chapter concentrates on GroupBy queries. GroupBy
queries involving aggregates are very common in database processing, especially
in Online Analytical Processing (OLAP), and data warehouse. Queries containing
aggregate functions summarize a large set of records based on the designated
grouping. These queries are often used as a tool for strategic decision making. As
the data repository containing data for integrated decision making grows, aggregate
queries are required to be executed efficiently.

The structure of this chapter is as follows: In Section 4.1, an introduction to sort-
ing and duplicate removal is given. The section also includes a basic introduction to
aggregate queries involving GroupBy. In order to understand how a parallel sorting
operation works, it is essential to understand the basic concept of sorting in a serial
environment. This is explained in Section 4.2. Following this, five parallel sorting
algorithms for parallel database systems are described in Section 4.3. This is then

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

77

78 Chapter 4 Parallel Sort and GroupBy

followed by parallelism of GroupBy queries in Section 4.4. The analytical models
for the sorting and GroupBy are given in Sections 4.5 and 4.6, respectively.

4.1 SORTING, DUPLICATE REMOVAL, AND
AGGREGATE QUERIES

4.1.1 Sorting and Duplicate Removal

Sorting is a typical operation that places the records in a particular order based
on one or more nominated attribute(s). Sorting is instigated by the need to have a
more efficient searching technique other than linear search. This then gave rise to
binary search, which outperforms linear search but requires the input data to have
been sorted. Therefore, the sorting operation becomes critically important.

In terms of query retrieval, sorting is often explicitly requested by users in order
to present the query results in a particular order. This is achieved through the use
of an Order By clause in SQL. The Order By clause basically requires the
query results to be ordered on the designated attributes in ascending or descending
order. The following query shows an example of the use of the Order By clause
in an SQL query. The resulting table from this query is sorted based on attribute
Sdegree.

Query 4.1:

Select *
From STUDENT
Order By Sdegree;

Sorting, in SQL, can be based on multiattributes—by listing the attributes fol-
lowing the Order By. In the above example, sorting is based on a single attribute
only, that is, attribute Sdegree. By default, sorting is always ascending. Descend-
ing sorting is also possible when indicated by Desc following the attribute. For
example:

Query 4.2:

Select *
From STUDENT
Order By Sdegree Desc, Sname;

Sorting may also be required in join operations through the use of the sort-merge
join algorithm. This is less explicit than the use of Order By and Distinct

clauses in SQL. However, some query optimizers allow users to specify any join
algorithms to be used when invoking an SQL query.

Duplicate removal is closely associated with sorting. When sorting a list
of data, duplicate removal can also be concurrently carried out. Therefore,
algorithms for sorting often incorporate duplicate removal. The need for duplicate
removal in databases is driven by both user requirements and relational theory.
The former is a typical requirement by users, whereas the latter is influenced

4.1 Sorting, Duplicate Removal, and Aggregate Queries 79

by the fact that a relation in relational databases must not contain duplicate
records.

In SQL, duplicate removal is carried out by the Distinct clause in the
Select clause. The Distinct operation basically removes all duplicates
found in the query result. This can be achieved by first sorting the query results,
followed by removing duplicates through scanning. In an optimized scenario,
both operations are carried out at the same time during the sorting process.
The following is an example whereby duplicate values of Sdegree have been
removed, resulting in a unique list of degrees in the Student table.

Query 4.3:

Select Distinct Sdegree
From STUDENT;

4.1.2 Scalar Aggregate

Basic aggregate queries are normally categorized into:

ž Scalar aggregates and
ž Aggregate functions

Scalar aggregate queries produce single values for a given set of records (i.e.,
table), whereas aggregate function queries generate a set of values for a given table.
The former is like grouping the whole table and producing a single value, whereas
the latter is like grouping the table into several groups, and for each group a single
value is produced.

SQL queries in the real world are replete with scalar aggregates and aggregate
functions. These queries are often used for strategic decision making because of
the nature of group-by queries, where raw information is grouped according to
the designated groups and within each group aggregate functions are normally
carried out.

In SQL, scalar aggregates are available through the use of built-in functions,
such as Max for maximum, Sum for summing numerical attributes, etc. For the
aggregate function queries, generating a set of groups for a given table is done
through the use of the Group By clause. Therefore, aggregate function queries
are also known as “GroupBy” queries.

An example of a scalar aggregate query is “retrieve students having the highest
GPA”. The input table in this case is table Student, and the single value to be
produced is the largest value in attribute Sgpa. The SQL and a sample result of the
above query are given below.

Query 4.4:

Select MAX(Sgpa)
From STUDENT;

The above query produces a single value, and this value is generated by the
MAX function. Other basic functions, such as COUNT, SUM, AVG and MIN,

80 Chapter 4 Parallel Sort and GroupBy

may also be used. Apart from these basic functions, most commercial relational
database management systems (RDBMS) also include other advanced functions,
such as advanced statistical functions, etc. From a query processing point of view,
these functions take a set of records (i.e., a table) as their input and produce a single
value as the result.

4.1.3 GroupBy

An example of a GroupBy query is “retrieve number of students for each degree”.
The student records are grouped according to specific degrees, and for each group
the number of records is counted. These numbers will then represent the number
of students in each degree program. The SQL and a sample result of this query are
given below.

Query 4.5:

Select Sdegree, COUNT(*)
From STUDENT
Group By Sdegree;

It is also worth mentioning that the input table may have been filtered by using
a Where clause (in both scalar aggregate and GroupBy queries), and additionally
for GroupBy queries the results of the grouping may be further filtered by using a
Having clause.

4.2 SERIAL EXTERNAL SORTING METHOD

Serial external sorting is external sorting in a uniprocessor environment. The most
common serial external sorting algorithm is based on sort-merge. The underlying
principle of sort-merge algorithm is to break the file up into unsorted subfiles, sort
the subfiles, and then merge the sorted subfiles into larger and larger sorted subfiles
until the entire file is sorted. Note that the first stage involves sorting the first lot of
subfiles, whereas the second stage is actually the merging phase. In this scenario,
it is important to determine the size of the first lot of subfiles that are to be sorted.
Normally, each of these subfiles must be small enough to fit into the main memory,
so that sorting of these subfiles can be done in the main memory with any internal
sorting technique. In other words, the size of these subfiles is usually determined
by the buffer size in main memory, which is to be used for sorting each subfile
internally. A typical algorithm for external sorting using B buffers is presented in
Figure 4.1.

The algorithm presented in Figure 4.1 is divided into two phases: sort and
merge. The merge phase consists of loops and each run in the outer loop is called
a pass; subsequently, the merge phase contains i passes, where i D 1; 2; : : : . For
consistency, the sort phase is named pass 0.

To explain the sort phase, consider the following example. Assume the size of
the file to be sorted is 108 pages and we have 5 buffer pages available (B D 5

4.2 Serial External Sorting Method 81

Algorithm: Serial External Sorting

// Sort phase � Pass 0
1. Read B pages at a time into memory
2. Sort them, and Write out a sub-file
3. Repeat steps 1-2 until all pages have been processed

// Merge phase � Pass i D 1, 2, : : :

4. While the number of sub-files at end of previous pass
is > 1

5. While there are sub-files to be merged from
previous pass

6. Choose B-1 sorted sub-files from the previous pass
7. Read each sub-file into an input buffer page

at a time
8. Merge these sub-files into one bigger sub-file
9. Write to the output buffer one page at a time

Figure 4.1 External sorting algorithm based on sort-merge

pages). First read 5 pages from the file, sort them, and write them as one subfile
into the disk. Then read, sort, and write another 5 pages. In the last run, read, sort,
and write 3 pages only. As a result of this sort phase, d108=Be D 22 subfiles, where
the first 21 subfiles are of size 5 pages each and the last subfile is only 3 pages long.

Once the sorting of subfiles is completed, the merge phase starts. Continuing the
example above, we will use B � 1 buffers (i.e., 4 buffers) for input and 1 buffer
for output. The merging process is as follows. In pass 1, we first read 4 sorted
subfiles that are produced in the sort phase. Then we perform a 4-way merg-
ing (because only 4 buffers are used as input). This 4-way merging is actually a
k-way merging, and in this case k D 4, since the number of input buffers is 4 (i.e.,
B � 1 buffers D 4 buffers). An algorithm for a k-way merging is explained in
Figure 4.2.

The above 4-way merging is repeated until all subfiles (e.g., 22 subfiles from
pass 0) are processed. This process is called pass 1, and it produces d22=4e D 6
subfiles of 20 pages each, except for the last run, which is only 8 pages long.

The next pass, pass 2, repeats the 4-way merging to merge the 6 subfiles pro-
duced in pass 1. We then first read 4 subfiles of 20 pages long and perform a 4-way
merge. This results in a subfile 80 pages long. Then we read the last 2 subfiles, one
of which is 20 pages long while the other is only 8 pages long, and merge them to
become the second subfile in this pass. So, as a result, pass 2 produces d6=4e D 2
subfiles.

Finally, the final pass, pass 3, is to merge the 2 subfiles produced in pass 2 and
to produce a sorted file. The process stops as there are no more subfiles.

In the above example, using an 108-page file and 5 buffer pages, we need to have
4 passes, where pass 0 is the sort phase and passes 1 to 3 are the merge phase. The

82 Chapter 4 Parallel Sort and GroupBy

Algorithm: k-way merging

input files f1, f2, ..., fn;
output file fo

/* Sort files f1, f2, ..., fn, based on the attributes a1

of all files */
1. Open files f1, f2, ..., fn.
2. Read a record from files f1, f2, ..., fn.
3. Find the smallest value among attributes a1 of the

records from step 2. Store this value to ax and the
file to fx (f1�fx�fn).

4. Write ax to an output file fo.
5. Read a record from file fx.
6. Repeat steps 3-5, until no more record in all files

f1, f2, ..., fn.

Figure 4.2 k-Way merging algorithm

number of passes can be calculated as follows. The number of passes needed to sort
a file with B buffers available is dlogB�1dfile size=Bee C 1, where dfile size=Be is
the number of subfiles produced in pass 0 and dlogB�1dfile size=Bee is the number
of passes in the merge phase. This can be seen as follows. In general, the number of
passes x in the merge phase of α items satisfies the relationship: α=.B � 1/x D 1,
from which we obtain x D logB�1.α/.

In each pass, we read and write all the pages (e.g., 108 pages). Therefore,
the total I/O cost for the overall serial external sorting can be calculated
as 2 ð file size ð number of passes D 2 ð 108 ð 4 D 864 pages. More com-
prehensive cost models for serial external sort are explained below in
Section 4.4.

As shown in the above example, an important aspect of serial external sorting is
the buffer size, where each subfile comfortably fits into the main memory. The big-
ger the buffer (main memory) size, the fewer number of passes taken to sort a file,
resulting in performance gain. Table 4.1 illustrates how performance is improved
when the number of buffers increases.

In terms of total I/O cost, the number of passes is a key determinant. For
example, to sort 1 billion pages, using 129 buffers is 6 times more efficient than
using 3 buffers (e.g., 30:5 D 6:1).

There are a number of variations to the serial external sort-merge explained
above, such as using a double buffering technique or a blocked I/O method. As
our concern is not with the serial part of external sorting, our assumption of serial
external sorting is based on the above sort-merge technique using B buffers.

As stated in the beginning, serial external sort is the basis for parallel exter-
nal sort. Particularly in a shared-nothing environment, each processor has its own

4.3 Algorithms for Parallel External Sort 83

Table 4.1 Number of passes in serial external sorting as number of buffer increases

R B D 3 B D 5 B D 9 B D 17 B D 129 B D 257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1 million 20 10 7 5 3 3

10 million 23 12 8 6 4 3

100 million 26 14 9 7 4 4

1 billion 30 15 10 8 5 4

data, and sorting this data locally in each processor is done as per serial external
sort explained above. Therefore, the main concern in parallel external sort is not on
the local sort but on when the local sort is carried out (i.e., local sort is done first
or later) and how merging is performed. The next section describes different meth-
ods of parallel external sort by basically considering the two factors mentioned
above.

4.3 ALGORITHMS FOR PARALLEL EXTERNAL SORT

In this section, five parallel external sort methods for parallel database systems
are explained; (i/ parallel merge-all sort, (ii) parallel binary-merge sort, (iii) paral-
lel redistribution binary-merge sort, (iv) parallel redistribution merge-all sort, and
(v/ parallel partitioned sort. Each of these will be described in more detail in the
following.

4.3.1 Parallel Merge-All Sort

The Parallel merge-all sort method is a traditional approach, which has been
adopted as the basis for implementing sorting operations in several database
machine prototypes (e.g., Gamma) and some commercial Parallel DBMS. Parallel
merge-all sort is composed of two phases: local sort and final merge. The local
sort phase is carried out independently in each processor. Local sorting in each
processor is performed as per a normal serial external sorting mechanism. A serial
external sorting is used as it is assumed that the data to be sorted in each processor
is very large and cannot be fitted into the main memory, and hence external sorting
(as opposed to internal sorting) is required in each processor.

After the local sort phase has been completed, the second phase, final merge
phase, starts. In this final merge phase, the results from the local sort phase are

84 Chapter 4 Parallel Sort and GroupBy

1 2 3 4 Local sort

Records from the child operator

Final merge1

8

12

16

4

11

15

3

7

14

2

6

10

1

5

9

13

4

8

12

16

1

5

9

13

2

6

10

14

3

7

11

15

1

16

Figure 4.3 Parallel merge-all sort

transferred to the host for final merging. The final merge phase is carried out by
one processor, namely, the host. An algorithm for a k-way merging is explained in
Figure 4.2.

Figure 4.3 illustrates a parallel merge-all sort process. For simplicity, a list of
numbers is used and this list is to be sorted. In the real world, the list of numbers
is actually a list of records from very large tables.

Figure 4.3 shows that a parallel merge-all sort is simple, because it is a one-level
tree. Load balancing in each processor at the local sort phase is relatively easy
to achieve, especially if a round-robin data placement technique is used in the
initial data partitioning. It is also easy to predict the outcome of the process, as
performance modeling of such a process is relatively straightforward.

Despite its simplicity, the parallel merge-all sort method incurs an obvious prob-
lem, particularly in the final merging phase, as merging in one processor is heavy.
This is true especially if the number of processors is large and there is a limit to
the number of files to be merged (i.e., limitation in number of files to be opened).
Another factor in merging is the buffer size as mentioned above in the discussion
of serial external sorting.

Another problem with parallel merge-all sort is network contention, as all tem-
porary results from each processor in the local sort phase are passed to the host.
The problem of merging by one host is to be tackled by the next sorting scheme,
where merging is not done by one processor but is shared by multiple processors
in the form of hierarchical merging.

4.3 Algorithms for Parallel External Sort 85

4.3.2 Parallel Binary-Merge Sort

The first phase of parallel binary-merge sort is a local sort similar to the paral-
lel merge-all sort. The second phase, the merging phase, is pipelined instead of
concentrating on one processor. The way the merging phase works is by taking
the results from two processors and then merging the two in one processor. As
this merging technique uses only two processors, this merging is called “binary
merging.” The result of the merging between two processors is passed on to the
next level until one processor (the host) is left. Subsequently, the merging process
forms a hierarchy. Figure 4.4 illustrates the process.

The main reason for using parallel binary-merge sort is that the merging work-
load is spread to a pipeline of processors instead of one processor. It is true,
however, that final merging still has to be done by one processor.

Some of the benefits of parallel binary-merge sort are similar to those of parallel
merge-all sort. For instance, balancing in local sort can be done if a round-robin

1

1 2 Local sort

Records from the child operator

Two-level hierarchical
merging using (N–1)
nodes in a pipeline.

2 3

8

12

16

4

11

15

3

7

14

2

6

10

1

5

9

13

4

8

12

16

3

7

11

15

2

6

10

14

1

5

9

13

11

12

15

16

9

10

13

14

3

4

7

8

1

2

3

6

1

16

3 4

Figure 4.4 Parallel binary-merge sort

86 Chapter 4 Parallel Sort and GroupBy

k-way merging

Parallel Merge-All Sort

binary merging

Parallel Binary-Merge Sort

Figure 4.5 Binary-merge vs.
k-way merge in the merging phase

data placement is initially used for the raw data to be sorted. Another benefit, as
stated above, is that by merging the workload it is now shared among processors.

However, problems relating to the heavy merging workload in the host still exist,
even though now the final merging merges only a pair of lists of sorted data and is
not a k-way merging like that in parallel merge-all sort. Binary merging can still be
time consuming, particularly if the two lists to be merged are very large. Figure 4.5
illustrates binary-merge versus k-way merge, which is carried out by the host.

The main difference between k-way merging and binary merging is that in
k-way merging, there is a searching process in the merging; that is, it searches
the smallest value among all values being compared at the same time. In binary
merging, this searching is purely to obtain a comparison between two values simul-
taneously.

Regarding the system requirement, k-way merging requires a sufficient number
of files to be opened at the same time. This requirement is trivial in binary merging,
as it requires only a maximum of two files to be opened, and this is easily satisfied
by any operating systems.

The pipeline system, as in the binary merging, will certainly produce extra work
through the pipe itself. The pipeline mechanism also produces a higher tree, not
a one-level tree as with the previous method. However, if there is a limit to the
number of opened files permitted in the k-way merging, parallel merge-all sort
will incur merging overheads.

In parallel binary-merge sort, there is still no true parallelism in the merging
because only a subset, not all, of the available processors are used.

In the next three sections, three possible alternatives using the concept of redis-
tribution or repartitioning are described. The first approach is a modification of
parallel binary-merge sort by incorporating redistribution in the pipeline hierarchy
of merging. The second approach is an alteration to parallel merge-all sort, also
through the use of redistribution. The third approach differs from the others, as
local sorting is delayed after partitioning is done.

4.3.3 Parallel Redistribution Binary-Merge Sort

Parallel redistribution binary-merge sort is motivated by parallelism at all levels in
the pipeline hierarchy. Therefore, it is similar to parallel binary-merge sort, because

4.3 Algorithms for Parallel External Sort 87

both methods use a hierarchy pipeline for merging local sort results, but differs in
terms of the number of processors involved in the pipe. With parallel redistribution
binary-merge sort, all processors are used at each level in the hierarchy of merging.

The steps for parallel redistribution binary-merge sort can be described as fol-
lows. First, carry out a local sort in each processor similar to the previous sorting
methods. Second, redistribute the results of the local sort to the same pool of pro-
cessors. Third, do a merging using the same pool of processors. Finally, repeat the
above two steps until final merging. The final result is the union of all temporary
results obtained in each processor. Figure 4.6 illustrates the parallel redistribution
binary-merge sort method.

1–5

6–10 11–15
16–20

3 4 Local sort

Records from the child operator

8

12

16

4

11

15

3

7

14

2

6

10

1

5

9

13

4

8

12

16

3

7

11

15

2

6

10

14

1

5

9

13

Redistribution

1 2

1-10 11-20 11-201-10

4

8

3

7
12

16

11

15

2

6

10
14

1

5

9
13

Intermediate merge

1 2 3 4

3

4

7

8

11

12

15

16

1

2

5

6
13

14
9

10

Sorted among
and within files

3

4
1

2

5

1

2

3

4

5

7

8

6

9

10

6

7

8

9

10

11

12

15

13

14 16

11

12

13

14

15 16

Final merge

Sorted list

3 4

Range
Redistribution

Range
Redistribution

1 2

Range
Redistribution

Figure 4.6 Parallel redistribution binary-merge sort

88 Chapter 4 Parallel Sort and GroupBy

Note from the illustration that in the final merge phase, some of the boxes are
empty (i.e., gray boxes). This indicates that they do not receive any values from the
designated processors. For example, the first box on the left is gray because there
are no values ranging from 1 to 5 from processor 2. Practically, in this example,
processor 1 performs the final merging of two lists, because the other two lists are
empty.

Also, note that the results produced by the intermediate merging in the above
example are sorted within and among processors. This means that, for example,
processors 1 and 2 produce a sorted list each, and the union of these results is also
sorted where the results from processor 2 are preceded by those from processor
1. This is applied to other pairs of processors. Each pair of processors in this case
forms a pool of processors. At the next level of merging, two pools of processors
use the same strategy as in the previous level. Finally, in the final merging, all
processors will form one pool, and therefore results produced in each processor
are sorted, and these results united together are then sorted based on the processor
order. In some systems, this is already a final result. If there is a need to place the
results in one processor, results transfers are then carried out.

The apparent benefit of this method is that merging becomes lighter compared
with those without redistribution, because merging is now shared by multiple pro-
cessors, not monopolized by just one processor. Parallelism is therefore accom-
plished at all levels of merging, even though the performance benefits of this
mechanism are restricted.

The problem of the redistribution method still remains, which relates to the
height of the tree. This is due to the fact that merging is done in a pipeline format.
Another problem raised by the redistribution is skew. Although initial placement
in each disk is balanced through the use of round-robin data partitioning, redistri-
bution in the merging process is likely to produce skew, as shown in Figure 4.6.
Like the merge-all sort method, final merging in the redistribution method is also
dependent upon the maximum number of files opened.

4.3.4 Parallel Redistribution Merge-All Sort

Parallel redistribution merge-all sort is motivated by two factors, namely, reducing
the height of the tree while maintaining parallelism at the merging stage. This can
be achieved by exploiting the features of parallel merge-all and parallel redistribu-
tion binary-merge methods. In other words, parallel redistribution is a two-phase
method (local sort and final merging) like parallel merge-all sort, but does a redis-
tribution based on a range partitioning. Figure 4.7 gives an illustration of parallel
redistribution merge-all sort.

As shown in Figure 4.7, parallel redistribution merge-all sort is a two-phase
method, where in phase one, local sort is carried out as is done with other methods,
and in phase two, results from local sort are redistributed to all processors based
on a range partitioning, and merging is then performed by each processor.

Similar to parallel redistribution binary-merge sort, empty (gray) boxes are actu-
ally empty lists as a result of data redistribution. In the above example, processor

4.3 Algorithms for Parallel External Sort 89

6–10
1–5

11–15

16–20

1 Local sort

Records from the child operator

8

12

16

4

11

15

3

7

14

2

6

10

1

5

9

13

Redistribution

1 2 3 4

34 2 1

5

1

2

3

4

5

8 7 6

10

9

6

7

8

9

10

12 11

15

1314

16

11

12

13

14

15 16

Final merge

Sorted list

4

8

12

16

3

7

11

15

2

6

10

14

1

5

9

13

Range
Redistribution

3 42

Figure 4.7 Parallel redistribution merge-all sort

4 has three empty lists coming from processors 2, 3, and 4, as they do not have
values ranging from 16 to 20 as specified by the range partitioning function.

Also, note that the final results produced in the final merging phase in each
processor are sorted, and these are also sorted among all processors based on the
order of the processors specified by the range partitioning function.

The advantage of this method is the same as that of parallel redistribution
binary-merge sort, including true parallelism in the merging process. However,
the tree of parallel redistribution merge-all sort is not a tall tree as in the paral-
lel redistribution binary-merge sort. It is, in fact, a one-level tree, the same as in
parallel merge-all sort.

Not only do the advantages of parallel redistribution merge-all sort mirror those
in parallel merge-all sort and parallel redistribution binary-merge sort, so also do
the problems. Skew problems found in parallel redistribution binary-merge sort
also exist with this method. Consequently, skew modeling needs some simplified
assumptions as well. Additionally, a bottleneck problem in merging, which is sim-
ilar to that of parallel merge-all sort is also common here, especially if the number
of processors is large and exceeds the limit of the number of files that can be
opened at once.

90 Chapter 4 Parallel Sort and GroupBy

4.3.5 Parallel Partitioned Sort

Parallel partitioned sort is influenced by the techniques used in parallel partitioned
join, where the process is split into two stages: partitioning and independent local
work. In parallel partitioned sort, first we partition local data according to range
partitioning used in the operation. Note the difference between this method and
others. In this method, the first phase is not a local sort. Local sort is not carried
out here. Each local processor scans its records and redistributes or repartitions
according to some range partitioning.

After partitioning is done, each processor will have an unsorted list whose val-
ues come from various processors (places). It is then that local sort is carried out.
Thus local sort is carried out after the partitioning, not before. It is also noted
that merging is not needed. The results produced by the local sort are already the
final results. Each processor will have produced a sorted list, and all processors
in the order of the range partitioning method used in this process are also sorted.
Figure 4.8 illustrates this method.

Scan only
(no local sort)

Records from the child operator

8

12

16

4

11

15

3

7

14

2

6

10

1

5

9

13

Redistribution

1 2 3

1–5
6–10 11–15

16–20

3

4

2

1

5

1

2

3

4

5

8

7

6

10

9

6

7

8

9

10

12

11

15

13

14

16

11

12

13

14

15 16

Local sort

Sorted list

4

Range
Redistribution

1 2 3 4

Figure 4.8 Parallel partitioned sort

4.3 Algorithms for Parallel External Sort 91

A B

C
D E

F G

C

F

D

E

A

B

G

Processor 1

Processors:

Buckets:

Processor 2 Processor 3

Figure 4.9 Bucket tuning load balancing

The main benefit of parallel partitioned sort is that no merging is necessary,
and hence the bottleneck in merging is avoided. It is also a true parallelism, as all
processors are being used in the two phases. And most importantly, it is a one-level
tree, reducing unnecessary overheads in the pipeline hierarchy.

Despite these advantages, the problem that still remains outstanding is skew
that is produced by the partitioning. This is a common problem even in the parti-
tioned join. Load balancing in this situation is often carried out by producing more
buckets than there are available processors, and the workload arrangement of these
buckets can then be carried out by evenly distributing buckets among processors.
For example, in Figure 4.9, seven buckets have been created for three processors.
The size of each bucket is likely to be different, and after the buckets are cre-
ated bucket placement and arrangement are performed to make the workload of
the three processors balanced. For example, buckets A; B, and G go to processor
1, buckets C and F to processor 2, and the rest to processor 3. In this way, the
workload of these three processors will be balanced.

However, bucket tuning in the original form as shown in Figure 4.9 is not rele-
vant to parallel sort. This is because in parallel sort the order of the processors is
important. In the above example, bucket A will have values that are smaller than
those in bucket B, and values in bucket B are smaller than those in bucket C , etc.
Then buckets A to G are in order. The values in each bucket are to be sorted, and
once they are sorted the union of values from each bucket, together with the bucket
order, produces a sorted list. Imagine that bucket tuning as shown in Figure 4.9 is
applied to parallel partitioned sort. Processor 1 will have three sorted lists, from
buckets A; B, and G. Processors 2 and 3 will have 2 sorted lists each. However,
since the buckets in the three processors are not in the original order (i.e., A to G/,
the union of sorted lists from processors 1, 2, and 3 will not produce a sorted list,
unless a further operation is carried out.

92 Chapter 4 Parallel Sort and GroupBy

4.4 PARALLEL ALGORITHMS FOR GROUPBY
QUERIES

Parallel aggregate processing is very similar to parallel sorting, described in the
previous section. From the lessons we learned from parallel sorting, we focus on
three parallel aggregate query algorithms;

Ž Traditional methods including merge-all and hierarchical merging,
Ž Two-phase method, and
Ž Redistribution method

4.4.1 Traditional Methods (Merge-All and
Hierarchical Merging)

The traditional method was first used in Gamma, one of the first parallel database
system prototypes. This method consists of two steps, which are explained as
follows.

The first step is a local aggregation step. In this step, each node groups local
records according to the designated group-by attribute and performs the aggregate
function. Using Query 4.5 as an example, one node may produce, for example,
(Math, 300) and (Science, 500) and another node (Business, 100) and (Science,
100). The numerical figures indicate the number of students in that degree.

The second step is a global aggregation step, in which all the temporary results
obtained in each node are passed to the host for consolidation in order to produce
the global aggregate values. Continuing the above example, (Science, 500) from
the first node and (Science, 100) from the second are merged into one record, that
is, (Science, 600). This global aggregation step can be very tricky depending on the
complexity of the aggregate functions used in the actual query. If, for example, an
AVG function were used instead of COUNT in the above query, when calculating
an average value based on temporary averages, one must take into account the
actual raw records involved in each node. Therefore, for these kinds of aggregate
functions, the local aggregate must also produce the number of raw records in each
node, although they are not specified in the query. This is needed in order for the
global aggregation to produce correct values.

Query 4.6:

Select Sdegree, AVG(SAge)
From STUDENT
Group By Sdegree;

For example, one node may produce (Science, 21.5, 500) and the other (Science,
22, 100). The host calculates the global average by dividing the sum of the two
SAge by the total number of students. The total number of students in each degree
needs to be determined in each node, although it is not specified in the SQL.

4.4 Parallel Algorithms for GroupBy Queries 93

host

1 2 3 4 Local aggregation

Records from the child operator

Coordinator

Figure 4.10 Traditional method

As the host coordinates all temporary results from each node, intuitively this
method works well if the number of nodes is small and the number of resulting
records is also very small. But as soon as the groups size becomes moderate, the
host starts becoming a bottleneck. In general, the use of a single node for global
aggregation forms a serial bottleneck at that node. Figure 4.10 shows the traditional
parallel aggregate method.

The hierarchical merging method is introduced in order to overcome the bot-
tleneck of the host as in the traditional method. Instead of using one node to do
the global aggregation, it utilizes a binary merging scheme to off-load some of the
work from the host node. This binary merging scheme can be explained as follows.
For each pair of nodes, the local aggregation results of one of the nodes are sent
to the other, where a second level of local aggregates is computed. Once all pairs
have been processed, all the nodes holding the second-level aggregates are then
processed in the same manner, until there is only one processor left, the top node
of which coordinates the final aggregate results. Figure 4.11 shows the hierarchical
merging method.

Like the traditional method, the hierarchical merging method works well with a
small number of results. Although it may handle medium-sized results well, when
the number of records becomes sufficiently large, its performance will decline.
This is simply because the final merging phase still creates a bottleneck.

4.4.2 Two-Phase Method

As the name states, the two–phase method consists of two phases: local aggre-
gation and global aggregation. The first phase is the local aggregation phase,
where each processor calculates its local aggregate values. Local aggregation is
calculated based on the records on the local processor. In this phase, each proces-
sor groups local records according to the designated group-by attribute and per-
forms the aggregate function. Using the same query as an example, one processor

94 Chapter 4 Parallel Sort and GroupBy

2

Local aggregation

Records from the child operator

Two-level hierarchical
merging using (N–1)
nodes in a pipeline.

2 3

1 2 3 4

Figure 4.11 Hierarchical merging method

may produce, for instance, (Math, 300) and (Science, 500) and another processor
(Business, 100) and (Science, 100). The numerical figures indicate the number of
students in these degrees.

The second phase is a global aggregation phase, in which all the temporary
results obtained in each processor are redistributed to all processors to produce the
global aggregate values. The way global aggregation works is as follows. After
local aggregates are formulated in each processor, each processor distributes each
of the groups to another processor depending on the adopted distribution function.
A possible distribution function is, for example, that degrees beginning with A–G
are to be distributed to processor 1, H–M to processor 2, N–T to processor 3, and
the rest to processor 4. With this range distribution function, the processor that pro-
duces (Math, 300) and (Science, 500) will distribute its (Math, 300) to processor 2
and (Science, 500) to processor 3. This distribution scheme is commonly used in
parallel join, where raw records are partitioned into buckets based on an adopted
partitioning scheme like the above range partitioning.

Once the distribution of local results based on a particular distribution func-
tion has been completed, global aggregation in each processor is done by simply
merging all identical degrees into one aggregate value. For example, processor 3
will merge (Science, 500) from one processor and (Science, 100) from the other
to produce (Science, 600), which is the final aggregate value for this degree. The
global aggregation operation for different groups is done in parallel by distributing
local aggregates, so as to avoid the bottleneck produced by the traditional method.
Figure 4.12 illustrates this method. The circles indicate processors, and the directed
arrows show data flow.

4.4.3 Redistribution Method

The redistribution method is influenced by the practice of parallel join algorithms,
where raw records are first partitioned and allocated to each processor and then

4.4 Parallel Algorithms for GroupBy Queries 95

1 2 3 4 Global aggregation

1 2 3 4 Local aggregation

Distribute local results
based on the group-by
attribute.

Records from the child operator

Processors:

Processors:

Figure 4.12 Two-phase method

each processor performs its operation. In the context of parallel aggregates, the
difference between the redistribution method and other methods is that this method
does not process local aggregates. The redistribution method is motivated by the
fast message passing of multiprocessor systems.

The first phase (i.e., partitioning phase) in the Redistribution method is parti-
tioning of raw records based on the group-by attribute according to a distribution
function. An example of a partitioning function is, as for the previous example, to
allocate to each processor degrees ranging from certain letters as their first letter
and certain letters as their last letter. Using the same range partitioning as described
in the previous sections, a processor will have all records that have degrees from
letter A to G. Other processors will follow on the basis of alphabet division, such
as processor 2 from H to M .

Once the partitioning has been completed, each processor will have records
within certain groups identified by the group-by attribute. Subsequently, the sec-
ond phase (the aggregation phase), which calculates the aggregate values of each
group, can proceed. Aggregation in each processor can be carried out with a sort
or a hash function. As a result of the second phase, each processor will have one
aggregate value for each group; for example, processor 3 will have (Science, 600).
Since each processor has distinct aggregate groups as a result of partitioning of the
group-by attribute, the final query result is a union of all subresults produced by
each processor.

Figure 4.13 illustrates the redistribution method. Note that partitioning is done
to the raw records, and the aggregate operation on each processor is carried out
after the partitioning phase. Also, observe that if the number of groups is less
than the number of available processors, not all processors can be utilized, thereby
reducing the capability of parallelism.

The cost components for the redistribution method are different from those
of two-phase method, particularly in the first phase, in which the redistribution
method does not perform a local aggregation. In the first phase of the redistribution

96 Chapter 4 Parallel Sort and GroupBy

1 2 3 4 Aggregate

Distribute records on
the group-by attribute.

Records from the child operator

Processors:

Figure 4.13 Redistribution method

method, the raw records are simply distributed to other processors. Hence, the main
cost component of the first phase of the redistribution method is the distribution
cost.

4.5 COST MODELS FOR PARALLEL SORT

In addition to the cost notations described in Chapter 2, there are a few new
cost notations, which are particularly relevant for parallel sort. These are listed
in Table 4.2.

Before presenting the cost models for each of the five parallel external sortings
discussed in the previous section, we will first study the cost models for serial
external sort, which are the foundation of cost models for the parallel versions;
understanding these is important in the context of parallel external sort.

4.5.1 Cost Models for Serial External Merge-Sort

There are two main cost components for serial external sort, the costs relating to
I/O and those relating to CPU processing. The I/O costs are the disk costs, which
consist of load cost and save cost. These I/O costs are as follows.

Table 4.2 Additional cost notations for parallel sort

Symbol Description

System parameters

B Buffer size

Time unit costs

tm Time to merge

ts Time to compare and swap two keys

tv Time to move a record

4.5 Cost Models for Parallel Sort 97

ž Load cost is the cost of loading data from disk to main memory. Data loading
from disk is done by pages.

Load cost D Number of pages ð Number of passes ð Input/output unit cost

where Number of pages D .R=P/ and

Number of passes D .dlogB�1.R=P=B/e C 1/ (4.1)

Hence, the above load cost becomes:

.R=P/ ð .dlogB�1.R=P=B/e C 1/ ð IO

ž Save cost is the cost of writing data from the main memory back to the disk.
The save cost is actually identical to the load cost, since the number of pages
loaded from the disk is the same as the number of pages written back to the
disk. No filtering to the input file has been done during sorting.

The CPU cost components are determined by the costs involved in getting
records out of the data page, sorting, merging, and generating results, which are
as follows.

ž Select cost is the cost of obtaining a record from the data page, which is
calculated as the number of records loaded from the disk times reading and
writing unit cost to the main-memory. The number of records loaded from the
disk is influenced by the number of passes, and therefore equation 4.1 above
is being used here to calculate the number of passes.

jRj ð Number of passes ð .tr C tw/

ž Sorting cost is the internal sorting cost, which has a O.N ð log2 N / complex-
ity. Using the cost notation, the O.N ð log2 N / complexity has the following
cost.

jRj ð dlog2.jRj/e ð ts

The sorting cost is the cost of processing a record in pass 0 only.
ž Merging cost is applied to pass 1 onward. It is calculated based on the number

of records being processed, which is also influenced by the number of passes
in the algorithm, multiplied by the merging unit cost. The merging unit cost is
assumed to involve a k-way merging where searching for the lowest value in
the merging is incorporated in the merging unit cost. Also, bear in mind that
1 must be subtracted from the number of passes, as the first pass (i.e., pass 0)
is used by sorting.

jRj ð .Number of passes � 1/ ð tm

ž Generating result cost is the number of records being generated or produced
in each pass before they are written to disk multiplied by the writing unit cost.

jRj ð Number of passes ð tw

98 Chapter 4 Parallel Sort and GroupBy

4.5.2 Cost Models for Parallel Merge-All Sort

The cost models for parallel merge-all sort are divided into two categories: local
merge-sort costs and final merging costs. Local merge-sort costs are the costs of
local sorting in each processor using a merge-sort technique, whereas the final
merging costs are the costs of consolidating temporary results from all processing
elements at the host.

The local merge-sort costs are similar to the serial external merge-sort cost
models explained in the previous section, except for two major differences. One
difference is that for the local merge-sort costs in parallel merge-all sort the frag-
ment size to be sorted in each processor is determined by the values of Ri and jRi j,
instead of just R and jRj. This is because in parallel merge-all sort the data has
been partitioned to all processors, whereas in the serial external merge-sort only
one processor is being used. Since we now use Ri and jRi j, these two cost ele-
ments may involve data skew. When skew is involved, the values of Ri and jRi j
are calculated not by a straight division with N , but with a much lower value than
N due to skewness.

The second difference is that the local merge-sort costs of parallel merge-all sort
involve communication costs, which do not appear in the original serial external
sort cost models. The communication costs are the costs associated with the data
transfer from each processor to the host at the end of the local sorting phase.

The local merge-sort costs, consisting of I/O costs, CPU costs, and communi-
cation costs, are summarized as follows.

ž I/O costs, which consist of load and save costs, are as follows:

Save cost D Load cost D .Ri =P/ ð Number of passes ð IO (4.2)

where Number of passes D .dlogB�1.Ri =P=B/e C 1/

ž CPU costs, which consist of select cost, sorting cost, merging cost, and gen-
erating results cost, are as follows:

Select cost D jRi j ð Numberof passes ð .tr C tw/

Sorting cost D jRi j ð dlog2.jRi j/e ð ts
Merging cost D jRi j ð .Numberof passes � 1/ ð tm

Generating result cost D jRi j ð Numberof passes ð tw

where Number of passes is as shown in equation 4.2 above.
ž Communication costs for sending local sorted results to the host are given by

the number of pages to be transferred multiplied by the message unit cost, as
follows:

Communication cost D .Ri =P/ ð .m p C ml/

The final merging costs involve communication costs, I/O costs, and CPU costs.
The communication costs are the costs involved when the host receives data from
all other processors. The I/O and CPU costs are the costs associated directly with

4.5 Cost Models for Parallel Sort 99

the merging process at the host. The three cost components for the final merging
costs are given as follows.

ž Communication cost, which is the receiving record cost from local sorting
operators, is calculated by the number of records being received (in this case
the total number of records from all processors) multiplied by the message
unit cost.

Communication cost D .R=P/ ð m p

ž I/O cost, which consists of load and save costs, is influenced by two factors,
the total number of records being received and processed and the number of
passes in the merging of N subfiles. When the data is first received from the
local sorting operator, the data has to be written out to the disk in the host.
After this, the host starts the k-way merging process by first loading the data
from the local host disk, processing them, and saving the results back to the
local host disk.

As the k-way merging process may be done at a number of passes, data
loading and saving are carried out as many times as the number of passes in
the merging process. Moreover, the total number of data savings is one more
than the total number of data loadings, as the first data saving must be done
when the data is first received by the host.

Save cost D .R=P/ ð .Number of merging passes C 1/ ð IO

Load cost D .R=P/ ð Number of merging passes ð IO (4.3)

where Number of merging passes D dlogB�1.N /e
Note that the Number of merging passes is determined by the number of pro-
cessors N and the number of buffers. The number of processors N is served
as the number of streams in the k-way merging, and each stream contains a
sorted list of data, which is obtained from the local sorting phase. Since all
processors participate in the local sorting phase, the value of N is not influ-
enced by skew. Whether or not there is data skew in the local sorting phase,
all processors will have at least one record to work with, and subsequently
when these data are transferred to the host, none of the stream is empty.

ž CPU cost consists of the select costs, merging costs, and generating results
costs only. Sorting costs are not included since the host does not sort data but
only merges. CPU costs are determined by the total number of records being
merged, the number of merging passes, and the unit cost.

Select cost D jRj ð Number of merging passes ð .tr C tw/

Merging cost D jRj ð Number of merging passes ð tm
Generating result cost D jRj ð Number of merging passes ð tw

where Number of merging passes is as shown in equation 4.3 above.

There are two things to mention regarding the above final merging costs. First,
the host processes all records, and hence R and jRj are used in the cost equations,

100 Chapter 4 Parallel Sort and GroupBy

not Ri and jRi j. Second, since only one processor, namely the host, is working,
the notion of skew does not exist in the cost equation. In other words, data skew
may occur in the local sorting phase, but in the final merging phase only the host
performs its work.

4.5.3 Cost Models for Parallel Binary-Merge Sort

The cost models for parallel binary-merge sort are divided into two parts: local
merge-sort costs and pipeline merging costs. The local merge-sort costs are exactly
the same as those of parallel merge-all sort, since the local sorting phase in both
parallel sorting methods is the same. Therefore, we focus on the cost models for
pipeline merging only.

In pipeline merging, we first need to determine the number of levels in the
pipeline. Since we use binary-merge, where each merging takes the results from
two processors, the number of levels in the pipeline is dlog2.N /e. Level num-
bers start from 1, which is the immediate level after local sort, to the last level
dlog2.N /e, which is basically a final merging done by one processor, namely the
host.

In level 1 in the pipeline, the number of processors used is basically up to half,
and we use a notation of N 0, where N 0 D dN=2e. The implication to the skew
equation is that jR0

i j D jRj
N 0P
jD1

1
jθ

. Note that we use the notations jR0
i j and N 0, where

jR0
i j indicates the number of records being processed at a node in a level of pipeline

merging and N 0 is the number of processors involved. If no skew is involved,
jR0

i j D jRj
N 0 .

The process in level 1 basically follows the following order. First, receive
records from the local sort operator. Second, save and load these records on
local disks. This I/O process is particularly needed especially when the data
being transferred is very large, and hence storing it on local disk upon arrival is
necessary. The actual merging process starts with data loading from the local disk.
Third, merge the data, which incurs costs in selecting, merging, and generating
result. And fourth, transfer the merging results to the next level of the pipeline,
possibly to a different processor. The cost models for these processes are as
follows.

Receiving cost D .R0
i =P/ ð m p

Save cost D .R0
i =P/ ð IO

Load cost D .R0
i =P/ ð IO

Select cost D jR0
i j ð .tr C tw/

Merging cost D jR0
i j ð tm

Generating result cost D jR0
i j ð tw

Data transfer cost D .R0
i =P/ ð .m p C ml/

4.5 Cost Models for Parallel Sort 101

In the subsequent levels, the number of processors involved is further reduced
by half, because of binary merging. With the N 0 notation, the new N 0 value
becomes N 0 D dN 0=2e. This also impacts upon the skew equation where N 0 is
used. Apart from the number of processors involved in the next level of pipeline
merging, the process is the same, and therefore the above cost equations can be
used.

At the last level of pipeline merging where the host performs a final binary
merging, N 0 D 1. Another main difference between the last level and previous lev-
els is that, in the last level of pipeline merging, the data transfer cost is substituted
with another save cost, since the final results are not transferred but are saved in
the host disks.

To summarize, the total pipeline binary merging costs are as follows.

Receiving cost D .R0
i =P/ ð dlog2.N /e ð m p

Save cost D .R0
i =P/ ð .dlog2.N /eC1/ ð IO

Load cost D .R0
i =P/ ð dlog2.N /e ð IO

Select cost D jR0
i j ð dlog2.N /e ð .tr C tw/

Merging cost D jR0
i j ð dlog2.N /e ð tm

Generating result cost D jR0
i j ð dlog2.N /e ð tw

Data transfer cost D .R0
i =P/ ð .dlog2.N /e � 1/ ð .m p C ml/

It must be stressed that the values of R0
i and jR0

i j are not constant throughout
the pipeline but increase from level to level as the number of processors N 0 used is
reduced by half when progressing from one level to another. Another point is that
R0

i and jR0
i j may be affected by processing skew.

4.5.4 Cost Models for Parallel Redistribution
Binary-Merge Sort

Like those for parallel binary-merge sort, parallel redistribution binary-merge sort
costs have two main components: local merge-sort costs and pipeline merging
costs.

The local sort operation in parallel redistribution binary-merge sort is similar
to parallel merge-all sort and parallel binary-merge sort. The main difference is
that, in parallel redistribution binary-merge sort, temporary results are being redis-
tributed to processors in the next level of operations. This redistribution operation
incurs additional overhead, particularly for each record being redistributed. The
destination of this record needs to be determined based on the partitioning method
used. We call this overhead compute destination cost

Compute destination cost D jRi j ð td

Similar to parallel merge-all sort and parallel binary-merge sort, Ri in the above
equation may involve data skew. Other than the compute destination cost, the local

102 Chapter 4 Parallel Sort and GroupBy

merge-sort costs in parallel redistribution binary-merge sort are the same as those
in parallel merge-all sort.

The pipeline merging costs in parallel redistribution binary-merge sort are simi-
lar to those in parallel “without redistribution” binary-merge sort. We first mention
a couple of similarities. First, the number of levels of the pipeline is dlog2.N /e,
where level 1 is the first level after the local sorting phase. Second, the order of the
process is similar, starting from data received from the network to data transferred
to the next level of the pipeline.

However, there are a number of principal differences. One relates to the number
of processors participating at each level. In parallel redistribution binary-merge
sort, all processors participate. Hence, in the cost equations, we should use Ri and
jRi j, not R0

i and jR0
i j. Another main difference relates to the compute destination

costs, which are absent in the parallel “without redistribution” binary-merge sort
costs. Compute destination costs are applicable here at all levels of the pipeline
except the last one, where the results are written back to disk, not redistributed
over the network.

In summary, the pipeline merging costs for parallel redistribution binary-merge
sort are as follows.

Receiving cost D .Ri =P/ ð dlog2.N /e ð m p

Save cost D .Ri =P/ ð .dlog2.N /eC1/ ð IO

Load cost D .Ri =P/ ð dlog2.N /e ð IO

Select cost D jRi j ð dlog2.N /e ð .tr C tw/

Merging cost D jRi j ð dlog2.N /e ð tm
Generating result cost D jRi j ð dlog2.N /e ð tw

Compute destination cost D jRi j ð .dlog2(N)e � 1/ ð td
Data transfer cost D .Ri =P/ ð .dlog2.N /e � 1/ ð .m p C ml/

4.5.5 Cost Models for Parallel Redistribution
Merge-All Sort

Like the other parallel sort methods, parallel redistribution merge-all sort has two
main cost components: local merge-sort costs and merging costs.

The local merge-sort costs are the same as those of parallel redistribution
binary-merge sort. Both have the compute destination costs, as both redistribute
data from the local sort phase to the merging phase.

The merging costs are somewhat similar to those of parallel merge-all sort,
except for one main difference, that is, here we use Ri and jRi j, not R and jRj in
parallel merge-all sort. The reason is simple—in parallel redistribution merge-all
sort, all processors are being used in the merging phase, whereas in parallel “with-
out redistribution” merge-all sort, only the host is used in the merging phase. As
now Ri and jRi j are used in the merging costs, both may be affected by processing
skew, and hence, the previously explained skew model is applied.

4.5 Cost Models for Parallel Sort 103

The merging costs for parallel redistribution merge-all sort are given as follows.

Communication cost D .Ri =P/ ð m p

Save cost D .Ri =P/ ð (Number of merging passes C 1/ ð IO

Load cost D .Ri =P/ ð Number of merging passes ð IO

Select cost D jRi j ð Number of merging passes ð .tr C tw/

Merging cost D jRi j ð Number of merging passes ð tm
Generating result cost D jRi j ð (Number of merging passes) ð tw

where Number of merging passes D dlogB�1.N /e
Despite the similarity between the above merging costs for parallel redistribu-

tion merge-all sort and those for parallel redistribution binary-merge sort, there are
major differences. The first relates to the number of levels in the pipeline, which is
dlog2.N /e for parallel redistribution binary-merge sort and 1 for parallel redistri-
bution merge-all sort. The second concerns the number of merging passes involved
in the k-way merging. In parallel redistribution binary-merge sort the merging is
binary, and hence the number of merging passes is 1. In contrast, merging in paral-
lel redistribution merge-all sort is multiple depending on the number of processors
N and number of buffers B, and hence the number of merging passes is calculated
as dlogB�1.N /e.

4.5.6 Cost Models for Parallel Partitioned Sort

Parallel partitioned sort costs have two components as well; these are not local
merge-sort costs and merging costs, but scanning and partitioning costs and local
merge-sort costs. As explained previously, in parallel partitioned sort, local sorting
is done after the partitioning.

The scanning and partitioning costs involve I/O costs, CPU costs, and com-
munication costs. The I/O cost is basically a load cost during the scanning of all
records. The CPU costs mainly involve the select costs and compute destination
costs. The communication cost is a data transfer cost from each processor in the
scanning/partitioning phase to processors in the sorting phase.

ž I/O costs, which consist of load costs, are as follows:

.Ri =P/ ð IO

ž CPU costs consist of select cost, which is the cost associated with obtaining
a record from the data page and computing destination.

jRi j ð .tr C tw C td/

ž Communication costs consist of data transfer costs, which are given as
follows.

.Ri =P/ ð .m p C ml/

104 Chapter 4 Parallel Sort and GroupBy

The first phase costs, like the others, may be affected by data skew. The local
merge-sort costs are to some degree similar to other local merge-sort costs, except
the communication costs are associated with data received from the first phase of
processing, not with data transfer as in other local sort-merge costs.

ž Communication costs consist of data receiving costs, which are given as
follows.

Data receiving costs D .Ri =P/ ð m p

ž I/O costs consist of load and save costs. The save costs are double those of the
load costs as data saving is done twice: once after the data has arrived from
the network and again when final results are produced and saved to disk.

Save cost D .Ri =P/ ð (Number of passes C 1/ ð IO

Load cost D .Ri =P/ ð Number of passes ð IO (4.4)

where Number of passes D .dlogB�1.Ri =P=B/e C 1/

ž CPU costs, which consist of select cost, sorting cost, merging cost, and gen-
erating results cost, are as follows:

Select cost D jRi j ð Number of passes ð .tr C tw/

Sorting cost D jRi j ð dlog2.jRi j/e ð ts
Merging cost D jRi j ð (Number of passes � 1/ ð tm

Generating result cost D jRi j ð Numberof passes ð tw

where Number of passes is as shown in equation 4.4

The above CPU costs are identical to the CPU costs of local merge-sort in par-
allel merge-all sort.

4.6 COST MODELS FOR PARALLEL GROUPBY

In addition to the cost notations described in Chapter 2, Table 4.3 presents the
additional cost notations. They are basically comprised of parameters known by
the system as well as the data—parameters related to the query, unit time costs,
and communication costs.

4.6.1 Cost Models for Parallel Two-Phase Method

The cost components in the first phase (local aggregation phase) of the two-phase
method are as follows.

ž Scan cost is the cost for loading data from local disk in each processor. Since
data loading from disk is done page by page, the fragment size of the table
residing in each disk is divided by the page size in order to obtain the number
of pages.

.Ri =P/ ð IO

4.6 Cost Models for Parallel GroupBy 105

Table 4.3 Cost notations

Symbol Description

Query parameters

σp Selectivity ratio of local aggregate in a processor

σn Selectivity ratio of local aggregate in a node

σg Selectivity ratio of global aggregate

Time unit costs

th Time to compute hash value

ta Time to add a record to current aggregate value

ž Select cost is the cost to obtain records from the data page, which is calculated
as the number of records loaded from the disk times the reading and writing
unit cost to the main-memory.

jRi j ð .tr C tw/

ž Local aggregation involves reading, hashing, and computing the cumulative
value, which is given by the number of records in each processor’s
main-memory times the reading, hashing, and computation unit costs.

jRi j ð .tr C th C ta/

The hashing process is very much determined by the size of the hash table
that can fit into the main-memory. If the memory size is smaller than the hash
table size, we normally partition the hash table into multiple buckets so that
each bucket can perfectly fit into main-memory. A hashing technique can be
roughly explained as follows.

a. The records are read and hashed into a hash table based on the Group
By attribute. The first record hashing to a new value adds an entry to the
hash table, and the subsequent matches update the cumulative result as
appropriate.

b. If the entire hash table cannot be fitted into the allocated memory, the
records are hash partitioned into multiple buckets, and all but the first
bucket are spooled to the disk.

c. The overflow buckets are processed one by one as in step a above.

In this scenario, we must include the I/O cost for reading and writing overflow
buckets, which is as follows.

ž Reading/Writing of overflow buckets cost is the I/O cost associating with the
limitation of main-memory to accommodate the entire hash table. This cost
includes the costs of reading and writing records not processed in the first

106 Chapter 4 Parallel Sort and GroupBy

pass of hashing.
�

1 � min

�
H

σp ð jRi j ; 1

��
ð

�
πð Ri

P
ð 2 ð IO

�

The first term of the above equation can be explained as follows. For
example, if the maximum hash table size H is 10 records, selectivity ratio
σp is 1=4, and there are 200 records (jRi j), the number of groups in the query
result will be equal to 50 (σp ð jRi j). Since only 10 groups can be processed
at a time, we need to break the hash table into 5 buckets. All buckets but the
first are spooled to disk. Hence, 80% of the groups (1 � .10=50/) is overflow.
Should there be only fewer or equal to 10 groups in the query result, the first
term of the above equation would be equal to 0 (zero), and hence there would
be no overhead.

The second term of the above equation is explained as follows. The con-
stant 2 refers to two input/output accesses: one is for spooling of the overflow
buckets to disk and two is for reading the overflow buckets from disk. Note
that the record size is reduced by the projectivity ratio π, because in the hash
table only the projected attributes are kept, not the whole record.

ž Generating result records cost is the number of selected records multiplied
by the writing unit cost.

jRi j ð σp ð tw

ž Determining the destination cost is the cost of calculating the destination of
each aggregate record from the processor in phase one to phase two. This
overhead is given by the number of selected aggregate records in each frag-
ment times the destination computation unit cost, which is given as follows.

jRi j ð σp ð td

ž Data transfer cost for sending local results to other processors is given by
the number of pages to be sent multiplied by the message unit cost, which is
given as follows.

.πð Ri ð σp=P/ ð .m p C ml/

The sum of the above equations gives the total cost for phase one of the
two-phase method.

The cost component for the second phase (consolidation phase) is the merging
cost, which is influenced by the number of records arriving at a processor and is
given as follows

jRi j ð σp and πð Ri ð σp

The first term of the above equation is the number of selected records from the
first phase, whereas the second term is the table size of the selected records. Based
on the number of records arriving in each processor, the cost components of the
coordinator are given as follows.

4.6 Cost Models for Parallel GroupBy 107

ž Receiving records cost from local aggregation operators is calculated by the
number of projected values from local aggregation multiplied by the message
unit cost.

.πð Ri ð σp=P/ ð .m p/

ž Computing final aggregate value cost for each group involves reading and
computing the cumulative values, which is given as follows.

jRi j ð σp ð .tr C ta/

ž Generating final result cost is the number of projected records from local
aggregation multiplied by the writing unit cost. Remember that the final result
is obtained by further filtering the local aggregate results. Note that we use
the symbol σg where σp ½ σg .

jRi j ð σg ð tw

ž Disk cost of storing the final result is the number of pages needed to store the
final aggregate values times disk unit cost, which is:

.πð Ri ð σg=P/ ð IO

The total cost of phase two of the two-phase method is sum of the above.

4.6.2 Cost Models for Parallel Redistribution
Method

The cost components for the first phase (distribution phase) of the redistribution
method are as follows. The scan costs and the select costs are the same as for those
in the two-phase method, which are:

ž Scan cost for loading data from local disk in each processor is:

.Ri =P/ ð IO

ž Select cost for getting record out of data page is:

jRi j ð .tr C tw/

Apart from these two costs, the finding destination cost and the data transfer
cost are added to this model, which are as follows.

ž Finding destination cost is:
jRi j ð .td/

ž Data transfer cost is:

.πð Ri =P/ ð .m p C ml/

108 Chapter 4 Parallel Sort and GroupBy

The sum of the above equations gives the total partitioning cost of the redistri-
bution method.

If the number of groups is less than the number of processors, Ri D R=

(Number of groups), instead of Ri D R=N (i.e., assuming uniform distribution),
because not all processors are used. Consequently, when the number of groups is
smaller than the available number of processors, performance can be expected to
be poor.

The second phase (aggregation phase) cost components for the redistribution
method are composed of the receiving cost, which is the cost of receiving records
from the first phase, the actual aggregation cost, which covers reading and comput-
ing the aggregate value, generating result records, and disk cost for storing query
results.

To some degree, the cost components of the redistribution method are somewhat
similar to those of the second phase of the two-phase method. The main difference
is that with the two-phase method the number of records processed in the second
phase has been reduced in the local aggregation phase, whereas the number of
records received at the second phase of the redistribution method is the total num-
ber of records. We consider the total records for the redistribution method, simply
because the first phase of this method does not do any filtering, therefore ALL
records from the first phase proceed to the second phase.

In terms of the cost equation, they are as follows.

ž Receiving records cost from processors in the first phase is:

.πð Ri =P/ ð .m p/

When redistributing the records during the first phase, only those attributes
relevant to the query are redistributed. This factor is depicted by the projec-
tivity factor of the group-by query, which is shown by π.

ž Computing aggregate value cost for each group is:

jRi j ð .tr C th C ta/

The above equation does not include π, because we take into account the
number of records, not the total record size.

ž Reading/writing of overflow buckets cost is:�
1 � min

�
H

σð jRi j ; 1

��
ð

�
πð Ri

P
ð 2 ð IO

�

Where σ is the overall GroupBy selectivity ratio, which is calculated as σD
σp ð σg.

ž Generating final result cost is:

jRi j ð σð tw

ž Disk cost for storing final result is:

.πð Ri ð σ=P/ ð IO

4.7 Summary 109

4.7 SUMMARY

Sorting and duplicate removal are tightly coupled database operations, in which the
duplicate removal operation is normally incorporated into the sorting algorithm.
Some key points in this chapter include:

ž Sorting and duplicate removal in SQL are expressed in the Order By and
Distinct clauses.

ž Five parallel algorithms for database sorting are studied. These include
(i) parallel merge-all sort, (ii) parallel binary-merge sort, (iii) parallel
redistribution binary-merge sort, (iv) parallel redistribution merge-all sort,
and (v/ parallel partitioned sort. The third and fourth algorithms are the
redistribution versions of the second and first, respectively.

ž Cost models for each parallel sort algorithm are studied. The unique features
of these cost models include external sorting cost, which depends on the size
of the available buffer, and data redistribution to bridge the first and second
steps of parallel sorting.

ž The redistribution versions of parallel sorting algorithms, which are nor-
mally better than the non-redistribution version, are prone to processing skew,
even though the initial data placement is uniformly distributed. Solving pro-
cessing skew in parallel sorting is a challenge without which performance
degradation can be expected, especially when a high degree of skewness is
involved.

ž As a rule of thumb for selecting an appropriate parallel sorting algorithm, the
following rules can be adopted:
Ž If processing skew degree is high, then use parallel redistribution merge-all

sort.
Ž If both data skew and processing skew degrees are high OR no skew, then

use parallel partitioned sort.

In this chapter, three parallel algorithms for processing GroupBy queries in
high-performance parallel database systems have also been studied. These algo-
rithms are the traditional method covering merge all and hierarchical merging, the
two-phase method, and the redistribution method. The last two methods differ in
the order when aggregate processing is done, either before data redistribution or
after data redistribution.

In general, the performance of two-phase and redistribution methods are better
than those of the traditional and hierarchical merging methods. These two methods
reduce the global aggregation phase, because the global aggregation operation is
divided into all participating processors. This is not the case with the traditional
method, as only one processor is used with the hierarchical-merging because the
overhead of hierarchical pipeline merging is more expensive than the two-phase
and redistribution methods.

The two-phase method works well when the number of groups is small,
whereas the redistribution method works well when the number of groups is large.

110 Chapter 4 Parallel Sort and GroupBy

In the middle ranges, both methods show comparable performance. The two-phase
method is not able to do enough reduction in the number of records through
local aggregation in the first phase if the selectivity is very small. Therefore, the
second phase has to do a lot of work in global aggregation, thus significantly
increasing the overhead. In other words, the two-phase method is good when
there is enough filtering done in the local aggregation process, but not feasible
when the selectivity does not filter the original records greatly. On the other
hand, the redistribution method is good when the selectivity ratio between the
original number of records and the groups produced by the query is large, possibly
close to 1.0.

4.8 BIBLIOGRAPHICAL NOTES

The classical The Art of Computer Programming, vol 3 by Knuth (1973) describes
various sorting techniques. Bitton et al. (ACM Comp Surv 1984) present various
parallel sorting techniques, whereas Iyer and Dias (ICDE 1990) and DeWitt et al.
(1992) discuss systems issues in parallel database sorting.

Parallel sorting for databases uses external sorting methods. Yamane and Take
(1987) and Zhao et al. (2000) proposed a parallel partition sort. Lorie and Young
(VLDB 1999) concentrated on the communication costs of parallel sorting, whereas
Lo and Huang (2002) focused on the skew aspects.

Recent work on parallel sorting is reported by Govindaraju et al. (SIGMOD
2006) on GPUTeraSort using graphics coprocessors, and Cérin et al. (FGCS 2006)
on parallel sorting using heterogenous clusters.

4.9 EXERCISES

4.1. What is the commonality between sort and group-by operations?

4.2. Outline why internal sorting methods may not be directly used by external sorting.

4.3. Given a data set D D f55; 30; 68; 39; 1; 4; 49; 90; 34; 76; 82; 56; 31; 25; 78; 56; 38;

32; 88; 9; 44; 98; 11; 70; 66; 89; 99; 22; 23; 26g and four processors, show step by step
how the following parallel sorting methods work:

a. Parallel merge-all sort

b. Parallel binary-merge sort

c. Parallel redistribution binary-merge sort

d. Parallel redistribution merge-all sort

e. Parallel partitioned sort

4.4. Given a data set D D f.A;55/, (A,30), (D,68), (D,39), (D,1), (C ,4), (C ,49), (B,90),
(D,34), (C ,76), (D,82), (B,56), (B,31), (B,25), (B,78), (D,56), (B,38), (D,32),
(D,88), (D,9), (A,44), (C ,98), (A,11), (D,70), (D,66), (D,89), (D,99), (A,22), (D,23),
.B;26/g and three processors, the query is to calculate the sum of all the numerical
attribute values in each group denoted by the alphabet. Show step by step how the
following parallel group-by methods work:

4.9 Exercises 111

a. Traditional methodas (merge-all and hierarchical merging)

b. Two-phase method

c. Redistribution method

4.5. The overflow buckets cost is used in the processing cost calculation especially when the
hash table grows bigger than the allocated main-memory. Discuss the possibility for
achieving a superlinear speed up, when more processors are added to the system with
the consequence that each processor may now be responsible for a smaller partition of
the data.

4.6. Give a proof for the following rule: If processing skew degree is high, then use parallel
redistribution merge-all sort, whereas if both data skew and processing skew degrees
are high or no skew, then use parallel partitioned sort.

4.7. Investigate your favourite parallel DBMS, and show how parallel sort and parallel
group-by are expressed in SQL.

Chapter5

Parallel Join
The join operation is one of the most common operations in relational databases
where information is split into multiple tables because of normalization. Conse-
quently, when the information needs to be assembled for presentation to users, the
data needs to be gathered from multiple tables through join operations.

The join operation is also considered to be one of the most expensive operations
in relational database processing as it is a binary operation that requires two tables
for processing. Many algorithms have been proposed to reduce the complexity of
join operations. Since the tables to be joined may involve a large number of records,
parallel processing of a join operation is a sensible solution.

This chapter focuses on parallel algorithms for join queries. It starts with
Section 5.1 describing the nature of join operations. Section 5.2 describes serial
algorithms for join operations. Section 5.3 focuses on various parallel algorithms
for join queries using different kinds of data partitioning. Section 5.4 discusses the
cost models, while Section 5.5 describes options available for optimizing parallel
join algorithms.

5.1 JOIN OPERATIONS

A join operation is used to link two tables based on the nominated attribute—one
from each table. The link is created because of the equality of the values from
the two designated attributes. Because of this equality element, this type of join
query is called an equi-join query. Figure 5.1 gives an illustration of a join query
between two tables, table R and table S, based on attribute attr2 of table R and
attribute attr1 of table S. The results are the matched records from the two tables.

A typical equi-join query would be a join between two tables through a link
from the primary key (PK) of one table to the foreign key (FK) of the other table.
This link between two tables is often necessary when assembling information,
since the desired information is often split during the design as a result of the
normalization process.

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

112

5.1 Join Operations 113

R S

attr1 attr2 attr1 attr2 Join Results

a r r x a r x

b r join ys = b r x

c s t z c s y

join attributes

Figure 5.1 The join operation

An example of a PK-FK equi-join is “retrieve each student together with their
enrolment details”. This query joins table Enrolment and table Student. The
SQL of this query is shown below.

Query 5.1:

Select *
From STUDENT S, ENROLMENT E
Where S.Sid D E.Sid;

The attribute that links both tables, Student and Enrolment, is attribute Sid
that exists in both tables.

Joining can also be performed on two unrelated tables. The join operation is
often required by users, even though there is no obvious relationship between these
two tables. The join must, however, also be based on a designated attribute of both
tables. In other words, the relationship between the two tables is not established
through the design, but through the join query.

An example of a non-PK-FK equi-join query is “retrieve pairs of lecturers and
courses from the same department”. The query joins table Lecturer and table
Course, and the join attribute is Ldept of Lecturer and attribute Cdept of
Course. In our database schema, both tables Lecturer and Course are not
directly related, apart from a nondirect relationship through table Enrolment.
However, in this query, we explicitly join the two tables. The SQL statement for
the above query is as follows.

Query 5.2:

Select *
From LECTURER L, COURSE C
Where L.Ldept D C.Cdept;

An example of two-PK equi-join is “retrieve lecturers who are also students”.
This can be obtained by joining tables Student and Lecturer on their PKs.
Assume the value of a person’s ID (e.g., student ID and lecturer ID) is unique in
the university, and therefore a lecturer who already has an ID when enrolling in a
program (e.g., graduate program) maintains his/her ID. The SQL statement for this
query is as follows:

Query 5.3:

Select *

114 Chapter 5 Parallel Join

From LECTURER L, STUDENT S
Where L.Lid D S.Sid;

From the query point of view, there is no difference among these three equi-join
queries, as all of these queries join two tables and the join predicates are clearly
defined. However, when processing these equi-join queries, the difference is esca-
lated because of the presence of an index for every PK.

5.2 SERIAL JOIN ALGORITHMS

To study parallel join algorithms, it is necessary to first understand serial join algo-
rithms, that is, join algorithms implemented in nonparallel machines. The ratio-
nale is that parallel join algorithms adopt a data partitioning parallelism approach,
whereby parallelism is achieved through data partitioning. In this case, the same
algorithm is applied to different parts of the data. Consequently, a join operation
implemented on each processor would employ a serial join algorithm.

There have been many join algorithms proposed in the literature. However, they
fall into one of the three categories:

Ž Nested-loop join algorithm,
Ž Sort-merge join algorithm, and
Ž Hash-based join algorithms

The next three sections will study each of these. As an ongoing example
throughout this chapter, the sample data in Figure 5.2 will be used. For simplicity,
the two tables are named table R and table S, each of which has two attributes:
one is an alphabetical attribute, and the other is a numerical attribute. The join
attribute is the numerical attribute. Table R has 15 records, whereas table S
has 9 records. To make the alphabetical attributes more meaningful and easy to
remember, the value is an alphabetical value starting from letter “A” following the
order of the alphabet (e.g., table R has records Adele, Bob, Clement, Dave, etc,
whereas table S has records Arts, Business, CompSc, Dance, etc; we can therefore
assume that table R is related to students and table S to courses). The numerical
attributes have random numerical values. Note that in this case, the join operation
produces three records.

5.2.1 Nested-Loop Join Algorithm

Nested-loop join is the simplest form of join algorithm—for each record of the
first table, it goes through all records of the second table. This is repeated for all
records of the first table. It is called a nested loop because it consists of two levels
of loops: inner loop (looping for the second table) and outer loop (looping for the
first table).

Using the sample data in Figure 5.2, first take the first record of table R (record
Adele) and then examine table S record by record to see whether there is a match

5.2 Serial Join Algorithms 115

Table R Table S Join Results
Adele 8 Arts 8 Adele 8 Arts
Bob 22 Business 15 Ed 11 Health
Clement 16 CompSc 2 Joanna 2 CompSc
Dave 23 Dance 12
Ed 11 Engineering 7
Fung 25 Finance 21
Goel 3 Geology 10
Harry 17 Health 11
Irene 14 IT 18
Joanna 2
Kelly 6
Lim 20
Meng 1
Noor 5
Omar 19

Figure 5.2 Sample data

based on the join attribute. In this case, it happens that the match is found in the first
record of table S (record Arts). Assuming that the join attribute is based on unique
attributes, once a match is found in table S, there is no need to continue searching
for other matches for Adele. The same process is repeated for the second record
of table R (record Bob). In this case, the worst scenario happens, where none of
the records in table S matches Bob. This process continues until all records from
table R are processed. The results as shown in Figure 5.2 produce three matches.
A nested-loop join algorithm is summarized in Figure 5.3.

In terms of its efficiency, note that in general every record in table S has to be
visited (read) as many times as there are records in table R. If there are N records
in table R and M records in table S, the efficiency of a nested-loop join algorithm
is basically O.N M/. Although the algorithm is very simple, it is definitely not
efficient, because of repeated I/O scans of one of the tables.

Algorithm: Nested-loop join

Input: Tables R and S
Output: Query Result Qr
1. Let Qr D {}
2. For each record of table R
3. Read record from table R
4. For each record of table S
5. Read record from table S
6. Compare the join attributes
7. If matched Then
8. Store the records into Qr

Figure 5.3 Nested-loop join algorithm

116 Chapter 5 Parallel Join

5.2.2 Sort-Merge Join Algorithm

Sort-merge join is based on sorting and merging operations. The first step of joining
is to sort the two tables based on the joining attribute in an ascending order, and the
second step is merging the two sorted tables. If the value of the joining attribute in
R is smaller than that in S, it skips to the next value of the joining attribute in R.
On the other hand, if the value of the joining attribute in R is greater than that in S,
it skips to the next value of the joining attribute in S. When the two values match,
the two corresponding records are concatenated and placed into the query result.
This process continues until one of the tables runs out of records.

Using the sample data from Figure 5.2, the two sorted tables are shown in
Figure 5.4. The sorting is based on the join attributes, which are the numerical
attributes from the two tables.

After the two tables have been sorted based on the join attributes, the merging
process starts. Using the sample data in Figure 5.4, first take the first record of table
R (record Meng), compare this with the first record of table S (record CompSc),
and see whether the two numerical attribute values are the same. If they are not
the same, then the record that has a smaller value has to move on. In this case, we
need to move on to the second record of table R (record Joanna). Then we compare
again with the same record of table S (record CompSc). Since they match, we put
them into the result.

If the join attribute values are unique, when a match is found the next process
is to take the next records from both tables. In this case, after record Joanna and
CompSc are matched, we take record Goel from table R and record Engineering
from table S. The process is then repeated until one of the tables has exhausted
all the records. Figure 5.4 shows that the next match after Joanna/CompSc is
Adele/Arts, followed by Ed/Health.

Table R Table S Join Results
Meng 1 CompSc 2 Joanna 2 CompSc
Joanna 2 Engineering 7 Adele 8 Arts
Goel 3 Arts 8 Ed 11 Health
Noor 5 Geology 10
Kelly 6 Health 11
Adele 8 Dance 12
Ed 11 Business 15
Irene 14 IT 18
Clement 16 Finance 21
Harry 17
Omar 19
Lim 20
Bob 22
Dave 23
Fung 25

Figure 5.4 Sorted tables

5.2 Serial Join Algorithms 117

Algorithm: Sort-merge join

Input: Tables R and S
Output: Query Result Qr
1. Let Qr D {}
2. Sort records of table R based on the join attribute
3. Sort records of table S based on the join attribute
4. Let i = 1 and j D 1
5. Repeat
6. Read record R(i)
7. Read record S(j)
8. If join attribute R(i) < join attribute S(j) Then
9. iC C
10. Else
11. If join attribute R(i) > join attribute S(j) Then
12. jC C
13. Else
14. Put records R(i) and S(j) into the Qr
15. iC C; jC C
16. If either R(i) or S(j) is EOF Then
17. Break

Figure 5.5 Sort-merge join algorithm

The sort-merge join algorithm is also quite simple. The main task is basically
sorting, which is done first to the two tables. The merging itself is then quite
straightforward. Figure 5.5 summarizes the sort-merge join algorithm, where the
join attributes are assumed to be unique.

The sort-merge join algorithm shown in Figure 5.5 needs to be revised slightly
if the join attributes are not unique. In this case, there is a small nested loop among
duplicate values of the matched join attributes. For example, if there is another
record after Joanna that has the same number as Joanna (e.g., Jon/2) and also there
is another record after CompSc that has the same number as CompSc (e.g., Com-
pEng/2), then there will be a small nested loop among these records to produce
four records, namely Joanna/2/CompSc, Joanna/2/CompEng, Jon/2/CompSc, and
Jon/2/CompEng.

In terms of its efficiency, the sort-merge join algorithm is an improvement com-
pared with the nested-loop join. Sorting is generally O(NlogN) for one table (and
O(MlogM) for the other table), whereas merging the two sorted tables is linear (i.e.,
O.N C M//. This is considerably better than the nested loop of O(NM), especially
if N and M are very large.

5.2.3 Hash-Based Join Algorithm

A number of hash-based join algorithms such as hybrid-hash and Grace hash join,
have been proposed in the literature. A hash-based join is basically made up of two

118 Chapter 5 Parallel Join

processes: hashing and probing. A hash table is created by hashing all records of
the first table using a particular hash function. Records from the second table are
also hashed with the same hash function and probed. If any match is found, the
two records are concatenated and placed in the query result.

A decision must be made about which table is to be hashed and which table is
to be probed. Since a hash table has to be created, it would be better to choose
the smaller table for hashing and the larger table for probing. For the sample data
in Figure 5.2, table S is to be hashed. Figure 5.6 illustrates how table S is hashed
into a hash table. In this example, assume that the hash function used in the hashing
process works by summing the first and second digits of the hashed attribute, which
in this case is the join attribute. The hashing is done record by record. First, record
Arts/8 is hashed to hash table index entry 8, and then record Business/15 is hashed
to hash index 6.

In any hashing process, collision must be taken care of. For example, record
CompSc/2 is hashed to index entry 2 in the hash table, and record Health/11 is
hashed to the same hash table index. In this example, collision is handled by creat-
ing additional entries in the same index entry. From the sample in Figure 5.6, there
are several collisions, as well as several empty index spots.

After the hashing is complete, the next stage is probing. In the probing stage,
take the other table and hash record by record with the same hashing function. If
it is hashed to a nonempty index entry, then examine each record in that entry to
determine whether a match has been found.

Continuing the example in Figure 5.7, record Adele/8 is hashed and probed into
index entry 8, and a match with Arts/8 is found. Another example is record Ed/11,
which is hashed and probed into index entry 2. Since there is more than one record
on that index entry, conduct a traversal of each of the records and examine whether
it is matched with Ed/2. In this case, Ed/11 found a match with Health/11. The
same is the case with Joanna/2, which found a match with CompSc/2.

Other records in table R were hashed either into an empty index entry or hashed
into a non-empty index entry, but did not find a match. An example of the former

Hash Table
Table S Index Entries
Arts 8 1 Geology/10
Business 15 2 CompSc/2 Health/11
CompSc 2 hashed

into
3 Dance/12 Finance/21

Dance 12 4
Engineering 7 5
Finance 21 6 Business/15
Geology 10 7 Engineering/7
Health 11 8 Arts/8
IT 16 9 IT/18

10
11
12

→

Figure 5.6 Hashing table S

5.2 Serial Join Algorithms 119

Table R
Adele 8 Index Entries Join Results
Bob 22 1 Geology/10 Adele 8 Arts
Clement 16 2 CompSc/2 Health/11 Ed 11 Health
Dave 23 3 Dance/12 Finance/21 Joanna 2 CompSc
Ed 11 4
Fung 25 5
Goel 3 6 Business/15
Harry 17 7 Engineering/7
Irene 14 probed

into
8 Arts/8

Joanna 2 9 IT/18
Kelly 6 10
Lim 20 11
Meng 1 12
Noor 5
Omar 19

Hash Table

Figure 5.7 Probing table R

is record Bob/22, which is hashed into index entry 4 which is empty. An example
of the latter is Clement/16 hashed into index entry 7 but which did not find any
match with the record in that index entry.

Figure 5.8 summarizes an algorithm for a hash-based join (assume table S
is used for hashing, whereas table R is used for probing). Note from the hash-
ing and probing process mentioned above that each record from the above two
tables are scanned only once. Consequently, there is no repeat scan as in the

Algorithm: Hash-based join

Input: Tables R and S
Output: Query Result Qr
1. Let Qr D {}
2. Let H be a hash function
3. For each record in table S
4. Read a record from table S
5. Hash the record based on join attribute value using

hash function H into hash table
6. For each record in table R
7. Read a record from table R
8. Hash the record based on join attribute value

using H
9. Probe into the hash table
10. If an index entry is found Then
11. Compare each record on this index entry

with the record of table S
12. If matched Then
13. Put the pair into Qr

Figure 5.8 Hash-based join algorithm

120 Chapter 5 Parallel Join

N M O(NM) O(NlogN+ MlogM+ N+ M) O(N+ M)

10 10 100 40 20

100 100 10,000 600 200

1000 1000 1,000,000 8000 2000

10,000 10,000 100,000,000 100,000 20,000

100,000 100,000 10,000,000,000 1,200,000 200,000

1,000,000 1,000,000 1,000,000,000,000 14,000,000 2,000,000

Figure 5.9 Complexity comparison of the three serial join algorithms

nested-loop and sort-merge join algorithms. Therefore, hash-based join, which has
a linear complexity of O.N C M/, is considered more efficient than nested-loop
and sort-merge join.

5.2.4 Comparison

The complexity of join algorithms is normally dependent on the number of times
that a disk scan needs to be performed. Disk scan is considered to be the most
expensive operation in computer systems, as it requires disk arm movement, which
is very slow in comparison with CPU operations. Therefore, minimizing disk scan
is the ultimate objective not only in join algorithms, but also in any query process-
ing algorithms.

The complexity of the three join algorithms as discussed above is as follows:

Ž Nested-loop join algorithm D O.N M/

Ž Sort-merge join algorithm D O.NlogN C MlogM C N C M/

Ž Hash-based join algorithm D O.N C M/

The hash-based join algorithm is widely accepted as the most efficient join
algorithm, as proven by the complexity listed above. To illustrate how well a
hash-based join algorithm performs, Figure 5.9 shows the complexity of the three
algorithms in various data sizes N and M .

In Figure 5.9, we note that the complexity of O(NM) grows exponentially.
When N and M are large, O(NM) grows massively. On the other hand, linear
complexity like O.N C M/ is quite good. O(NlogN) is not that bad compared
with nested loop, but linear complexity O.N C M/ is the best. On the basis of this
simplified comparison, it is obvious that the hash-based join algorithm is the best
choice.

5.3 PARALLEL JOIN ALGORITHMS

Parallelism of join queries is achieved through data parallelism, whereby the same
task is applied to different parts of the data. In other words, after data partitioning

5.3 Parallel Join Algorithms 121

has been completed, each processor will have its own data to work with. Subse-
quently, each processor will apply any serial join algorithm. Once this is carried
out in each processor, the final results of the join operation are consolidated from
the results obtained from different processors. Based on this, the parallel join algo-
rithm is determined by the type of data partitioning used in parallel join.

There are generally two kinds of data partitioning that can be used in any paral-
lel join algorithms. They are:

Ž Divide and broadcast and
Ž Disjoint data partitioning

The first data partitioning method has some degree of replication, whereas the
second one has no replication. For the local join itself, as already mentioned above,
any serial join algorithm may be used. However, because of the superiority of the
hash-based join algorithm, it is desirable to use a hash-based join algorithm in each
processor. Therefore, the local join uses a hash-based serial join algorithm.

In the next two sections, the two data partitioning methods for parallel join
algorithms will be described separately.

5.3.1 Divide and Broadcast-Based Parallel Join
Algorithms

“Divide and broadcast”-based parallel join algorithms are composed of two stages:
data partitioning using the divide and broadcast method and a local join.

The divide and broadcast data partitioning method consists of dividing one table
into multiple disjoint partitions, where each partition is allocated a processor, and
broadcasts the other table to all available processors. Dividing one table may be
done simply by using equal division, so that each partition will have the same size,
whereas broadcasting is actually replicating the content of the second table to all
processors. Thus it is preferable for the smaller table to be broadcast and the larger
table to be divided.

Using the sample data presented above in Figure 5.2, assume that a
shared-nothing architecture is used, whereby three processors are available in the
system. The data is already partitioned and stored in each processor. Figure 5.10
shows the initial data placement on each processor. Assume that table R is equally
partitioned into three tables using simple table division whereby the first five
records go to processor 1, the next five to processor 2, and the last five to processor
3. For table S, assume that a simple round-robin partitioning of the table has been
used.

Since the data is already initially partitioned, what needs to be done is the
broadcasting. Since table S is smaller than table R, it is desirable that table S
be broadcast and table R be left partitioned. Therefore, each processor loads its
table S partition (e.g., partition S1, partition S2, and partition S3, respectively)
and broadcasts it to all other processors. For example, processor 1 will broadcast
partition S1 to processors 2 and 3, and processor 2 will broadcast partition S2 to

122 Chapter 5 Parallel Join

Processor 1 Processor 2 Processor 3
R1 S1 R2 S2 R3 S3
Adele 8 Arts 8 Fung 25 Business 12 Kelly 6 CompSc 2
Bob 22 Dance 15 Goel 3 Engineering 7 Lim 20 Finance 21
Clement 16 Geology 10 Harry 17 Health 11 Meng 1 IT 18
Dave 23

11
Irene 14

2
Noor 5

Ed Joanna Omar 19

Figure 5.10 Initial data placement

Processor 1 Processor 2 Processor 3
R1 S1 R2 S2 R3 S3
Adele 8 Arts 8 Fung 25 Business 12

7
Kelly 6 CompSc 2

Bob 22 Dance 15 Goel 3 Engineering Lim 20 Finance 21
Clement 16 Geology 10 Harry 17 Health 11 Meng 1 IT 18
Dave 23

11
Irene 14

2
Noor 5

Ed S2 Joanna S1 Omar 19 S1
Business 12 Arts 8 Arts 8
Engineering 7 Dance 15 Dance 15
Health 11 Geology 10 Geology 10

S3 S3 S2
CompSc 2 CompSc 2 Business 12
Finance 21 Finance 21 Engineering 7
IT 18 IT 18 Health 11

Processor 1 Processor 2 Processor 3
R1 S1 R2 S2 R3 S3
Adele Arts 8 Fung 25 Business 12 Kelly 6 CompSc 2
Bob 22

8

23
11

16
Dance 15 Goel 3 Engineering 7 Lim 20

19

Finance 21
Clement Geology 10 Harry

2

Health 11 Meng 1 IT 18
Dave Irene 14

17
Noor 5

Ed Joanna Omar

Figure 5.11 Divide and broadcast result

processors 1 and 3, etc. Partitions from table R are left untouched since table R is
already initially partitioned.

Figure 5.11 shows the position after the broadcast stage, which is the end of
the divide and broadcast data partitioning. Note that on each processor there is one
partition from table R and the complete table S. To clarify the picture, the arrows
show that partition S1 is broadcast to processors 2 and 3.

Once the divide and broadcast partitioning is complete, each processor may
work independently to join one partition of table R with the complete table S. Any
serial join algorithm may be used. However, for efficiency purposes, a hash-based
serial join may be applied. Figure 5.12 shows the results from each processor.

5.3 Parallel Join Algorithms 123

Processor 1 Processor 2 Processor 3
Result 1 Result 2 Result 3
Adele 8 Arts Joanna 2 CompSc
Ed 11 Health

NIL

Processor 1 Processor 2 Processor 3
R1 S1 R2 S2 R3 S3
Adele 8 Arts 8 Fung 25 Business 12 Kelly 6 CompSc 2
Bob 22 Dance 15 Goel 3 Engineering 7 Lim 20 Finance 21
Clement 16 Geology 10 Harry 17 Health 11 Meng 1 IT 18
Dave 23

11
Irene 14 Noor 5

Ed S2 Joanna 2 S1 Omar 19 S1
Business 12 Arts 8 Arts 8
Engineering 7 Dance 15 Dance 15
Health 11 Geology 10 Geology 10

S3 S3 S2
CompSc 2 CompSc 2 Business 12
Finance 21 Finance 21 Engineering 7
IT 18 IT 18 Health 11

Figure 5.12 Join results based on divide and broadcast

The final result from all processors is consolidated. Not all processors may pro-
duce some results. In contrast, some other processors may dominate the results. In
the above example, processor 3 does not produce any result, whereas processor 1
produces two-thirds of the overall results.

From the load balancing point of view, the load of each processor in terms
of the number of records processed is the same; that is, in each processor there
will be an equal fragment of the first table and the whole second table, and hence
there is no load imbalance problem. However, the processing method imposed by
the broadcast of one of the tables causes inefficiency that includes not only the
broadcasting overhead but also the storage overhead.

However, the problem of workload imbalance will occur if the table that is par-
titioned is not partitioned equally. For example, if table R in the above example
is already partitioned in each processor but the partitioning is not balanced, then
workload imbalance will occur.

The load balancing problem theoretically might still occur even when table R is
partitioned equally, as in the above example. This problem arises from the imbal-
ance of the result production. Note that in the sample shown in Figure 5.12, the
results are not balanced in each processor. Some processors that produce more
results than others might work a little harder than others. However, this problem is
not as bad as it would be if the partitioned table were not partitioned equally in the
first place.

If a shared-memory architecture is used, then there is no replication of the
broadcast table. Consequently, each processor will access the entire table S and
access a portion of table R. However, if each processor does not have enough
working space, then the local join might not be able to use a hash-based join.

124 Chapter 5 Parallel Join

Algorithm: Parallel nested-loop join

Input: Tables R and S
Output: Query Result Qr
1. Parallel For each record of table R
2. Read record from table R
3. Serial For each record of table S
4. Comparison between two records to find a match
5. Store the match in Qr

Figure 5.13 Parallel nested-loop join algorithm

A nested-loop serial join would be used as a local join instead. This would incur
another inefficiency problem.

Basically a parallel nested-loop join algorithm works as follows. The outer for
loop uses a parallel for loop, in which a parallel round-robin can be used. The inner
for loop, on the other hand, is a serial for loop. This has the implication that the
inner loop is executed as a whole by each processor. Therefore, the outer loop is
the divide part, whereas the inner loop is the broadcast part. Figure 5.13 illustrates
a parallel nested-loop join algorithm, which has a manifestation of the divide and
broadcast partitioning.

Nevertheless, the bottom line of the “divide and broadcast”-based parallel
join algorithm is that one table is partitioned, whereas the other is repli-
cated/broadcast. The limiting element of this type of parallel join algorithm is the
replication/broadcast.

5.3.2 Disjoint Partitioning-Based Parallel Join
Algorithms

Disjoint partitioning-based parallel join algorithms also consist of two stages: a
data partitioning stage using a disjoint partitioning and a local join. For the data
partitioning, a disjoint partitioning, such as range partitioning or hash partitioning,
may be used.

In range partitioning, both tables are partitioned based on the join attributes
with the same range partitioning function. If a shared-nothing architecture is used,
whereby the table is already partitioned, each processor has to redistribute the
records following a range function. This is similar to the parallel redistribution
sort discussed in Chapter 4.

Figure 5.14 illustrates range partitioning based on the sample data presented in
Figure 5.10. In this case, assume that the range is that processor 1 will get records
with join attribute value between 1 and 9, processor 2 between 10 and 19, and
processor 3 between 20 and 29. To simplify the illustration, one arrow shows that
record Adele/8 stays in processor 1, whereas record Bob/22 goes from processor 1
to processor 3.

5.3 Parallel Join Algorithms 125

Processor 1 (range 1-9) Processor 2 (range 10-19) Processor 3 (range 20-29)
R S R S R S
Adele 8 Arts 8 Harry 17 Business 12 Lim 20 Finance 21

Irene 14 Health 11
Goel 3 Engineering 7 Bob 22
Joanna 2 Clement 16 Dance 15 Dave 23

Ed 11 Geology 10
Kelly 6 CompSc 2 Fung 25
Meng 1 Omar 19 IT 18
Noor 5

Processor 1 Processor 2 Processor 3
R1 S1 R2 S2 R3 S3
Adele 8 Arts 8 Fung 25 Business 12 Kelly 6 CompSc 2
Bob 22 Dance 15 Goel 3 Engineering 7 Lim 20 Finance 21
Clement 16 Geology 10 Harry 17 Health 11 Meng 1 IT 18
Dave 23

11
Irene 14

2
Noor 5

Ed Joanna Omar 19

Figure 5.14 Range partitioning

Note that, as a result of range partitioning, the load of each processor may dif-
fer, thereby creating a load imbalance problem. For example, processor 2 has 10
records in total from the two tables, whereas processor 3 has only 5 records from
the two tables. Therefore, it can be expected that processor 3 will require only half
the time to complete the job compared with that taken by processor 2.

As for the local join, any serial join algorithm might be used. Figure 5.15 shows
the results of the join. Since range partitioning is used, the results on each pro-
cessor will also be according to the range partitioning. For example, processor 1
produces 2 results: one is Adele/8/Arts and the other is Joanna/2/CompSc; pro-
cessor 2 produces Ed/11/Health. Note that in this case, the results composition is
slightly different from that of divide and broadcast as shown in Figure 5.12 (where
processor 1 produces Adele and Ed and processor 2 produces Joanna). Neverthe-
less, the overall results that are amalgamated from all processors are the same with
both parallel join methods.

If a shared-memory architecture is used instead of a shared-nothing architecture,
the sorting will be carried out using parallel sorting as discussed in Chapter 4. Once
the two tables have been sorted, a parallel merge can be performed.

Another disjoint data partitioning might be used, that is, hash partitioning, as
shown in the following example. In this example, assume that the hash partitioning
function is the sum of each digit of the partitioning attribute value. For example,
record Bob/22 will be hashed to 4.D 2C2/, whereas record Clement/16 will be
hashed to 7.D 1C6/. Once each record has been hashed based on the join attribute,
the record will be distributed to a particular processor. For example, assume that
processor 1 will take hash 1, 4, 7, etc; processor 2 hashed to 2, 5, 8, etc; and

126 Chapter 5 Parallel Join

Processor 1 Pro cessor 2 Processor 3
Result 1 Result 2 Result 3
Adele Arts Ed 11 Health
Joanna 2

8
CompSc

NIL

Processor 1 (range 1-9) Processor 2 (range 10-19) Processor 3
R S R S R S
Adele 8 Arts 8 Harry 17 Business 12 Lim 20 Finance 21

Irene 14 Health 11
Goel 3 Engineering 7 Bob 22
Joanna 2 Clement 16 Dance 15 Dave 23

Ed 11 Geology 10
Kelly 6

1
CompSc 2 Fung 25

Meng Omar 19 IT 18
Noor 5

Figure 5.15 Join results based on range partitioning

Processor 1 (Hash 1,4,7) Processor 2 (Hash 2,5,8) Processor 3 (Hash 3,6,9)
R S R S R S
Bob 22 Geology 10 Harry 17 Health 11 Kelly 6 Finance 21
Clement 16

25

Irene 14 IT 18
Joanna 2

Fung Engineering 7
Adele 8 Arts 8 Goel 3 Dance 15

Meng 1 Dave 23
Omar 19 Ed 11

Lim 20 CompSc 2 Business 12
Noor 5

Processor 1 Processor 2 Processor 3
R1 S1 R2 S2 R3 S3
Adele 8 Arts 8 Fung 25 Business 12 Kelly 6 CompSc 2
Bob 22 Dance 15 Goel 3 Engineering 7 Lim 20 Finance 21
Clement 16 Geology 10 Harry 17

2

Health 11 Meng 1 IT 18
Dave 23

11
Irene 14 Noor 5

Ed Joanna Omar 19

Figure 5.16 Hash partitioning

processor 3 to 3, 6, 9, etc. Figure 5.16 shows the hash partitioning of the same
data used in Figure 5.10. For clarity of presentation, in Figure 5.16 the arrow from
record Adele/8 shows that it is hashed into processor 2, whereas record Bob/22 is
hashed to processor 1.

Similar to range partitioning, hash partitioning also produces some skew in
the distribution. Basically, in any disjoint data partitioning, skew distribution is
inevitable, because of the nature of the distribution of the data itself.

5.3 Parallel Join Algorithms 127

Processor 1 Processor 2 Processor 3
Result 1 Result 2 Result 3

 Joanna 2 CompSc
 Adele 8 Arts

NIL

 Ed 11 Health

NIL

Processor 1 Processor 2 Processor 3
R S R S R S
Bob 22 Geology 10 Harry 17 Health 11 Kelly 6 Finance 21
Clement 16

25

Irene 14 IT 18
Joanna 2

Fung Engineering 7
Adele 8 Arts 8 Goel 3 Dance 15

Meng 1 Dave 23
Omar 19 Ed 11

Lim 20 CompSc 2 Business 12
Noor 5

Figure 5.17 Join results based on hash partitioning

For the local join, any serial join algorithm may be used. However, it is appro-
priate to use a hash join algorithm. Figure 5.17 shows the join results based on hash
partitioning. In this example, only processor 2 produces the query results, whereas
the other two processors do not produce anything.

For a shared-memory version, the hash partitioning is done in parallel. Once the
hash table has been built, the probing is also done in parallel. In other words, it
applies a parallel hash join algorithm.

Figure 5.18 shows a high level pseudo-code of a parallel hash join algorithm.
Parallelism is achieved through the two parallels for loop, one for the hashing and
the other for the probing. The hash table itself, which is created during the hashing
process, is shared among all processors.

In summary, for shared-memory architecture, the hash partitioning-based
parallel join algorithm is based on hash join (called parallel hash join algo-
rithm), whereas the range partitioning based parallel join algorithm is based on

Algorithm: Parallel hash join

Input: Tables R and S
Output: Query Result Qr
1. Parallel For each record of table R
2. Read record from table R and hash into a hash table
3. Parallel For each record of table S
4. Read record S, hash, and probe
5. Put the match in Qr

Figure 5.18 Parallel hash join algorithm

128 Chapter 5 Parallel Join

sort-merge join (hence the name parallel sort-merge join algorithm). The divide
and broadcast-based parallel join algorithm is based on nested-loop join and hence
is called a parallel nested-loop join algorithm.

5.4 COST MODELS

Cost notations were previously listed in Chapter 2. The cost models to be discussed
in this section are mainly the two data partitionings for parallel join and the local
join processing.

5.4.1 Cost Models for Divide and Broadcast

It is assumed that the tables have already been partitioned and placed in each pro-
cessor. In this case, a shared-nothing architecture is used. Figure 5.10 above gives
an illustration of the initial data placement. Based on this scenario, there is no cost
for the divide phase of the divide and broadcast partitioning parallel join. The cost
component is applied only to the broadcast stage (as in Figure 5.11).

The cost components for the broadcast stage can be divided into three phases
according to the order of the broadcasting process. The first phase is the data load-
ing by each processor, followed by the broadcasting (replication) in the second
phase. The final phase is storing the replicated data in each processor.

The first phase of data loading consists of the scan costs and the select costs,
which are as follows. In this case, it is assumed that table S is broadcast, and
therefore, variable S is used in the cost equations, instead of R.

ž Scan cost for loading data from local disk in each processor is:

.Si =P/ ð IO

ž Select cost for getting record out of data page is:

jSi j ð .tr C tw/

The second phase is the broadcast cost, which is done by each processor broad-
casting its fragment to all other processors. Subsequent to this, all other processors
must receive all other fragments from all other processors. Therefore, the main
costs for this phase are data transfer and receiving costs, which are as follows:

ž Data transfer cost is:

.Si =P/ ð .N � 1/ ð .m p C ml/

The (N � 1) indicates that each processor must broadcast to all other proces-
sors. Note that broadcasting from one processor to the others has to be done one
processor at a time, although all processors send the broadcast in parallel.

5.4 Cost Models 129

The above cost equation would be the same as

.S � Si / ð .m p C ml/

where (S � Si) indicates the size of other fragments, which is the total table size
minus the fragment that each processor has.

ž Receiving records cost is:

.S � Si / ð .m p/

The receiving cost is similar to the sending cost. The only difference is the
transfer cost, whereby the sending cost induces an extra cost ml for each byte sent
across the network.

Finally, in the third phase, each processor after receiving all other fragments of
table S must store the table on local disk.

ž Disk cost for storing the table is:

.S � Si / ð IO

5.4.2 Cost Models for Disjoint Partitioning

The disjoint partitioning costs also comprise three main elements according to the
three phases of the disjoint partitioning. These are loading costs, distribution costs,
and finally storing costs.

The loading costs include scan costs and select costs. Since both tables R and S
need to be loaded, these are reflected in the cost components:

ž Scan cost for loading tables R and S from local disk in each processor is:

..Ri =P/ C .Si =P// ð IO

ž Select cost for getting record out of data page is:

.jRi j C jSi j/ ð .tr C tw/

The distribution cost also includes the cost of determining the destination of
each record. If a hash partitioning method is used, then the destination determi-
nation cost is related to the hashing function cost to determine the processor to
which each record will be sent. Then this will be followed by the actual sending
and receiving costs.

ž Finding destination cost is:

.jRi j C jSi j/ ð .td/

ž Data transfer cost is:

..Ri =P/ C .Si =P// ð .m p C ml/

130 Chapter 5 Parallel Join

Ri and Si in the cost equation indicate the fragment size of both tables in each
processor.

ž Receiving records cost is:

..Ri =P/ C .Si =P// ð .m p/

Both data transfer and receiving costs look similar, as also mentioned above
for the divide and broadcast cost. However, for disjoint partitioning the size of Ri

and Si in the data transfer cost is likely to be different from that of the receiving
cost. The reason is as follows. Following the example in Figures 5.14 and 5.16,
Ri and Si in the data transfer cost are the size of each fragment of both tables
in each processor. Again, assuming that the initial data placement is done with
a round-robin or any other equal partitioning, each fragment size will be equal.
Therefore, Ri and Si in the data transfer cost are simply dividing the total table
size by the available number of processors.

However, Ri and Si in the receiving cost are most likely skewed (as already
mentioned in Chapter 2 on analytical models). As shown in Figures 5.14 and 5.16,
the spread of the fragments after the distribution is not even. Therefore, the skew
model must be taken into account, and consequently the values of Ri and Si in the
receiving cost are different from those of the data transfer cost.

Finally, the last phase is data storing, which involves storing all records received
by each processor.

ž Disk cost for storing the result of data distribution is:

..Ri =P/ C .Si =P// ð IO

5.4.3 Cost Models for Local Join

For the local join, since a hash-based join is the most efficient join algorithm, it
is assumed that a hash-based join is used in the local join. The cost of the local
join with a hash-based join comprises three main phases: data loading from each
processor, the joining process (hashing and probing), and result storing in each
processor.

The data loading consists of scan costs and select costs. These are identical to
those of the disjoint partitioning costs, which are:

ž Scan cost D ..Ri =P/ C .Si =P// ð IO

ž Select cost D .jRi j C jSi j/ ð .tr C tw/

It has been emphasized that (jRi j C jSi j) as well as (.Ri =P/ C .Si =P/) corre-
spond to the values in the receiving and disk costs of the disjoint partitioning.

The join process itself is basically incurring hashing and probing costs, which
are as follows:

5.4 Cost Models 131

ž Join costs involve reading, hashing, and probing:

.jRi j ð .tr C th/ C .jSi j ð .tr C th C t j //

The process is basically reading each record R and hashing it to a hash table.
After all records R have been processed, records S can be read, hashed, and probed.
If they are matched, the matching records are written out to the query result.

The hashing process is very much determined by the size of the hash table that
can fit into main memory. If the memory size is smaller than the hash table size,
we normally partition the hash table into multiple buckets whereby each bucket
can perfectly fit into main memory. All but the first bucket are spooled to disk.

Based on this scenario, we must include the I/O cost for reading and writing
overflow buckets, which is as follows.

ž Reading/writing of overflow buckets cost is the I/O cost associated with the
limited ability of main memory to accommodate the entire hash table. This
cost includes the costs for reading and writing records not processed in the
first phase of hashing.

�
1 � min

�
H

jSi j ; 1

��
ð

�
Si

P
ð 2 ð IO

�

Although this looks similar to that mentioned in other chapters regarding the
overhead of overflow buckets, there are two significant differences. One is that
only Si is included in the cost component, because only the table S is hashed; and
the second difference is that the projection and selection variables are not included,
because all records S are hashed.

The final cost is the query results storing cost, consisting of generating result
cost and disk cost.

ž Generating result records cost is the number of selected records multiplied
by the writing unit cost.

jRi j ð σj ð jSi j ð tw

Note that the cost is reduced by the join selectivity factor σj , where the smaller
the selectivity factor, the lower the number of records produced by the join opera-
tion.

ž Disk cost for storing the final result is the number of pages needed to store
the final aggregate values times the disk unit cost, which is:

.πR ð Ri ð σj ð πS ð Si =P/ ð IO

As not all attributes from the two tables are included in the join query result,
both table sizes are reduced by the projectivity ratios πR and πS .

The total join cost is the sum of all cost equations mentioned in this section.

132 Chapter 5 Parallel Join

5.5 PARALLEL JOIN OPTIMIZATION

The main aim of query processing in general and parallel query processing in par-
ticular is to speed up the query processing time, so that the amount of elapsed time
may be reduced. In terms of parallelism, the reduction in the query elapsed time
can be achieved by having each processor finish its execution as early as possible
and all processors spend their working time as evenly as possible. This is called
the problem of load balancing. In other words, load balancing is one of the main
aspects of parallel optimization, especially in query processing.

In parallel join, there is another important optimization factor apart from load
balancing. Remember the cost models in the previous section, especially in the dis-
joint partitioning, and note that after the data has been distributed to the designated
processors, the data has to be stored on disk. Then in the local join, the data has to
be loaded from the disk again. This is certainly inefficient. This problem is related
to the problem of managing main memory.

In this section, the above two problems will be discussed in order to achieve
high performance of parallel join query processing. First, the main memory issue
will be addressed, followed by the load balancing issue.

5.5.1 Optimizing Main Memory

As indicated before, disk access is widely recognized as being one of the most
expensive operations, which has to be reduced as much as possible. Reduction in
disk access means that data from the disk should not be loaded/scanned unneces-
sarily. If it is possible, only a single scan of the data should be done. If this is not
possible, then the number of scans should be minimized. This is the only way to
reduce disk access cost.

If main memory size is unlimited, then single disk scan can certainly be guar-
anteed. Once the data has been loaded from disk to main memory, the processor
is accessing only the data that is already in main memory. At the end of the pro-
cess, perhaps some data need to be written back to disk. This is the most optimal
scenario. However, main memory size is not unlimited. This imposes some require-
ments that disk access may be needed to be scanned more than once. But minimal
disk access is always the ultimate aim. This can be achieved by maximizing the
usage of main memory.

As already discussed above, parallel join algorithms are composed of data par-
titioning and local join. In the cost model described in the previous section, after
the distribution the data is stored on disk, which needs to be reloaded by the local
join. To maximize the usage of main memory, after the distribution phase not all
data should be written on disk. They should be left in main memory, so that when
the local join processing starts, it does not have to load from the disk. The size of
the data left in the main memory can be as big as the allocated size for data in the
main memory.

5.5 Parallel Join Optimization 133

Assuming that the size of main memory for data is M (in bytes), the disk cost
for storing data distribution with a disjoint partitioning is:

..Ri =P/ C .Si =P/ � M/ ð IO

and the local join scan cost is then reduced by M as well.

..Ri =P/ C .Si =P/ � M/ ð IO

When the data from this main memory block is processed, it can be swapped
with a new block. Therefore, the saving is really achieved by not having to
load/scan the disk for one main memory block.

5.5.2 Load Balancing

Load imbalance is one of the main obstacles in parallel query processing. This
problem is normally caused by uneven data partitioning. Because of this, the pro-
cessing load of each processor becomes uneven, and consequently the processors
will not finish their processing time uniformly. This data skew further creates
processing skew. This skew problem is particularly common in parallel join algo-
rithms.

The load imbalance problem does not occur in the divide and broadcast-based
parallel join, because the load of each processor is even. However, this kind of
parallel join is unattractive simply because one of the tables needs to be replicated
or broadcast. Therefore, it is commonly expected that the parallel join algorithm
adopts a disjoint partitioning-based parallel join algorithm. Hence, the load imbal-
ance problem needs to be solved, in order to take full advantage of disjoint parti-
tioning. If the load imbalance problem is not taken care of, it is likely that the divide
and broadcast-based parallel join algorithm might be more attractive and efficient.
To maximize the full potential of the disjoint partitioning-based parallel join algo-
rithm, there is no alternative but to resolve the load imbalance problem. Or at least,
the load imbalance problem must be minimized. The question is how to solve this
processing skew problem so that all processors may finish their processing time as
uniformly as possible, thereby minimizing the effect of skew.

In disjoint partitioning, each processor processes its own fragment, by evaluat-
ing and hashing record by record, and places/distributes each record according to
the hash value. At the other end, each processor will receive some records from
other processors too. All records that are received by a processor, combined with
the records that are not distributed, form a fragment for this processor. At the end
of the distribution phase, each processor will have its own fragment and the content
of this fragment is all the records that have already been correctly assigned to this
processor. In short, one processor will have one fragment.

As discussed above, the sizes of these fragments are likely to be different from
one another, thereby creating processing skew in the local join phase. Load bal-
ancing in this situation is often carried out by producing more fragments than the

134 Chapter 5 Parallel Join

A B

C
D E

F GFragments:

C

F

D

E

A

B

G
Processors:

Processor 1 Processor 2 Processor 3

Figure 5.19 Load balancing

available number of processors. For example, in Figure 5.19, seven fragments are
created; meanwhile, there are only three processors and the size of each fragment
is likely to be different.

After these fragments have been created, they can be arranged and placed so that
the loads of all processors will be approximately equal. For example, fragments
A; B, and G should go to processor 1, fragments C and F to processor 2, and the
rest to processor 3. In this way, the workload of these three processors will be more
equitable.

The main question remains that is concerning the ideal size of a fragment, or
the number of fragments that need to be produced in order to achieve optimum
load balancing. This is significant because the creation of more fragments incurs
an overhead. The smallest fragment size is actually one record each from the two
tables, whereas the largest fragment is the original fragment size without load bal-
ancing. To achieve an optimum result, a correct balance for fragment size needs to
be determined. And this can be achieved through further experimentation, depend-
ing on the architecture and other factors.

5.6 SUMMARY

Parallel join is one of the most important operations in high-performance query
processing. The join operation itself is one of the most expensive operations in rela-
tional query processing, and hence the parallelizing join operation brings signifi-
cant benefits. Although there are many different forms of parallel join algorithms,
parallel join algorithms are generally formed in two stages: data partitioning and
local join. In this way, parallelism is achieved through data parallelism whereby
each processor concentrates on different parts of the data and the final query results
are amalgamated from all processors.

5.7 Bibliographical Notes 135

There are two main types of data partitioning used for parallel join: one is with
replication, and the other is without replication. The former is divide and broadcast,
whereby one table is partitioned (divided) and the other is replicated (broadcast).
The latter is based on disjoint partitioning, using either range partitioning or hash
partitioning.

For the local join, three main serial join algorithms exist, namely: nested-loop
join, sort-merge join, and hash join. In a shared-nothing architecture, any
serial join algorithm may be used after the data partitioning takes place. In
a shared-memory architecture, the divide and broadcast-based parallel join
algorithm uses a nested-loop join algorithm, and hence is called a parallel
nested-loop join algorithm. However, the disjoint-based parallel join algorithms
are either parallel sort-merge join or parallel hash join, depending on which data
partitioning is used: sort partitioning or hash partitioning.

5.7 BIBLIOGRAPHICAL NOTES

Join is one of the most expensive database operations, and subsequently, parallel
join has been one of the main focuses in the work on parallel databases. There
are hundreds of papers on parallel join, mostly concentrated on parallel join algo-
rithms, and others on skew and load balancing in the context of parallel join
processing.

To list a few important work on parallel join algorithms, Kitsuregawa et al.
(ICDE 1992) proposed parallel Grace hash join on a shared-everything architec-
ture, Lakshmi and Yu (IEEE TKDE 1990) proposed parallel hash join algorithms,
and Schneider and DeWitt (VLDB 1990) also focused on parallel hash join. A
number of papers evaluated parallel join algorithms, including those by Nakano
et al. (ICDE 1998), Schneider and DeWitt (SIGMOD 1989), and Wilschut et al.
(SIGMOD 1995). Other methods for parallel join include the use of pipelined par-
allelism (Liu and Rundensteiner VLDB 2005; Bamha and Exbrayat Parco 2003),
distributive join in cube-connected multiprocessors (Chung and Yang IEEE TPDS
1996), and multiway join (Lu et al. VLDB 1991). An excellent survey on join
processing is presented by Mishra and Eich (ACM Comp Surv 1992).

One of the main problems in parallel join is skew. Most parallel join papers have
addressed skew handling. Some of the notable ones are Wolf et al. (two papers in
IEEE TPDS 1993—one focused on parallel hash join and the other on parallel
sort-merge join), Kitsuregawa and Ogawa (VLDB 1990; proposing bucket spread-
ing for parallel hash join) and Hua et al. (VLDB 1991; IEEE TKDE 1995; proposing
partition tuning to handle dynamic load balancing). Other work on skew handling
and load balancing include DeWitt et al. (VLDB 1992) and Walton et al (VLDB
1991), reviewing skew handling techniques in parallel join; Harada and Kitsure-
gawa (DASFAA 1995), focusing on skew handling in a shared-nothing architecture;
and Li et al. (SIGMOD 2002) on sort-merge join.

Other work on parallel join covers various join queries, like star join, range
join, spatial join, clone and shadow joins, and exclusion joins. Aguilar-Saborit

136 Chapter 5 Parallel Join

et al. (DaWaK 2005) concentrated on parallel star join, whereas Chen et al. (1995)
concentrated on parallel range join and Shum (1993) reported parallel exclusion
join. Work on spatial join can be found in Chung et al. (2004), Kang et al. (2002),
and Luo et al. (ICDE 2002). Patel and DeWitt (2000) introduced clone and shadow
joins for parallel spatial databases.

5.8 EXERCISES

5.1. Serial join exercises—Given the two tables shown (e.g., Tables R and S) in
Figure 5.20, trace the result of the join operation based on the numerical attribute
values using the following serial algorithms:

Table R Table S
Austria 7 Amsterdam 18
Belgium 20 Bangkok 25
Czech 26 Cancun 22
Denmark 13 Dublin 1
Ecuador 12 Edinburgh 27
France 8 Frankfurt 9
Germany 9 Geneva 11
Hungary 17 Hanoi 10
Ireland 1 Innsbruck 7
Japan 2
Kenya 16
Laos 28
Mexico 22
Netherlands 18
Oman 19 Figure 5.20 Sample tables

a. Serial nested-loop join algorithm,

b. Serial sort-merge join algorithm, and

c. Serial hash-based join algorithm

5.2. Initial data placement:

a. Using the two tables above, partition the tables with a round-robin (random-equal)
data partitioning into three processors. Show the partitions in each processor.

5.3. Parallel join using the divide and broadcast partitioning method exercises:

a. Taking the partitions in each processor as shown in exercise 5.2, explain how the
divide and broadcast partitioning works by showing the partitioning results in each
processor.

b. Now perform a join operation in each processor. Show the join results in each
processor.

5.4. Parallel join using the disjoint partitioning method exercises:

a. Taking the initial data placement partitions in each processor as in exercise 5.2,
show how the disjoint partitioning works by using a range partitioning.

5.8 Exercises 137

b. Now perform a join operation in each processor. Show the join results in each
processor.

5.5. Repeat the disjoint partitioning-based join method in exercise 5.4, but now use a
hash-based partitioning rather than a range partitioning. Show the join results in each
processor.

5.6. Discuss the load imbalance problem in the two disjoint partitioning questions above
(exercises 5.4 and 5.5). Describe how the load imbalance problem may be solved.
Illustrate your answer by using one of the examples above.

5.7. Investigate your favorite DBMS and see how parallel join is expressed in SQL and
what parallel join algorithms are available.

Part III

Advanced Parallel
Query Processing

Chapter6

Parallel GroupBy-Join

In this chapter, parallel algorithms for queries involving group-by and join opera-
tions are described. First, in Section 6.1, an introduction to GroupBy-Join query is
given. Sections 6.2 and 6.3 describe parallel algorithms for GroupBy-Before-Join
queries, in which the group-by operation is executed before the join, and paral-
lel algorithms on GroupBy-After-Join queries, in which the join is executed first,
followed by the group-by operation. Section 6.4 presents the basic cost notations,
which are used in the following two sections (Sections 6.5 and 6.6) describing the
cost models for the two parallel GroupBy-Join queries.

6.1 GROUPBY-JOIN QUERIES

SQL queries in the real world are replete with group-by clauses and join opera-
tions. These queries are often used for strategic decision making because of the
nature of group-by queries where raw information is grouped according to the des-
ignated groups and within each group aggregate functions are normally carried
out. As the source information to these queries is commonly drawn from various
tables, joining tables—together with grouping—becomes necessary. These types
of queries are often known as “GroupBy-Join” queries. In strategic decision mak-
ing, parallelization of GroupBy-Join queries is unavoidable in order to speed up
query processing time.

It is common for a GroupBy query to involve multiple tables. These tables are
joined to produce a single table, and this table becomes an input to the group-by
operation. We call these kinds of queries GroupBy-Join queries; that is, queries
involving join and group-by. For simplicity of description and without loss of gen-
erality, we consider queries that involve only one aggregate function and a single
join.

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

141

142 Chapter 6 Parallel GroupBy-Join

Since two operations, namely group-by and join operations, are involved in the
query, there are two options for executing the queries: group-by first, followed by
the join; or join first and then group-by. To illustrate these two types of GroupBy
queries, we use the following tables from a suppliers-parts-projects database:

SUPPLIER (S#, Sname, Status, City)
PARTS (P#, Pname, Color, Weight, Price, City)
PROJECT (J#, Jname, City, Budget)
SHIPMENT (S#, P#, J#, Qty)

These two types of group-by join queries will be illustrated in the following two
sections.

6.1.1 Groupby Before Join

A GroupBy Before Join query is when the join attribute is also one of the group-by
attributes. For example, the query to “retrieve project numbers, names, and total
number of shipments for each project having the total number of shipments of
more than 1000” is shown by the following SQL:

Query 6.1:

Select PROJECT.J#, PROJECT.Jname, SUM(Qty)
From PROJECT, SHIPMENT
Where PROJECT.J# = SHIPMENT.J#
Group By PROJECT.J#, PROJECT.Jname
Having SUM(Qty)>1000

In the above query, one of the group-by attributes, namely, PROJECT.J# of
table Project becomes the join attribute. When this happens, it is expected that
the group-by operation will be carried out first, and then the join operation. In
processing this query, all Project records are grouped based on the J# attribute.
After grouping, the result is joined with table Shipment.

As is widely known, join is a more expensive operation than group-by, and it
would be beneficial to reduce the join relation sizes by applying the group-by first.
Generally, a group-by operation should always precede join whenever possible. In
real life, early processing of the group-by before join reduces the overall execu-
tion time, as stated in the general query optimization rule where unary operations
are always executed before binary operations if possible. The semantic issues of
group-by and join, and the conditions under which group-by would be performed
before join, can be found in the literature.

6.1.2 Groupby After Join

A GroupBy After Join query is where the join attribute is totally different from the
group-by attributes, for example: “group the part shipment by their city locations
and select the cities with average number of shipments between 500 and 1000”.
The query written in SQL is as follows.

6.2 Parallel Algorithms for Groupby-before-join Query Processing 143

Query 6.2:

Select PARTS.City, AVG(Qty)
From PARTS, SHIPMENT
Where PARTS.P# = SHIPMENT.P#
Group By PARTS.City
Having AVG(Qty)>500 AND AVG(Qty)<1000

The main difference between queries 6.1 and 6.2 lies in the join attributes
and group-by attributes. In query 6.2, the join attribute is totally different from
the group-by attribute. This difference is a critical factor, particularly in process-
ing GroupBy-Join queries, as there are decisions to be made as to which opera-
tion should be performed first: the group by or the join operation. When the join
attribute and the group-by attribute are different, there will be no choice but to
invoke the join operation first, and then the group-by operation.

6.2 PARALLEL ALGORITHMS FOR
GROUPBY-BEFORE-JOIN QUERY PROCESSING

Depending on how the data is distributed among processors, parallel algorithms
for GroupBy-Before-Join queries exist in three formats:

ž Early distribution scheme,
ž Early GroupBy with partitioning scheme, and
ž Early GroupBy with replication scheme

6.2.1 Early Distribution Scheme

The early distribution scheme is influenced by the practice of parallel join algo-
rithms, where raw records are first partitioned/distributed and allocated to each
processor, and then each processor performs its operation. This scheme is moti-
vated by fast message-passing multiprocessor systems. For simplicity of notation,
the table that becomes the basis for GroupBy is called table R, and the other table
is called table S.

The early distribution scheme is divided into two phases:

ž Distribution phase and
ž GroupBy-Join phase.

In the distribution phase, raw records from both tables (i.e., tables R and S)
are distributed based on the join/group-by attribute according to a data partitioning
function. An example of a partitioning function is to allocate each processor with
project numbers ranging from and to certain values. For example, project num-
bers (i.e., attribute J#) p1 to p99 go to processor 1, project numbers p100–p199
to processor 2, project numbers p200–p299 to processor 3, and so on. We need
to emphasize that the two tables R and S are both distributed. As a result, for

144 Chapter 6 Parallel GroupBy-Join

1 2 3 4

Perform group-by
(aggregate function)
of table R, and then
join with table S.

Distribute the two
tables (R and S) on
the group-by/join
attribute.

Records from where they are originally stored

Figure 6.1 Early distribution scheme

example, processor 1 will have records from the Shipment table with J# between
p1 and p99, inclusive, as well as records from the Project table with J# p1–p99.
This distribution scheme is commonly used in parallel join, where raw records are
partitioned into buckets based on an adopted partitioning scheme like the above
range partitioning.

Once the distribution has been completed, each processor will have records
within certain groups identified by the group-by/join attribute. Subsequently, the
second phase (the group-by-join phase) groups records of table R based on the
group-by attribute and calculates the aggregate values of each group. Aggregating
in each processor can be carried out through a sort or a hash function. After table R
has been grouped in each processor, it is joined with table S in the same processor.
After joining, each processor will have a local query result. The final query result
is a union of all subresults produced by each processor.

Figure 6.1 illustrates the early distribution scheme. Note that partitioning is
done to the raw records of both tables R and S, and the aggregate operation of
table R and join with table S in each processor is carried out after the distribution
phase.

Several things need to be highlighted from this scheme.

ž First, the grouping is still performed before the join (although after the distri-
bution). This is to conform to an optimization rule for such kinds of queries:
A group-by clause must be carried out before the join in order to achieve more
efficient query processing time.

ž Second, the distribution of records from both tables can be expensive, as all
raw records are distributed and no prior filtering is done to either table. It
becomes more desirable if grouping (and aggregation function) is carried out
even before the distribution, in order to reduce the distribution cost, especially
of table R.

This leads to the next schemes, called Early GroupBy schemes, for reducing the
communication costs during the distribution phase. There are two variations of the
Early GroupBy schemes, which are discussed in the following two sections.

6.2 Parallel Algorithms for Groupby-before-join Query Processing 145

6.2.2 Early GroupBy with Partitioning Scheme

As the name states, the Early GroupBy scheme performs the group by operation
first before anything else (e.g., distribution). The early GroupBy with partitioning
scheme is divided into three phases:

ž Local grouping phase,
ž Distribution phase, and
ž Final grouping and join phase

In the local grouping phase, each processor performs its group-by operation
and calculates its local aggregate values on records of table R. In this phase, each
processor groups local records R according to the designated group-by attribute
and performs the aggregate function. With the same example as that used in the
previous section, one processor may produce (p1, 5000) and (p140, 8000), and
another processor may produce (p100, 7000) and (p140, 4000). The numerical
figures indicate the SUM(Qty) of each project.

In the second phase (i.e., distribution phase), the results of local aggregates
from each processor, together with records of table S, are distributed to all proces-
sors according to a partitioning function. The partitioning function is based on the
join/group-by attribute, which in this case is an attribute J# of tables Project and
Shipment. Again using the same partitioning function in the previous section, J#
of p1–p99 are to go to processor 1, J# of p100–p199 to processor 2, and so on.

In the third phase (i.e., final grouping and join phase), two operations in
particular are carried out: final aggregate or grouping of R and then joining it with
S. The final grouping can be carried out by merging all temporary results obtained
in each processor. The way this works can be explained as follows. After local
aggregates are formulated in each processor, each processor then distributes each
of the groups to another processor depending on the adopted distribution function.
Once the distribution of local results based on a particular distribution function is
completed, global aggregation in each processor is done by simply merging all
identical project numbers (J#) into one aggregate value. For example, processor
2 will merge (p140, 8000) from one processor and (p140, 4000) from another
to produce (p140, 12000), which is the final aggregate value for this project
number.

Global aggregation can be tricky depending on the complexity of the aggregate
functions used in the actual query. If, for example, an AVG function was used as
an aggregate function, calculating an average value based on temporary averages
must take into account the actual raw records involved in each node. Therefore,
for these kinds of aggregate functions, the local aggregate must also produce the
number of raw records in each processor although they are not specified in the
query. This is needed for the global aggregation to produce correct values. For
example, one processor may produce (p140, 8000, 5) and the other (p140, 4000,
1). After distribution, suppose processor 2 received all p140 records. The average
for project p140 is calculated by dividing the sum of the two quantities (e.g., 8000

146 Chapter 6 Parallel GroupBy-Join

Global
aggregation R and
join with S.

Local aggregation
of table R.

Distribute local
aggregation results
(R) and table S
based on the group-by/join
attribute.

Records from where they are originally stored

1 2 3 4

1 2 3 4

Figure 6.2 Early GroupBy with partitioning scheme

and 4000) and the total shipment records for that project. (i.e., (8000 C 4000/=.5 C
1/ D 2000). The total shipments in each project need to be determined by each
processor, although it is not specified in the query.

After global aggregation results are obtained, it is then joined to table S in each
processor. Figure 6.2 illustrates this scheme.

There are several things worth noting.

ž First, records R in each processor are aggregated/grouped before distribut-
ing them. Consequently, communication costs associated with table R can be
expected to reduce depending on the group-by selectivity factor. This scheme
is expected to improve the early distribution scheme.

ž Second, we observe that if the number of groups is less than the number of
available processors; not all processors can be exploited, thereby reducing the
capability of parallelism.

ž And finally, records from table S in each processor are all distributed dur-
ing the second phase. In other words, no filtering mechanism is applied to S
before distribution. This can be inefficient, particularly if S is very large. To
avoid the problem of distributing S, we will introduce another scheme in the
next section.

6.2.3 Early GroupBy with Replication Scheme

The early GroupBy with replication scheme is similar to the early GroupBy with
partitioning scheme. The similarity is due to the group-by processing to be done
before the distribution phase. However, the difference is indicated by the keyword
“with replication” in this scheme, as opposed to “with partitioning.” The early
GroupBy with replication scheme, which is also divided into three phases, works
as follows.

6.2 Parallel Algorithms for Groupby-before-join Query Processing 147

The first phase, that is, the local grouping phase, is exactly the same as that of
the early GroupBy with partitioning scheme. In each processor, the local aggregate
is performed to table R.

The main difference is in phase two. With the “with replication” scheme, the
local aggregate results obtained from each processor are replicated to all proces-
sors. Table S is not at all moved from where they are originally stored.

In the third phase, the final grouping and join phase, is basically similar to that
of the “with partitioning” scheme. That is, local aggregates from all processors
are merged to obtain the global aggregate and then joined with S. With further
detailed examination, we can find a difference between the two early GroupBy
schemes. In the “with replication” scheme, after the replication phase each proces-
sor will have local aggregate results from all processors. Consequently, processing
global aggregates in each processor will produce the same results, and this can be
inefficient as no parallelism is employed. However, joining and global aggregation
processes can be done at the same time. First, hash local aggregate results from R
to obtain global aggregate values, and then hash and probe the fragment of table S
to produce the final query result. The waste lies in the fact that many of the global
aggregate results will have no match with local table S in each processor.

Figure 6.3 gives a graphical illustration of the scheme. It looks very similar to
Figure 6.2, except that in the replication phase the arrows are thicker to empha-
size the fact that local aggregate results from each processor are replicated to all
processors, not distributed.

Apart from the fact that the non-group-by table (table S) is not distributed and
the local aggregate results of table R are replicated, assuming that table S is uni-
formly distributed to all processors initially (that is, round-robin data placement is
adopted in storing records S), there will be no skew problem in the joining phase.
This is not the case with the previous two schemes, as distribution is done during
the process, and this can create skewness depending on the partitioning attribute
values.

1 2 3 4
Global aggregation of R
and join with S.

Local aggregation of
table R.

Replicate local
aggregation results (R)
to all processors.

Records from the child operator

Processors:

Processors: 1 2 3 4

Figure 6.3 Early GroupBy with replication scheme

148 Chapter 6 Parallel GroupBy-Join

6.3 PARALLEL ALGORITHMS FOR
GROUPBY-AFTER-JOIN QUERY PROCESSING

An important decision needs to be made in processing GroupBy-After-Join queries,
namely, choosing the partitioning attribute. Selecting a proper partitioning attribute
plays a crucial role in performance. Although in general any attributes of the
operand relations may be chosen, two particular attributes (i.e., join attribute and
group-by attribute) are usually considered.

If the join attribute is chosen, both relations are partitioned into N fragments
by employing a partitioning function (e.g., a hash/range function) where N is the
number of processors. The cost of a parallel join operation can therefore be reduced
compared with a single-processor system. However, after join and local aggrega-
tion at each processor, a global aggregation is required at the data consolidation
phase, since local aggregation is performed on a subset of the group-by attribute.

If the group-by attribute is used for data partitioning, the relation with the
group-by can be partitioned into N fragments, while the other relation needs to
be broadcasted to all processors for the join operation.

Comparing the two methods above, in the second method (partitioning based
on the group-by attribute), the join cost is not reduced as much as in the first
method (partitioning based on the join attribute). However, no global aggregation
is required after local join and local aggregation, because records with identical
values of the group-by attribute have been allocated to the same processor.

In parallel processing of GroupBy-After-Join queries, it must be decided which
attribute is to be used as a partitioning attribute, particularly the join attribute or
the group-by attribute. Based on the partitioning attribute, there are two parallel
processing methods for GroupBy-After-Join queries, namely:

ž Join partitioning scheme and
ž GroupBy partitioning scheme

6.3.1 Join Partitioning Scheme

Given the two tables R and S to be joined, and the result grouped-by according
to the group-by attribute and possibly filtered through a Having predicate, paral-
lel processing of such query with the Join Partitioning scheme can be stated as
follows.

Step 1: Data Partitioning. The relations R and S are partitioned into N frag-
ments in terms of join attribute; that is, the records with the same join
attribute values in the two relations fall into a pair of fragments. Each
pair of the fragments will be sent to one processor for execution.

Using query 6.2 as an example, the partitioning attribute is attribute
P# of both tables Parts and Shipment, which is the join attribute. Sup-
pose we use 4 processors, and the partitioning method is a range par-
titioning, whose part numbers (P#) p1–p99, p100–p199, p200–p299,

6.3 Parallel Algorithms for Groupby-after-join Query Processing 149

and p300–399 are distributed to processors 1, 2, 3, and 4, respectively.
This partitioning function is applied to both Parts and Shipment tables.
Consequently, a processor such as processor 1 will have Parts and Ship-
ment records where the values of its P# attribute are between p1–p99,
and so on.

Step 2: Join Operation. Upon receipt of the fragments, the processors perform
in parallel the join operation on the allocated fragments. The joins in
each processor are done independently of each other. This is possible
because the two tables have been disjointly partitioned based on the join
attribute.

Using the same example as above, a join operation in a processor
like processor 1 will produce a join result consisting of Parts-Shipment
records having P# between p1 and p99.

It is worth mentioning that any sequential join algorithm (i.e.,
nested-loop join, sort-merge join, nested index join, hash join) may be
used in performing a local join operation in each processor.

Step 3: Local Aggregation. After the join is completed, each processor then per-
forms a local aggregation operation. Join results in each processor is
grouped-by according to the group-by attribute.

Continuing the same example as the above, each city found in the
join result will be grouped. If, for example, there are three cities, Bei-
jing, Melbourne, and Sydney, found in processor 1, the records will be
grouped according to these three cities. The same aggregate operation
is applied to other processors. As a result, although each processor has
distinct part numbers, some of the cities, if not all of those distributed
among the processors, may be identical (duplicated). For example, pro-
cessor 2 may have three cities, such as London, Melbourne, and Sydney,
whereas Melbourne and Sydney are also found in processor 1 as men-
tioned above, but not London.

Step 4: Redistribution. A global aggregation operation is to be carried out by
redistributing the local aggregation results across all processors such
that the result records with identical values of the group-by attribute are
allocated to the same processors.

To illustrate this step, range partitioning is again used to partition the
group-by attribute so that processors 1, 2, 3, and 4 are allocated cities
beginning with letters A–G; H–M; N–T , and U–Z , respectively. With
this range partitioning, processor 1 will distribute its Melbourne record
to processor 2, the Sydney record to processor 3, and leave the Beijing
record in processor 1. Processor 2 will do the same to its Melbourne and
Sydney records, whereas the London record will remain in processor 2.

Step 5: Global Aggregation. Each processor performs an N -way merging of the
local aggregation results, followed by performing a restriction operation
for the Having clause if required by the query.

150 Chapter 6 Parallel GroupBy-Join

Global aggregate and
the Having operation

Local join and
local aggregate function.

Partitioning on the
join attribute.

Redistribution on the
group-by attribute.

1 2 3 4

1 2 3 4

Records from where they are originally stored

Figure 6.4 Join partitioning scheme

The result of this global aggregate in each processor is a subset of
the final results, meaning that each record in each processor has a dif-
ferent city, and furthermore, the cities in each processor will not appear
in any other processors. For example, processor 1 will produce one Bei-
jing record in the query result, and this Beijing record does not appear
in any other processors. Additionally, some of the cities may then be
eliminated through the Having clause.

Step 6: Consolidation. The host simply amalgamates the partial results from the
processors by a union operation and produces the query result.

Figure 6.4 gives a graphical illustration of the join partitioning scheme. The
circles represent processing elements, whereas the arrows denote data flow through
data partitioning or data redistribution.

6.3.2 GroupBy Partitioning Scheme

The GroupBy partitioning scheme relies on partitioning based on the group-by
attribute. As the group-by attribute belongs to just one of the two tables, only the
table having the group-by attribute will be partitioned. The other table has to be
broadcasted to all processors. The processing steps of this scheme are explained as
follows.

Step 1: Data Partitioning. The table with the group-by attribute, say R, is par-
titioned into N fragments in terms of the group-by attribute, that is, the
records with identical attribute values will be allocated to the same pro-
cessor. The other table, S, needs to be broadcasted to all processors in
order to perform the join operation.

Using query 6.2 as an example, table Parts is partitioned according to
the group-by attribute, namely City. Assuming that a range partitioning

6.4 Cost Model Notations 151

1 2 3 4
Join, Group-By
(Aggregation), and
Having operations.

Partitioning one table on the
group-by attribute and
broadcast the other table.

Records from where they are originally stored

Figure 6.5 GroupBy partitioning scheme

method is used, processors 1, 2, 3, and 4 will have Parts records having
cities beginning with letters A–G; H–M; N–T , and U–Z , respectively.
On the other hand, table Shipment is replicated to all four processors.

Step 2: Join Operations. After data distribution, each processor carries out the
joining of one fragment of R with the entire table S.

Using the same example, each processor joins its Parts fragment
with the entire table Shipment. The results of this join operation in
each processor are pairs of Parts-Shipment records having the same
P# (join attribute) and the value of its City attribute must fall into the
category identified by the group-by partitioning method (e.g., processor
1 D A–G, processor 2 D H–M , etc).

Step 3: Aggregate Operations. The aggregate operation is performed by group-
ing the join results based on the group-by attribute, followed by a Having
restriction if it exists on the query.

Continuing the above example, processor 1 will group the records
based on the city and the cities are in the range of A to G. The other pro-
cessors will, of course, have a different range. Therefore, each group
in each processor is distinct from the others both within and among
processors.

Step 4: Consolidation. Since table R is partitioned on group-by attribute, the
final aggregation result can be obtained simply by a union of the local
aggregation results from the processors.

Figure 6.5 illustrates the GroupBy partitioning scheme. Note the difference
between the join partitioning and the GroupBy partitioning schemes. The former
imposes a “two-phase” partitioning scheme, whereas the latter is a “one-phase”
partitioning scheme.

6.4 COST MODEL NOTATIONS

For completeness, the notations used by the cost models are presented in Table 6.1.
They are basically comprised of parameters known by the system as well as the
data—the parameters are related to the query, unit time costs, and communication
costs.

152 Chapter 6 Parallel GroupBy-Join

Table 6.1 Cost notations

Symbol Description

System and data parameters

N Number of processors

R and S Size of table R and table S

jRj and jSj Number of records in table R and table S

jRi j and jSi j Number of records in table R and table S on node i

P Page size

H Hash table size

Query parameters

πR and πS Projectivity ratios of table R and table S

σR and σS GroupBy selectivity ratios of table R and table S

σj Join selectivity ratio

Time unit cost

IO Effective time to read a page from disk

tr Time to read a record

tw Time to write a record

th Time to compute hash value

ta Time to add a record to current aggregate value

t j Time to compare a record with a hash table entry

td Time to compute destination

Communication cost

m p Message protocol cost per page

ml Message latency for one page

The projectivity and selectivity ratios (i.e., π and σ) in the query parameters
have values ranging from 0 to 1.

The projectivity ratio π is the ratio between the projected attribute size and the
original record length. Since two tables are involved (i.e., tables R and S), we use
the notations of πR and πS to distinguish between the projectivity ratio of one
table and the other. Using query 6.1 as an example, assume that the record size of
table Project is 100 bytes and the output record size is 45 bytes. In this case, the
projectivity ratio πR is 0.45.

There are two different kinds of selectivity ratio: one is related to the group-by
operation, whereas the other is related to the join operation. The group-by selec-
tivity ratio σR is a ratio between the number of groups in the aggregate result and
the original total number of records. Since table R is aggregated (grouped-by), the
selectivity ratio σR is applicable to table R only. To illustrate how σR is determined,

6.5 Cost Model for Groupby-before-join Query Processing 153

we again use query 6.1 as an example. Suppose there are 1000 projects (1000
records in the table Project R), and it produces 4 groups only. The selectivity
ratio σR is then 4=1000 D 1=250 D 0:004. This selectivity ratio σR of 1/250 (σR D
0:004) also means that each group will gather on average 250 original records R.

The join selectivity ratio σj is also similar—that is, the ratio between the join
query result and the product of the two tables R and S. For example, if there are
100 and 200 records from table R and table S, respectively, and the join between
R and S produces 50 records, the join selectivity ratio σj can be calculated as
.50=.100 ð 200// D 0:0025. We must stress that the table sizes of R and S are
not necessarily the original table sizes of the respective tables, but the table sizes
of the join operation. So, in our case, if table R has been filtered by the previous
operation, namely the group-by operation, the above example that shows that table
R has 100 records, this is not the original size of table R but the number of groups
produced by the previous group-by operation, which then needs to be joined with
table S.

6.5 COST MODEL FOR GROUPBY-BEFORE-JOIN
QUERY PROCESSING

6.5.1 Cost Models for the Early Distribution Scheme

Since there are two phases in the early distribution scheme, we describe the cost
components of the two phases.

Cost Models for Phase One (Distribution Phase)

Cost components of the first phase (distribution phase) of the early distribution
scheme are the sum of scan cost, select data cost, finding destination cost, and data
transfer cost. These are presented in more detail as follows.

ž Scan cost is the cost of loading data from local disk in each processor. Since
data loading from disk is done page by page, the fragment size of the table
residing in each disk is divided by the page size to obtain number of pages.

..Ri =P/ ð IO/ C ..Si =P/ ð IO/ (6.1)

The term on the left is the data loading cost of table R in processor i ,
whereas the term on the right is the associated loading cost of table S. Note
that both tables need to be loaded from the disk where they reside.

ž Select cost is the cost of getting the record out of the data page, which is
calculated as the number of records loaded from the disk times reading and
writing unit cost to the main memory.

.jRi j ð .tr C tw// C .jSi j ð .tr C tw// (6.2)

The select cost also involves both records from tables R and S in each
processor.

154 Chapter 6 Parallel GroupBy-Join

ž Determining the destination cost is the cost of calculating the destination of
each record to be distributed from the processor in phase one to phase two.
This overhead is given by the number of records in each fragment times the
destination computation unit cost, which is given as follows.

.jRi j ð td/ C .jSi j ð td/ (6.3)

ž Data transfer cost of sending records to other processors is given by the num-
ber of pages to be sent multiplied by the message unit cost, which is given as
follows.

..πR ð Ri =P/ ð .m p C ml// C ..πS ð Si =P/ ð .m p C ml// (6.4)

When distributing the records during the first phase, only those attributes rele-
vant to the query are redistributed. This factor is depicted by the projectivity factor,
denoted by π.

Cost Models for Phase Two (GroupBy-Join Phase)

The second phase (GroupBy-Join phase) cost components of the early distribution
scheme include the receiving cost, which is the cost of receiving records from the
first phase, actual group-by cost, joining cost, generating result records, and disk
cost of storing query results.

ž Receiving records cost from processors in the first phase is calculated by the
number of projected values of the two tables multiplied by the message unit
cost.

..πR ð Ri =P/ ð m p/ C ..πS ð Si =P/ ð m p/ (6.5)

If the number of groups is less than the number of processors, Ri D R
/(Number of Groups), instead of Ri D R=N (i.e., assume uniform distribu-
tion), because not all processors are used. Consequently, when the number of
groups is small, smaller than the available number of processors, performance
can be expected to be poor.

ž Aggregation and join costs involve reading, hashing, computing the cumula-
tive value, and probing. The costs are as follows:

.jRi j ð .tr C th C ta// C .jSi j ð .tr C th C t j // (6.6)

The aggregation process basically consists of reading each record R, hash-
ing it to a hash table, and calculating the aggregate value. After all records R
have been processed, records S can be read, hashed, and probed. If they are
matched, the matching records are written out to the query result.

The hashing process is very much determined by the size of the hash table
that can fit into main memory. If the memory size is smaller than the hash
table size, we normally partition the hash table into multiple buckets whereby

6.5 Cost Model for Groupby-before-join Query Processing 155

each bucket can perfectly fit into main memory. All but the first bucket are
spooled to disk.

Given such a scenario, we must include the I/O cost for reading and writing
overflow buckets, which is as follows.

ž Reading/writing of overflow buckets cost is the I/O costs associated with the
limitation of main memory to accommodate the entire hash table. This cost
includes the costs for reading and writing records not processed in the first
pass of hashing.�

1 � min

�
H

σR ð jRi j ; 1

��
ð

�
πR ð Ri

P
ð 2 ð IO

�
(6.7)

The first term of the above equation can be explained as follows. For
example, if the maximum hash table size H is 10 records, selectivity ratio
σR is 1

4 , and there are 200 records (jRi j), the number of groups in the query
result will be equal to 50 groups (σR ð jRi j). Since only 10 groups can be
processed at a time, we need to break the hash table into 5 buckets. All buck-
ets but the first are spooled to disk. Hence, 80% of the groups (1 � .10=50/) is
overflow. Should there be only less or equal to 10 groups in the query result,
the first term of the above equation would be equal to 0 (zero), and hence
there would no overhead.

The second term of the above equation is explained as follows. The con-
stant 2 refers to two input/output accesses: one is for spooling of the overflow
buckets to disk and two is for reading the overflow buckets from disk. Note
that the record size is reduced by the projectivity ratio πR , because in the hash
table only the projected attributes are kept, not the whole record.

The overflow buckets associated with table S are very similar. Assuming
that the percentage of overflowing records is the same as that of for table R,
the overflow buckets for table S becomes:�

1 � min

�
H

σR ð jRi j ; 1

��
ð

�
πS ð Si

P
ð 2 ð IO

�
(6.8)

The term on the left defines the percentage of overflow, whereas the term
on the right is the I/O cost associated with rewriting and reloading table S.

ž Generating result records cost is the number of selected records multiplied
by the writing unit cost.

jRi j ð σR ð jSi j ð σj ð tw (6.9)

ž Disk cost of storing final result is the number of pages to store the final aggre-
gate values times disk unit cost, which is:

.πR ð Ri ð σR ð πS ð Si ð σj =P/ ð IO (6.10)

The total cost of the early distribution scheme is the sum of equations 6.1 to
6.10.

156 Chapter 6 Parallel GroupBy-Join

6.5.2 Cost Models for the Early GroupBy with
Partitioning Scheme

Like the early distribution scheme cost models, we describe the cost model for the
early GroupBy with partitioning scheme in term of the phases.

Cost Models for Phase One (Grouping Phase)

The cost components of the first phase (grouping phase) consist of scan cost, select
data page cost, local aggregation cost, and generating local aggregation writing
cost.

ž Scan cost is associated with both tables R and S, which is the same as that
of the “early distribution” scheme, and therefore equation 6.1 in the previous
section can be used.

ž Select cost is also associated with both tables R and S, and it is identical to
equation 6.2 in the early distribution scheme.

ž Local aggregation cost covers the reading, hashing, and accumulating aggre-
gate values costs, which are as follows.

jRi j ð .tr C th C ta/ (6.11)

Note that the cost equation involves R only, not S, since table S has not yet
been processed. equation 6.11 is similar to the left-hand side term of equation
6.6 presented in the previous section. The only difference is that equation
6.6 involves the hashing/probing cost of table S. In equation 6.11, only the
aggregation cost is involved.

ž Reading/writing of overflow buckets cost is similar to equation 6.7 in the early
distribution scheme. The main difference is that the group-by selectivity fac-
tor used here is now identified by σR1 instead of σR because in the early
GroupBy with partitioning scheme, there are two group-by operations: local
group-by and final/global group-by. Here σR1 indicates the first group-by
selectivity ratio.

�
1 � min

�
H

σR1 ð jRi j ; 1

��
ð

�
πR ð Ri

P
ð 2 ð IO

�
(6.12)

ž Generating final result cost is:

jRi j ð σR1 ð tw (6.13)

The sum of equations 6.11 to 6.13 gives the total cost for phase one of the
early GroupBy with partitioning scheme.

6.5 Cost Model for Groupby-before-join Query Processing 157

Cost Models for Phase Two (Distribution Phase)

Cost components of the second phase (distribution phase) are comprised of finding
destination costs, actual data transfer, and receiving costs.

ž Determining the destination cost is associated with both tables R and S, since
both tables are distributed.

.jRi j ð σR1 ð td/ C .jSi j ð td/ (6.14)

Note that R has been reduced by the group-by selectivity ratio of σR1

whereas S is not yet filtered.
ž Data transfer cost is the cost of sending local aggregate results and fragment

of table S from each processor.

..πR ð Ri ð σR1=P/ ð .m p C ml// C ..πS ð Si =P/ ð .m p C ml// (6.15)

Also note that R has been reduced by both the projectivity factor of πR and
the group-by selectivity factor of σR1, whereas S is reduced by the projectivity
factor πS only.

ž Receiving records cost is similar to the data transfer cost, but without the
message latency overhead.

..πR ð Ri ð σR1=P/ ð m p/ C ..πS ð Si =P/ ð m p/ (6.16)

We must reiterate that if the number of groups is less than the number of
processors, Ri D R/(Number of Groups), instead of Ri D R=N (i.e., assume
uniform distribution).

The sum of equations 6.14 to 6.16 gives the total cost for phase two of the early
GroupBy with partitioning scheme.

Cost Models for Phase Three (GroupBy-JoinPhase)

Cost components of the third phase (grouping and joining phase) are as follows.

ž Aggregation and Join costs involve reading, hashing, computing the cumula-
tive value, and probing. The costs are as follows:

.jRi j ð σR1 ð .tr C th C ta// C .jSi j ð .tr C th C t j // (6.17)

ž Reading/Writing of overflow buckets cost is similar to equations 6.7 and 6.8
described above. The overflow percentage is determined by the maximum
hash table size and the table to be hashed. Note that jRi j has been reduced
by σR2 and this is determined by the second group-by selectivity ratio. We
assume that σR1 ½ σR2, meaning that the second group-by selectivity ratio is
a further filtering of the first group-by selectivity. Note also that the I/O cost

158 Chapter 6 Parallel GroupBy-Join

associated with jRi j has been reduced by the first group-by selectivity ratio
σR1. �

1 � min

�
H

σR2 ð jRi j ; 1

��
ð

�
πR ð σR1 ð Ri

P
ð 2 ð IO

�
C

�
1 � min

�
H

σR2 ð jRi j ; 1

��
ð

�
πS ð Si

P
ð 2 ð IO

�
(6.18)

ž Generating result records cost is the number of selected records multiplied by
the writing unit cost, which is identical to equation 6.9. In the early GroupBy
with partitioning scheme, we also use equation 6.9. Note that equation 6.9
uses σR . Here σR is calculated as the product of σR1 and σR2.

ž Disk cost for storing final result is the number of pages to store the final
aggregate values times the disk unit cost, which is identical to equation 6.10.
Similar to the above (i.e., generating result records cost), σR is used to indicate
the overall group-by selectivity ratio.

The total cost of the early GroupBy with partitioning scheme is the sum of
equations 6.11 to 6.18.

6.5.3 Cost Models for the Early GroupBy with
Replication Scheme

Cost Models for Phase One (Grouping Phase)

The cost component of the first phase of the early GroupBy with replication
scheme is identical to that of the first phase of the early GroupBy with partitioning
scheme.

Cost Models for Phase Two (Replication Phase)

The cost component of the second phase shows a major difference, since now we
replicate local aggregate results. This cost component is associated solely with
table R, as table S has not moved at all from where it was stored. Also, in the
replication, no cost is associated with finding destination, since no hashing/ranging
operation is performed in order to find the processor to which each record was sent.

ž Data transfer cost is the cost of sending local aggregate results of each pro-
cessor to all processors.

..πR ð Ri ð σR1 ð .N � 1/=P/ ð .m p C ml// (6.19)

In the above equation, Ri is reduced by two factors, namely πR and σR1.
However, the replication cost is increased by the number of processors N � 1.

ž Receiving records cost is as follows.

..πR ð Ri ð σR1 ð .N � 1/=P/ ð m p/ (6.20)

6.6 Cost Model for “Groupby-after-join” Query Processing 159

The sum of the above two equations gives the total cost for phase two of the
early GroupBy with replication scheme.

Cost Models for Phase Three (Grouping/Joining Phase)

Cost components for the third phase (grouping and joining phase) are as follows.

ž Aggregation and Join costs are as follows:

.jRj ð σR1 ð .tr C th C ta// C .jSi j ð .tr C th C t j // (6.21)

Note that number of records jRj is used, instead of jRi j, because of the
replication done in the previous phase. If jSi j is initially placed in each local
disk with a round-robin data placement method, there will be no skew asso-
ciated with jSi j and jSi j D jSj=N .

ž Reading/writing of overflow buckets cost is very similar to equation 6.18
except that now we use R, not Ri , because of the replication.�

1 � min

�
H

σR2 ð jRj ; 1

��
ð

�
πR ð σR1 ð R

P
ð 2 ð IO

�

C
�

1 � min

�
H

σR2 ð jRj ; 1

��
ð

�
πS ð Si

P
ð 2 ð IO

�
(6.22)

The generating result records cost and disk cost are the same as those of the
early GroupBy with partitioning scheme, which are also identical to those of the
early distribution scheme. Hence, equations 6.9 and 6.10 can be used.

6.6 COST MODEL FOR “GROUPBY-AFTER-JOIN”
QUERY PROCESSING

6.6.1 Cost Models for the Join Partitioning Scheme

Since there are four phases in the join partitioning scheme, we describe the cost
components of the four phases.

Cost Models for Phase One (Data Partitioning Phase)

Cost components in the first phase (data partitioning phase) of the join partition
method are the sum of scan cost, select data cost, and local partitioning cost. These
are presented in more detail as follows.

ž Scan cost, which is the cost of loading data from local disk in each processor,
is identical to equation 6.1 given for the GroupBy-before-join schemes.

ž Select cost, which the cost of getting a record out of the data page, is identical
to equation 6.2 given for the GroupBy-before-join schemes.

160 Chapter 6 Parallel GroupBy-Join

ž Determining the local partitioning cost is the cost of the relations of tables R
and S being partitioned into N fragments in terms of join attribute. This cost
is given in equation 6.3 given for the GroupBy-before-join schemes.

Cost Models for Phase Two (Join and Local Aggregation Phase)

The second phase (join and local aggregation phase) cost components for the join
partition method are comprised of the receiving cost, which is the cost of receiving
records from the first phase, and the joining cost of joining the allocated frag-
ments.

ž Join costs involve reading, hashing, and probing. The costs are as follows:

.jRi j ð .tr C th C t j // C .jSi j ð .tr C th C t j // (6.23)

ž Local aggregation costs are as follows:

.jRi j ð σj ð .tr C th C ta// C .jSi j ð σS ð .tr C th C ta// (6.24)

ž Reading/writing of overflow buckets cost is the I/O costs associated with the
limitation of main memory to accommodate the entire hash table. This cost
includes the costs for reading and writing records not processed in the first
pass of hashing. This cost is similar to equation 6.7. However, the main dif-
ference is that here the size of table R is already reduced by the join selectivity
factor σj .

�
1 � min

�
H

σj ð jRi j ; 1

��
ð

�
πR ð Ri

P
ð 2 ð IO

�
(6.25)

The overflow buckets associated with table S are very similar. Assuming
that the percentage of records overflowing is the same as that for table R, the
overflow buckets for table S become:

�
1 � min

�
H

σj ð jRi j ; 1

��
ð

�
πS ð Si

P
ð 2 ð IO

�
(6.26)

The left-hand term defines the percentage of overflow, whereas the
right-hand term is the I/O cost associated with rewriting and reloading table
S.

ž Generating result records cost is the number of selected records multiplied
by the writing unit cost.

jRi j ð σj ð jSi j ð σS ð tw (6.27)

6.6 Cost Model for “Groupby-after-join” Query Processing 161

Cost Models for Phase Three (Redistribution Phase)

The third phase (redistribution phase) cost components for the join partition
method are comprised of the joining cost, which is the cost of joining records from
the second phase, generating result records, and disk cost of storing query results.

ž Determining the destination cost is associated with both tables R and S, since
both tables are distributed.

.jRi j ð σj ð td/ C .jSi j ð σS ð td/ (6.28)

ž Data transfer cost is the cost for sending local aggregate results.

..πR ð Ri ð σj =P/ ð .m p C ml// C ..πS ð Si ð σS=P/ ð .m p C ml//

(6.29)

Cost Models for Phase Four (Global Aggregation Phase)

Cost components for the fourth phase (global aggregation phase) are comprised of
receiving costs, aggregation costs, generating result costs, and disk costs.

ž Receiving records cost is similar to the data transfer cost, but without the
message latency overhead.

..πR ð Ri ð σj =P/ ð m p/ C ..πS ð Si ð σS=P/ ð m p/ (6.30)

ž Aggregation costs involve reading, hashing, computing the cumulative value,
and probing. The costs are as follows:

.jRi j ð σj ð .tr C th C ta// C .jSi j ð σS ð .tr C th C ta// (6.31)

ž Generating result records cost is the number of selected records multiplied
by the writing unit cost.

jRi j ð σj ð jSi j ð σS ð tw (6.32)

ž Disk cost of storing final result is the number of pages to store the final aggre-
gate values times disk unit cost, which is:

.πR ð Ri ð σj ð πS ð Si ð σS=P/ ð IO (6.33)

6.6.2 Cost Models for the GroupBy Partitioning
Scheme

Like the join partitioning scheme cost models, we shall describe the cost model for
the GroupBy partitioning scheme in terms of the phases.

162 Chapter 6 Parallel GroupBy-Join

Cost Models for Phase One (Data Partitioning and Broadcasting

Phase)

The cost components in the first phase (data partitioning phase) consist of scan
cost, select data page cost, local aggregation cost, and generating local aggregation
writing cost.

ž Scan cost is associated with both tables R and S, which is the same as that
of the join partitioning scheme, and therefore equation 6.1 presented in the
previous section can be used.

ž Select cost is also associated with both tables R and S, and it is identical to
equation 6.2 in the join partitioning scheme.

ž Determining the local partitioning cost is the cost for the relations of tables
R is partitioned into N fragments in terms of group-by attribute.

.jRi j ð td/ (6.34)

ž Data transfer cost for sending records to other processors is given by the
number of pages to be sent multiplied by the message unit cost, which is
given as follows.

..πS ð Si ð .N � 1/=P/ ð .m p C ml// (6.35)

The sum of all costs described above (for phase one) is the total cost of the first
phase of the GroupBy partitioning scheme.

Cost Models for Phase Two (Join and Aggregation Phase)

The second phase (join and aggregation phase) cost components for the GroupBy
partitioning scheme are comprised of the receiving cost, which is the cost of receiv-
ing records from the first phase, and the joining cost for joining the allocated
fragments.

ž Receiving records cost is similar to the data transfer cost, but without the
message latency overhead.

..πS ð Si ð σS=P/ ð m p/ (6.36)

ž Join costs involve reading, hashing, computing the cumulative value, and
probing. The costs are as follows:

.jRi j ð σR ð .tr C th C t j // C .jSi j ð .tr C th C t j // (6.37)

The aggregation process basically involves reading each record R, hashing it to
a hash table, and calculating the aggregate value. After all records R have been
processed, records S can be read, hashed, and probed. If they are matched, the
matching records are written out to the query result.

6.7 Summary 163

The hashing process is very much determined by the size of the hash table that
can fit into main memory. If the memory size is smaller than the hash table size,
we normally partition the hash table into multiple buckets whereby each bucket
can perfectly fit into main memory. All but the first bucket are spooled to disk.

Given this scenario, we must include the I/O cost for reading and writing over-
flow buckets, which is as follows.

ž Aggregation costs involve reading, hashing, computing the cumulative value,
and probing. The costs are as follows:

.jRi j ð σR ð .tr C th C ta// C .jSi j ð σj ð .tr C th C ta// (6.38)

ž Reading/writing of overflow buckets cost is the I/O costs associated with the
limitation of main memory to accommodate the entire hash table. This cost
includes the costs for reading and writing records not processed in the first
pass of hashing.�

1 � min

�
H

σR ð jRi j ; 1

��
ð

�
πR ð Ri

P
ð 2 ð IO

�
(6.39)

For table S, assuming that the percentage of records overflowing is the same as
that of for table R, the overflow buckets for table S becomes:�

1 � min

�
H

σR ð jRi j ; 1

��
ð

�
πS ð Si

P
ð 2 ð IO

�
(6.40)

The left-hand term defines the percentage of overflow, whereas the right-hand
term is the I/O cost associated with rewriting and reloading table S.

The generating result records cost and disk cost are the same as those of the
join partitioning scheme. Hence, equations 6.9 and 6.10 can be used.

6.7 SUMMARY

The focus of this chapter is parallelism of queries involving join and group-by
operations.

The first query is where the join attribute is identical with the group-by attribute.
This is called the GroupBy-before-join query. In this query, the group-by opera-
tion is carried out first and is then followed by the join operation. There are three
parallel algorithms to process this type of queries, namely, the Early Distribution
scheme, the Early GroupBy with partitioning scheme, and the Early GroupBy with
replication scheme. The early distribution scheme is preferred when the number
of groups produced has grown to be large, but is not favored when the number of
groups produced is small. On the other hand, the Early-GroupBy with replication is
preferable when the number of groups produced is small, but it gives rise to serious
performance problems once the number of groups produced by the query is large.

The second query is where the join attribute is different from the group-by
attribute. Consequently, the group-by operation has to be carried out after the

164 Chapter 6 Parallel GroupBy-Join

join operation. This is called GroupBy-after-join query. There are two methods of
parallel processing of such a query, depending on which attribute is chosen as a par-
titioning attribute: the join attribute or the group-by attribute. The former is called
the join partitioning scheme, whereas the latter is called the GroupBy partition-
ing scheme. For efficiency, when the join selectivity factor is small and the degree
of skewness is low, the join partitioning scheme leads to less cost; otherwise, the
GroupBy partitioning scheme is desirable. In addition, it can be observed that the
partitioning with the group-by attribute scheme is insensitive to the group-by factor
and thus the scheme will simplify algorithm design and implementation.

6.8 BIBLIOGRAPHICAL NOTES

Group-by and aggregate functions are tightly related. Early work on aggregate
functions and group-by operations include optimization SQL queries having aggre-
gates (Bultzingsloewen VLDB 1987; Muralikrishna VLDB 1992), and group-by
operation in relational algebra (Gray BNCOD 1981). Yan and Larson (ICDE 1994)
worked on group-by before join, where they proposed to perform early reduction
through early grouping.

In the parallelism area, Shatdal and Naughton (SIGMOD 1995) pioneered the
work on parallel aggregate algorithms. Spiliopoulou et al. (IEEE TKDE 1996)
later proposed parallel join with set operators and aggregates. Liang and Orlowska
(1996) focused on parallel multidimensional aggregates, whereas Hassan and
Bamha (2006) later proposed parallel group-by-join queries processing on
shared-nothing architectures.

Other work on group-by, aggregates, and join focuses on the data streams appli-
cations, including those by Ganguly et al. (EDBT 2004 and PODS 2005), Jiang
et al. (DEXA 2006), and Wang et al. (ADBIS 2004). Recent work has emerged in
XQueries employing a groupby operation (Deutsch et al. ICDE 2004).

6.9 EXERCISES

6.1. Given the following initial data placement of tables Project and Shipment in
three processors, assume the query is expressed in the following SQL command:

Processor 1 Processor 2 Processor 3
Project.J# Shipment.J# Project.J# Shipment.J# Project.J# Shipment.J#
P1 P2 P2 P1 P3 P1
P4 P2 P5 P2 P6 P3
P7 P3 P8 P4 P9 P3

P4 P4 P3
P5 P5 P4

6.9 Exercises 165

Select PROJECT.J#, SUM(Qty)
From PROJECT, SHIPMENT
Where PROJECT.J# D SHIPMENT.J#
Group By PROJECT.J#;

Show how the following parallel GroupBy-before-join algorithms work, using the above
tables.

(a) Early distribution scheme

(b) Early GroupBy with partitioning scheme

(c) Early GroupBy with replication scheme

6.2. Write the pseudo-code algorithms for the above-mentioned three parallel schemes for
parallel GroupBy-before-join algorithms.

6.3. Given the following initial data placement of tables Parts and Shipment in three pro-
cessors, assume the query is expressed in the following SQL command:

Processor 1 Processor 2 Processor 3
Parts.P#, Shipment.P# Parts.P#, Shipment.P# Parts.P#, Shipment.P#
Parts.City Parts.City Parts.City
A1, A2 A2, A1 A3, A1
Sydney Adelaide Adelaide
A4, A2 A5, A2 A6, A3
Melbourne Adelaide Melbourne
A7, A3 A8, A4 A9, A3
Sydney Melbourne Sydney

A4 A4 A3
A5 A5 A4

Select PARTS.City, AVG(Qty)
From PARTS, SHIPMENT
Where PARTS.P# D SHIPMENT.P#
Group By PARTS.City;

Show how the following parallel GroupBy-after-join algorithms work, using the above
tables.

(a) Join partitioning scheme

(b) GroupBy partitioning scheme

6.4. Write the pseudo-code algorithms for the above-mentioned two parallel schemes for
parallel GroupBy-after-join.

6.5. Looking at the cost notations in Table 6.1, explain two categories of selectivity ratios
σR and σj .

6.6. Explain the main difference between equations 6.7 and 6.12 in terms of the selectivity
ratio σR in equation 6.7 and σR1 in equation 6.12.

6.7. Explain the similarity and difference between equations 6.7 and 6.8. Illustrate your
answer with an example.

166 Chapter 6 Parallel GroupBy-Join

6.8. Investigate how parallel GroupBy-before-join and parallel GroupBy-after-join are
expressed in SQL. Examine how these queries are executed in parallel by the query
engine. Is there any difference between their parallel execution by the query engine
and the parallel schemes described in this chapter, especially in terms of the sequence
of the join operation and the group-by operation?

Chapter7

Parallel Indexing

Index is an important element in databases, and the existence of index is unavoid-
able. Because of the importance of index in database systems, in this chapter we
focus solely on parallel indexing. Three important elements in parallel indexing are
studied, namely, parallel index structures, parallel index maintenance, and parallel
index storage.

In Section 7.1, a classification of parallel indexing for parallel databases is
outlined. The details of parallel indexing structures are explained in Section 7.2.
Section 7.3 focuses on parallel index maintenance, including insertion and deletion
of a node from a parallel index tree. The next issue on parallel indexing is storage.
Since there are different kinds of parallel index structures, we need to understand
the storage requirements for each of them. These are discussed in Section 7.4.

When an index has been built on a particular attribute, database operations (e.g.,
selection, join) on this attribute will become more efficient by utilizing the index.
Here, we also present parallel search and parallel join query processing whereby one
or more indexes based on the attribute involved in the query exist. Therefore, parallel
search and parallel join may need to make use of this already existing index.

In Sections 7.5 and 7.6, we look at the algorithms for parallel search and parallel
join query processing involving indexes. As there are many different parallel index-
ing structures and parallel algorithms for search and join, a comparative analysis
is given. The aim of this comparative analysis is to examine each parallel indexing
structure in terms of its support for efficient parallel query processing, particularly
for parallel search and parallel join. For this purpose, Section 7.7 is included in this
chapter, where a full comparison is given.

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

167

168 Chapter 7 Parallel Indexing

7.1 PARALLEL INDEXING—AN INTERNAL
PERSPECTIVE ON PARALLEL INDEXING
STRUCTURES

To understand parallel indexing support of parallel query processing, it is criti-
cal to know how a parallel index is structured in a parallel environment. Parallel
indexing structure is essentially data partitioning, which focuses on how indexes
are partitioned in parallel environments.

Data partitioning methods for parallel database systems are studied in
Chapter 6. Since the table structure is flat, data partitioning for tables is relatively
straightforward. This is not the case for indexes. Because of their complex
structure, index partitioning is not as straightforward as table partitioning, and a
comprehensive study in index partitioning becomes challenging. In this section, a
classification for index partitioning is provided.

There are various data structures for indexing in database systems. One of the
most popular data structures for index is based on B C trees. With a B C tree,
each nonleaf node may consist of up to k keys and kC1 pointers to the nodes on
the next level on the tree hierarchy (i.e., child nodes). All child nodes, which are on
the left-hand side of the parent node, have key values less than, or equal to, the key
of their parent node. On the other hand, keys of child nodes on the right-hand side
of the parent node are greater than the key of their parent node. The structure of
leaf nodes is slightly different from that of nonleaf nodes. Each leaf node consists
of up to k keys, where each key has a pointer (called data pointer) to the actual
record; and each node has one node pointer to a right-side neighboring leaf node.
Having all data pointers stored on the leaf nodes is considered better than storing
data pointers in the nonleaf nodes like the original B trees. Furthermore, by having
node pointers on the leaf level, it becomes possible to trace all leaf nodes from the
left-most to the right-most nodes, producing a sorted list of keys.

As a running example, in this chapter we provide a table with some sample
records in it (see Figure 7.1). The sample table consists of records of IDs and
Names. The index is inserted based on the order of the records in the table. Assume
that in the index tree the maximum number of node pointers from any nonleaf node
is 4, and the maximum number of data pointers from any leaf node is 3.

In parallel index partitioning or parallel indexing structures, given a network of
processing elements, each with its own processor, disk, and main memory (i.e.,
shared-nothing architecture), various partitioning methods exist. In general, there
are three parallel indexing structures, namely:

1. Nonreplicated index (NRI),

2. Partially replicated index (PRI), and

3. Fully replicated index (FRI)

For the first two parallel indexing structures (i.e., NRI and PRI), three different
variations are considered, which depend on two factors, namely, index partitioning
attributes and table partitioning attributes. The first variation is where the index

7.2 Parallel Indexing Structures 169

Table (ID, Name):

23 Adams 18 Kathy 39 Uma
65 Bernard 21 Larry 43 Vera
37 Chris 10 Mary 47 Wenny
60 David 74 Norman 50 Xena
46 Eric 78 Oprah 69 Yuliana
92 Fred 15 Peter 75 Zorro
48 Greg 16 Queen 8
71 Harold 20 Ross 49 Bonnie
56 Ian 24 Susan 33 Caroline
59 Johanna 28 Tracey 38 Dennis

Index (B+ Tree):

o8 o10 o15 o28 o33 o37 o46 o47 o48

o38 o39 o43 o49 o50 o56 o65 o69 o71o16 o18 o23 o24

o20 o21 o59 o60 o74 o75

o78 o92

15 43 56

37

18

21 24 71 75

48 60

Agnes

Figure 7.1 A sample table and index

partitioning attribute is the same as the table partitioning attribute. The second vari-
ation is where no index partitioning attribute is used. The last option is where the
index partitioning attribute is different from that of the table. For the FRI structure,
only two variations are available, that is, the first and the third variations above.
This classification gives a complete possibility of indexing in parallel database sys-
tems, even though only a few of these categories have been applied to commercial
database management systems, such as Oracle.

To give the reader a better view of these different structures, Figure 7.2 shows
a matrix of the three parallel indexing structures and their various options. The
details of each parallel indexing structure are discussed in the next section.

7.2 PARALLEL INDEXING STRUCTURES

7.2.1 Nonreplicated Indexing (NRI) Structures

A nonreplicated indexing (NRI) structure, as the name suggests, is where the
global index is partitioned into several disjoint and smaller indices. Each of these
small indices is placed in a separate processing element. When partitioning the
index, we need to consider partitioning of the table as well. This explains the back-
ground of the three variations of NRI as described in the previous section.

170 Chapter 7 Parallel Indexing

No Index
Partitioning

Attribute

Indexed Attribute ≠
Table Partitioning

Attribute

Nonreplicated
Index
NRI

Partially
Replicated Index

PRI
Fully Replicated

Index
FRI

NRI-2 NRI-3

PRI-1

NRI-1

PRI-2 PRI-3

FRI-1 FRI-3

Indexed Attribute
= Table

Partitioning
Attribute

Figure 7.2 Parallel indexing structures

The first model of NRI, abbreviated as NRI-1, is where the index partitioning
attribute is the same as the table partitioning attribute. Using the sample data shown
in Figure 7.1, if the table (consisting of ID and Name fields) is range partitioned
based on the ID, the global index is also partitioned with the same attribute. Sup-
pose that there are three processing elements, and the adopted range partitioning
indicates that processor 1 is between IDs 1 and 30, processor 2 is between 31 and
60, and the last processor is between 60 and 100. After the table has been parti-
tioned according to this range partitioning strategy, each processing element then
builds its local index on the ID field. Figure 7.3 shows the composition of each

o8 o10 o15 o23 o24 o28

o49 o50 o56

o16 o18

o33 o37

o20 o21

46

15 18

37 39

21

48 56

o38 o39 o43 o46 o47 o48 o59 o60

o74 o75 o78 o92o65 o69 o71

71 75

Processor 1 (1-30):

Processor 2 (31-60):

Processor 3 (61-100):

Figure 7.3 NRI-1 structure (index partitioning attribute D table partitioning attribute)

7.2 Parallel Indexing Structures 171

processing element with its local index. The partial table is now shown, but each
key in the local index has a corresponding record locally.

The second model of NRI, abbreviated as NRI-2, is where local indices are built
on whatever data already exists in each processing element. The table partitioning
attribute can be unknown, a different attribute is used in table partitioning, or even
a nonrange partitioning applied to the indexed attribute. For example, the table is
partitioned based on attribute Name. Suppose the partitioning strategy for the table
is to take the second letter of each Name and to apply the following rules. If the
second letter of the Name is a consonant, place it in processing element 1. If it is a
vowel of letter a or e, place it in processing element 2, and finally if it is the other
vowel (i.e., letter i; o, or u), place it in processing element 3. Once the table is par-
titioned with these rules, local indices based on the ID field are then built. Because
the local index has no global semantics, we describe this indexing method as not
having an index partitioning attribute. NRI-2 structure assumes that each processor
is like an independent single processor, and an index is built on the local data
without considering the global picture of a multiprocessor environment. Figure 7.4
shows the composition of each processing element with its local data and index.

The last model of NRI, abbreviated as NRI-3, is where there is an attribute
used in the index partitioning, but it is different from that of the table partitioning.
For example, the index is partitioned based on the ID field, whereas the table is
partitioned according to the Name field. This structure is quite common in parallel
database systems, since parallel searching on the table partitioning attribute can
use the information on table partitioning, whereas parallel searching on the indexed
attribute may use the information on index partitioning.

Because of the difference in attribute partitioning, it becomes impossible to
locate all of the records at the same place as its indices. For example, record (10,
Mary) is allocated to processing element 2 because “Mary” has letter a as its sec-
ond character and letter a is a vowel of either a or e, and hence record (10, Mary)
should be placed in processing element 2 according to the partitioning rules set
for NRI-2. However, ID 10 for Mary will be allocated in processing element 1
because processing element 1 is ranged between IDs 1 and 30. Therefore, it will
be necessary to have a data pointer from the leaf node containing key ID 10 in
processor 1 to the actual record of (10, Mary) in processor 2. In other words, the
data pointer crosses between processors. Figure 7.5 shows an illustration of NRI-3
(dashed arrows are the data pointers). For simplicity of the diagram, not all data
pointers are shown.

In summary, NRI-1 and NRI-2 are where the index is local and built on the
local data, whereas NRI-3 is where the index is not built on the local data but is
partitioned based on the index partitioning attribute.

7.2.2 Partially Replicated Indexing (PRI) Structures

There are two major differences between a partially replicated indexing (PRI)
structure and the NRI structures. The first is suggested by the name itself, where
PRI has some degree of replication, while NRI has not. The second difference is

172 Chapter 7 Parallel Indexing

Processor 1
23 Adams
37 Chris
46 Eric
92 Fred
48 Greg
78 Oprah
28 Tracey
39 Uma
8 Agnes
Name: −x-------
x = consonant

Processor 2
65 Bernard
60 David
71 Harold
56 Ian
18 Kathy
21 Larry
10 Mary
15 Peter
43 Vera
47 Wenny
50 Xena
33 Caroline
38 Dennis
Name: -x-------
x= vowel (a,e)

Processor 3
59 Johanna
74 Norman
16 Queenie
20 Ross
24 Susan
69 Yuliana
75 Zorro
49 Bonnie
Name: −x-------
x = vowel(i,o,u)

o16 o20 o69 o74 o75

20 59

Processor 3:

o28 o37 o78 o92

23 37 48

Processor 1:

o8 o23

o50 o56 o60o10 o15

21

15

o18 o21 o33 o38 o43 o47 o65 o71

Processor 2:

38 47 60

o24 o49 o59

o39 o46 o48

Figure 7.4 NRI-2 (no index partitioning attribute is used)

related to the composition of the index itself. Unlike in NRI, where the global
index is physically partitioned, in PRI the global index is maintained. In other
words, each processing element has a different part of the global index, and the
overall structure of the global index is still preserved. The ownership rule of each
index node is that the processor owning a leaf node also owns all nodes from the
root to that leaf. Consequently, the root node is replicated to all processors, and
nonleaf nodes may be replicated to some processors. Additionally, if a leaf node
has several keys belonging to different processors, this leaf node is also replicated
to the processors owning the keys.

Like NRI, PRI has three variations: the index partitioning attribute is the same as
the table partitioning attribute; no index partitioning attribute is used; and the index
partitioning attribute is different from the table partitioning attribute. Using the
same example shown previously, PRI-1 is exhibited in Figure 7.6. In this example,
PRI-1 uses the ID field as the index partitioning attribute, which is the same as for
the table partitioning. Assume the range partitioning rules used are that processor

7.2 Parallel Indexing Structures 173

Processor 1
23 Adams
37 Chris
46 Eric
92 Fred
48 Greg
78 Oprah
28 Tracey
39 Uma
8 Agnes
Name: −x-------
x = consonant

Processor 2
65 Bernard
60 David
71 Harold
56 Ian
18 Kathy
21 Larry
10 Mary
15 Peter
43 Vera
47 Wenny
50 Xena
33 Caroline
38 Dennis
Name: −x-------
x = vowel (a,e)

Processor 3
59 Johanna
74 Norman
16 Queenie
20 Ross
24 Susan
69 Yuliana
75 Zorro
49 Bonnie
Name: −x-------
x = vowel (i,o,u)

o8 o10 o15 o23 o24 o28

o49 o50 o56

o16 o18

o33 o37

o20 o21

46

15 18

37 39

21

48 56

o38 o39 o43 o46 o47 o48 o59 o60

o74 o75 o78 o92o65 o69 o71

71 75

Processor 1 (1-30):

Processor 2 (31-60):

Processor 3 (61-100):

Figure 7.5 NRI-3 (index partitioning attribute 6D table partitioning attribute)

1 holds IDs between 1 and 30, processor 2 holds IDs between 31 and 60, and the
rest go to processor 3. Note in Figure 7.6 that the fifth leaf node (28, 33, 37) is
replicated to processors 1 and 2 because key 28 belongs to processor 1 while keys
33 and 37 belong to processor 2. Also, note that some nonleaf nodes are repli-
cated whereas others are not. For example, nonleaf node 15 is not replicated and is
located only in processor 1, whereas nonleaf node 18 is replicated to processors 1
and 2. It is also clear that the root node is fully replicated.

Data structure for the PRI structures can be rather problematic in implementa-
tion. To illustrate our point, consider the root node 37, which is replicated to all
processors. Since the child node 18 is located in processor 1 as well as processor
2, the root node 37 in both processors would have to maintain two node pointers
each, one to the node 18 locally and the other to the copy of node 18 located at the
other place. The structure of each node will need to be altered to allow multiple
data pointers. Furthermore, the left node pointers coming out from node 37 located
at processor 3 are linked to nodes 18 at processors 1 and 2. Figure 7.7 gives a dia-
grammatic illustration of this matter. It shows only the first two levels of the index
tree as previously displayed in Figure 7.6.

174 Chapter 7 Parallel Indexing

o8 o10 o15 o28 o33 o37 o46 o47 o48

o38 o39 o43 o49 o50 o56 o65 o69 o71o16 o18 o23 o24

o20 o21 o59 o60 o74 o75

o78 o92

15 43 56

37

18

21 24 71 75

48 60

Processor 1 (1-30)
Processor 2 (30-60) Processor 3 (61-100)

Figure 7.6 PRI-1 (index partitioning attribute D table partitioning attribute)

37

18 48 60

37

18

Processor 1 Processor 2

48 60

37

Processor 3

Figure 7.7 Multiple node pointers model for PRI

Since the multiple node pointers model for PRI raises node pointer complexity,
this model is not practical. Rather, a single node pointer model is more efficient
and practical. In the single node pointer model, each node pointer has only one
outgoing node pointer.

If the child node exists locally, the node pointer points to this local node only,
even when this child node is also replicated to other processors. For example, from
node 37 at processor 1 there is only one node pointer to the local node 18. The
child node 18 at processor 2 will not receive an incoming node pointer from the
root node 37 at processor 1; instead, it will receive one node pointer from the local
root node 37 only.

If the child node does not exist locally, the node pointer will choose one node
pointer pointing to the nearest child node (in case multiple child nodes exist some-
where else). For example, from the root node 37 at processor 1 there is only one
outgoing right node pointer to child node (48,60) at processor 2. In this case, we
assume that processor 2 is the nearest neighbor of processor 3. Child node (48,60),
which also exists at processor 3, will not receive a node pointer from root node 37
at processor 1.

With this single node pointer model, it is always possible to trace a node from
any parent node, and consequently there is no crucial need to have multiple node

7.2 Parallel Indexing Structures 175

pointers. For example, it is possible to trace to node (71,75) from the root node 37
at processor 1, although there is no direct link from root node 37 at processor 1
to its direct child node (48,60) at processor 3. Tracing to node (71,75) can still be
done through node (48,60) at processor 2.

A more formal proof for the single node pointer model of PRI is as follows.
First, given that a parent node is replicated when its child nodes are scattered at
multiple locations, there is always a direct link from the copy of this parent node
to any of its child nodes. Second, using the same methodology as the first state-
ment above, given a replicated grandparent node, there is always a direct link from
whichever copy of this grandparent node to any of the parent nodes. Considering
the first and the second statements above, we can conclude that there is always a
direct link from the copy of the grandparent node to any of its child nodes.

Figure 7.8 shows an example of a single node pointer model for PRI. It shows
only the top three levels of the index tree depicted previously in Figure 7.6.

Apart from the issue of a node pointer at a nonleaf level, that of node pointers
being at a leaf level is also worth mentioning. As some leaf nodes are replicated,
and leaf nodes are chained from the left to the right, it is also important to maintain
a node pointer from the right-most leaf node of one processor to the first leaf node
of the next processor, which does not exist in the previous processor. For example,
Figure 7.9 shows that leaf node (28, 33, 37), which is replicated at processors 1 and
2, has a node pointer coming from processor 1 to node (38, 39 43) at processor 2.

37

18 48 60

37

18

Processor 1 Processor 2

48 60

37

Processor 3

15 21 24 21 24 71 75
43 56

Figure 7.8 Single node pointer model for PRI

o28 o33 o37 o28 o33 o37 o38 o39 o43

Processor 1 Processor 2

Figure 7.9 Node pointers at a leaf node level crossing from one processor to another

176 Chapter 7 Parallel Indexing

1

1 2

1 1

1

11

1 122

2

22

22

2

22

23

3

3 3

3

3

3 32

o8 o10 o15 o28 o33 o37 o46 o47 o48

o38 o39 o43 o49 o50 o56 o65 o69 o71o16 o18 o23 o24

o20 o21 o59 o60 o74 o75

o78 o92

15 43 56

37

18

21 24 71 75

48 60

Processor 1 Processor 2 Processor 3
23 Adams 65 Bernard 59 Johanna
37 Chris 60 David 74 Norman
46 Eric 71 Harold 16 Queenie
92 Fred 56 Ian 20 Ross
48 Greg 18 Kathy 24 Susan
78 Oprah 21 Larry 69 Yuliana
28 Tracey 10 Mary 75 Zorro
39 Uma 15 Peter 49 Bonnie
8 Agnes 43 Vera Name: −x--------

Name: −x--------

Name: −x------- 47 Wenny x = vowel (i,o,u)
x = consonant 50 Xena

33 Caroline
38 Dennis

x = vowel (a,e)

Figure 7.10(a) PRI-2 (no index partitioning attribute is used)

PRI-2 structure has a concept similar to NRI-2; that is, the leaf node and its
pointed record are located at the same place. The main difference between PRI-2
and NRI-2 is the fact that the PRI structures have one global index whereas the
NRI structures use local indexes. Figure 7.10(a) gives an illustration of PRI-2. In
this diagram, not all data pointers are shown in order to improve the readability of
the diagram. We use numbers 1, 2 and 3 to correspond to the processor number
(instead of arrows to represent data pointers).

In this example, the table is partitioned on the Name field according to the same
rule applied to NRI-2. The global index is subsequently partitioned based on the
location of the partial table. For example, record Agnes (8,Agnes) is located in
processor 1 according to the rule as stated in NRI-2, and so is leaf node 8 (the
first key of the first leaf node on the left side of the index tree). The data pointer
of leaf node 8 points to record Agnes. Since a leaf node consists of k keys, and
each key may be located at a different processor, replication exists at the leaf node
level. For example, the first leaf node of (8,10,15) is replicated in processors 1
and 2, since key 8 is located at processor 1 and the other two keys are located at
processor 2.

The replication is propagated at the nonleaf node levels. Figure 7.10(b) gives
an illustration of this replication. As the replication becomes more complex, as it
does in this example, it is probably difficult to visualize it because of overlapping.
To help readers visualize each processor, we use a dashed line for processor 1, a
dotted line for processor 2, and a dashed-dotted line for processor 3. The figure

7.2 Parallel Indexing Structures 177

o8 o10 o15 o28 o33 o37 o46 o47 o48

o38 o39 o43 o49 o50 o56 o65 o69 o71o16 o18 o23 o24

o20 o21 o59 o60 o74 o75

o78 o92

15 56

37

18

21 24 71 75

48 60

Processor 1

Processor 2

Processor 3

43

Figure 7.10(b) Replication in PRI-2

shows that most of the nonleaf nodes are replicated to all three processors, except
for nonleaf node (43), where processor 3 is excluded, and nonleaf node (56), where
processor 1 is excluded.

Comparing PRI-1 and PRI-2, we can closely examine Figure 7.9 and
Figure 7.10(b). They clearly show that replication at both leaf and nonleaf node
levels exists more in PRI-2 than in PRI-1. This is mainly caused by leaf node
replication in PRI-2. In PRI-1, replication at the leaf node level exists at the
neighboring leaf nodes only; that is, the right-most leaf node in one processor
may be overlapped with the left-most leaf node in the other processor. Leaf node
replication in PRI-2 may happen anywhere, depending on the value of the keys in
each leaf node.

PRI-3 structure is analogous to NRI-3; that is, the table is partitioned accord-
ing to some rule on an attribute, which is different from the index partitioning
attribute, or the partitioning rule for the table is not a range partitioning. Using the
same example in NRI-3, in PRI-3 the table is partitioned based on the Name field,
whereas the index is based on the ID field. As a result of this partitioning strategy,
not only do we have data pointers crossing the processor boundary as in NRI-3,
but also we increase the chance of leaf nodes to be replicated as in PRI-2, for the
same reason. Figure 7.11 shows an illustration of PRI-3.

Comparing PRI-1 and PRI-3 (see Fig. 7.9 and Fig. 7.11), note that the global
index tree for PRI-3 is the same as that for PRI-1. The main difference between
PRI-1 and PRI-3 lies in the data pointers, where data pointers in PRI-3 may cross
the boundary of the processor since the location of the record and its leaf node may
be different. This is not the case with PRI-1.

Comparing PRI-2 and PRI-3 (see Fig. 7.10(b) and Fig. 7.11), the difference is
mainly in the replication degree, which is likely to be higher in PRI-2. Replication
in PRI-3 is the same as that for PRI-1, since the global index tree itself is the same
for both PRI-1 and PRI-3.

178 Chapter 7 Parallel Indexing

o8 o10 o15 o28 o33 o37 o46 o47 o48

o38 o39 o43 o49 o50 o56 o65 o69 o71o16 o18 o23 o24

o20 o21 o59 o60 o74 o75

o78 o92

15 43 56

37

18

21 24 71 75

48 60

Processor 1 (1-30)
Processor 2 (30-60) Processor 3 (61-100)

Processor 1 Processor 2 Processor 3
23 Adams 65 Bernard 59 Johanna
37 Chris 60 David 74 Norman
46 Eric 71 Harold 16 Queenie
92 Fred 56 Ian 20 Ross
48 Greg 18 Kathy 24 Susan
78 Oprah 21 Larry 69 Yuliana
28 Tracey 10 Mary 75 Zorro
39 Uma 15 Peter 49 Bonnie
8 Agnes 43 Vera Name: −x--------

Name: −x--------

Name: −x------- 47 Wenny x = vowel (i,o,u)
x = consonant 50 Xena

33 Caroline
38 Dennis

x = vowel (a,e)

Figure 7.11 PRI-3 (index partitioning attribute 6D table partitioning attribute)

In summary, PRI structures are very similar to NRI structures except that the
global index is preserved in PRI. As a consequence, replication of index nodes has
to be carefully maintained.

7.2.3 Fully Replicated Indexing (FRI) Structures

A fully replicated indexing (FRI) structure is where the global index is fully repli-
cated to all available working processors. Because of the simplicity of this parallel
indexing structure, there are only two different variations: the table partitioning
attribute is the same as the indexed attribute, and the table partitioning attribute
is different from the indexed attribute. In the context of NRI and PRI, only vari-
ations 1 and 3 are available to FRI structures. To make the naming convention
uniform across the three parallel indexing structures, the two variations for the FRI
structures are numbered as 1 and 3, leaving variation 2 as not applicable.

FRI-1 has a similar concept as the other two variations 1 (i.e., NRI-1 and
PRI-1). For example, the table is partitioned on the ID field, and the index is built
on the same field. Since the global index is fully replicated, leaf nodes that do not
have the base data located at the same place must have their data pointers crossing
the processor boundaries. As a result, all records will have n incoming data point-
ers from the leaf nodes, where n is the number of processors. Figure 7.12 illustrates

o
8

o
10

o
15

o
28

o
33

o
37

o
46

o
47

o
48

o
38

o
39

o
43

o
49

o
50

o
56

o
65

o
69

o
71

o
16

o
18

o
23

o
24

o
20

o
21

o
59

o
60

o
74

o
75

o
78

o
92

15
43

56

37

18

21
24

71
75

48
60

o
8

o
10

o
15

o
28

o
33

o
37

o
46

o
47

o
48

o
38

o
39

o
43

o
49

o
50

o
56

o
65

o
69

o
71

o
16

o
18

o
23

o
24

o
20

o
21

o
59

o
60

o
74

o
75

o
78

o
92

15
43

56

37

18

21
24

71
75

48
60

o
8

o
10

o
15

o
28

o
33

o
37

o
46

o
47

o
48

o
38

o
39

o
43

o
49

o
50

o
56

o
65

o
69

o
71

o
16

o
18

o
23

o
24

o
20

o
21

o
59

o
60

o
74

o
75

o
78

o
92

15
43

56

37

18

21
24

71
75

48
60

P
ro

ce
ss

or
 1

P
ro

ce
ss

or
 2

P
ro

ce
ss

or
 3

P
ro

ce
ss

or
 1

P
ro

ce
ss

or
 2

P
ro

ce
ss

or
 3

23

A
da

m
s

37

C
hr

is
65

B

er
na

rd
18

K

at
hy

60

D
av

id
92

Fr

ed
21

L

ar
ry

46

E
ri

c
71

H

ar
ol

d
10

M

ar
y

48

G
re

g
74

N

or
m

an
15

Pe

te
r

56

Ia
n

78

O
pr

ah
16

Q

ue
en

ie
20

R

os
s

59

Jo
ha

nn
a

69

Y
ul

ia
na

75

Z
or

ro
39

24

Su
sa

n
43

V

er
a

ID
 =

 6
1

to
 1

00
28

T

ra
ce

y
47

W

en
ny

8
A

gn
es

50
ID

 =
 1

 to
 3

0
B

on
ni

e
X

en
a

U
m

a

3349
C

ar
ol

in
e

38
D

en
ni

s
ID

 =
 3

1
to

 6
0

F
ig

ur
e

7.
12

FR
I-

1
(i

nd
ex

pa
rt

iti
on

in
g

at
tr

ib
ut

e
D

ta
bl

e
pa

rt
iti

on
in

g
at

tr
ib

ut
e)

179

180 Chapter 7 Parallel Indexing

the FRI-1 structure. Note that the global index is replicated to the three processors.
In the diagram, the data pointers are not shown. However, one can imagine that
each key in the leaf nodes has a data pointer going to the correct record, and each
record will have three incoming data pointers.

FRI-3 is quite similar to PRI-1, except that the table partitioning for FRI-3 is not
the same as the indexed attribute. For example, the table partitioning is based on
the Name field and uses a range partitioning, whereas the index is on the ID field.
However, the similarity is that the index is fully replicated, and each of the records
will also have n incoming data pointers, where n is the number of replication of the
index. Figure 7.13 shows an example of the FRI-3. Once again, the data pointers
are not shown in the diagram.

It is clear from the two variations discussed above (i.e., FRI-1 and FRI-3) that
variation 2 is not applicable for FRI structures, because the index is fully replicated.
Unlike the other variations 2 (i.e., NRI-2 and PRI-2), they exist because the index
is partitioned, and part of the global index on a particular processor is built upon
the records located at that processor. If the index is fully replicated, there will not
be any structure like this, because the index located at a processor cannot be built
purely from the records located at that processor alone. This is why FRI-2 does not
exist.

7.3 INDEX MAINTENANCE

In this section, we examine the various issues and complexities related to main-
taining different parallel index structures. Index maintenance covers insertion and
deletion of index nodes. The general steps for index maintenance are as follows:

ž Insert/delete a record to the table (carried out in processor p1),
ž Insert/delete an index node to/from the index tree (carried out in processor

p2), and
ž Update the data pointers.

In the last step above, if it is an insertion operation, a data pointer is created
from the new index key to the new inserted record. If it is a deletion operation, a
deletion of the data pointer takes place.

Parallel index maintenance essentially concerns the following two issues:

ž Whether p1 D p2. This relates to the data pointer complexity.
ž Whether maintaining an index (insert or delete) involves multiple processors.

This issue relates to the restructuring of the index tree itself.

The simplest form of index maintenance is where p1 D p2 and the inser-
tion/deletion of an index node involves a single processor only. These two issues
for each of the parallel indexing structures are discussed next.

P
ro

ce
ss

or
 1

23

A
da

m
s

37

C
hr

is
46

E

ri
c

92

Fr
ed

48

G
re

g
78

O

pr
ah

28

T
ra

ce
y

39

U
m

a
8

A
gn

es
N

am
e:

 −
x-

--
--

--

P
ro

ce
ss

or
 3

59

Jo

ha
nn

a
74

N

or
m

an
16

Q

ue
en

ie
20

R

os
s

24

Su
sa

n
69

Y

ul
ia

na
75

Z

or
ro

49

B
on

ni
e

N
am

e:
 −

x-
--

--
--

-
x

=
vo

w
el

 (
i,o

,u
)

x
=

co
ns

on
an

t

P
ro

ce
ss

or
 2

65

B

er
na

rd
60

D

av
id

71

H
ar

ol
d

56

Ia
n

18

K
at

hy
21

L

ar
ry

10

M
ar

y
15

Pe

te
r

43

V
er

a

N
am

e:
 −

x-
--

--
--

-

47

W
en

ny
50

X

en
a

33

C
ar

ol
in

e
38

D

en
ni

s

x
=

vo
w

el
 (

a,
e)

o
8

o
10

o
15

o
28

o
33

o
37

o
46

o
47

o
48

o
38

o
39

o
43

o
49

o
50

o
56

o
65

o
69

o
71

o
16

o
18

o
23

o
24

o
20

o
21

o
59

o
60

o
74

o
75

o
78

o
92

15
43

56

37

18

21
24

71
75

48
60

8

P
ro

ce
ss

or
 1

o
o

10
o

15
o

28
o

33
o

37
o

46
o

47
o

48

o
38

o
39

o
43

o
49

o
50

o
56

o
65

o
69

o
71

o
16

o
18

o
23

o
24

o
20

o
21

o
59

o
60

o
74

o
75

o
78

o
92

15
43

56

37

18

21
24

71
75

48
60

P
ro

ce
ss

or
 2

o
8

o
10

o
15

o
28

o
33

o
37

o
46

o
47

o
48

o
38

o
39

o
43

o
49

o
50

o
56

o
65

o
69

o
71

o
16

o
18

o
23

o
24

o
20

o
21

o
59

o
60

o
74

o
75

o
78

o
92

15
43

56

37

18

21
24

71
75

48
60

P
ro

ce
ss

or
 3

F
ig

ur
e

7.
13

FR
I-

3
(i

nd
ex

pa
rt

iti
on

in
g

at
tr

ib
ut

e
6D

ta
bl

e
pa

rt
iti

on
in

g
at

tr
ib

ut
e)

181

182 Chapter 7 Parallel Indexing

7.3.1 Maintaining a Parallel Nonreplicated Index

Maintenance of the NRI structures basically involves a single processor. Hence,
the subject is really whether p1 is equal to p2. For the NRI-1 and NRI-2 struc-
tures, p1 D p2. Accordingly, these two parallel indexing structures are the simplest
form of parallel index. The mechanism of index maintenance for these two parallel
indexing structures is carried out as per normal index maintenance on sequential
processors. The insertion and deletion procedures are summarized as follows.

After a new record has been inserted to the appropriate processor, a new index
key is inserted to the index tree also at the same processor. The index key insertion
steps are as follows. First, search for an appropriate leaf node for the new key
on the index tree. Then, insert the new key entry to this leaf node, if there is still
space in this node. However, if the node is already full, this leaf node must be
split into two leaf nodes. The first half of the entries are kept in the original leaf
node, and the remaining entries are moved to a new leaf node. The last entry of
the first of the two leaf nodes is copied to the nonleaf parent node. Furthermore, if
the nonleaf parent node is also full, it has to be split again into two nonleaf nodes,
similar to what occurred with the leaf nodes. The only difference is that the last
entry of the first node is not copied to the parent node, but is moved. Finally, a
data pointer is established from the new key on the leaf node to the record located
at the same processor.

The deletion process is similar to that for insertion. First, delete the record, and
then delete the desired key from the leaf node in the index tree (the data pointer is
to be deleted as well). When deleting the key from a leaf node, it is possible that
the node will become underflow after the deletion. In this case, try to find a sibling
leaf node (a leaf node directly to the left or to the right of the node with underflow)
and redistribute the entries among the node and its sibling so that both are at least
half full; otherwise, the node is merged with its siblings and the number of leaf
nodes is reduced.

Maintenance of the NRI-3 structure is more complex because p1 6D p2. This
means that the location of the record to be inserted/deleted may be different from
the index node insertion/deletion. The complexity of this kind of index mainte-
nance is that the data pointer crosses the processor boundary. So, after both the
record and the index entry (key) have been inserted, the data pointer from the new
index entry in p1 has to be established to the record in p2. Similarly, in the dele-
tion, after the record and the index entry have been deleted (and the index tree
is restructured), the data pointer from p1 to p2 has to be deleted as well. Despite
some degree of complexity, there is only one data pointer for each entry in the leaf
nodes to the actual record.

7.3.2 Maintaining a Parallel Partially Replicated
Index

Following the first issue on p1 D p2 mentioned in the previous section, mainte-
nance of PRI-1 and PRI-2 structures is similar to that of NRI-1 and NRI-2 where

7.3 Index Maintenance 183

p1 D p2. Hence, there is no additional difficulty to data pointer maintenance. For
PRI-3, it is also similar to NRI-3; that is, p1 6D p2. In other words, data pointer
maintenance of PRI-3 has the same complexity as that of NRI-3, where the data
pointer may be crossing from one processor (index node) to another processor
(record).

The main difference between the PRI and NRI structures is very much related to
the second issue on single/multiple processors being involved in index restructur-
ing. Unlike the NRI structures, where only single processors are involved in index
maintenance, the PRI structures require multiple processors to be involved. Hence,
the complexity of index maintenance for the PRI structures is now moved to index
restructuring, not so much on data pointers.

To understand the complexity of index restructuring for the PRI structures, con-
sider the insertion of entry 21 to the existing index (assume the PRI-1 structure is
used). In this example, we show three stages of the index insertion process. The
stages are (i) the initial index tree and the desired insertion of the new entry to the
existing index tree, (ii) the splitting node mechanism, and (iii) the restructuring of
the index tree.

The initial index tree position is shown in Figure 7.14(a). When a new entry of
21 is inserted, the first leaf node becomes overflow. A split of the overflow leaf
node is then carried out. The split action also causes the nonleaf parent node to be
overflow, and subsequently, a further split must be performed to the parent node
(see Fig. 7.14(b)).

Not that when splitting the leaf node, the two split leaf nodes are replicated to
processors 1 and 2, although the first leaf node after the split contains entries of the
first processor only (18 and 21—the range of processor 1 is 1–30). This is because
the original leaf node (18, 23, 37) has already been replicated to both processors 1
and 2. The two new leaf nodes have a node pointer linking them together.

When splitting the nonleaf node (37, 48, 60) into two nonleaf nodes (21; 48,
60), processor 3 is involved because the root node is also replicated to processor 3.
In the implementation, this can be tricky as processor 3 needs to be informed that
it must participate in the splitting process. An algorithm is presented at the end of
this section.

The final step is the restructuring step. This step is necessary because we need to
ensure that each node has been allocated to the correct processors. Figure 7.14(c)
shows a restructuring process. In this restructuring, the processor allocation is
updated. This is done by performing an in-order traversal of the tree, finding the
range of the node (min, max), determining the correct processor(s), and reallocat-
ing to the designated processor(s). When reallocating the nodes to processor(s),
each processor will also update the node pointers, pointing to its local or neighbor-
ing child nodes. Note that in the example, as a result of the restructuring, leaf node
(18, 21) is now located in processor 1 only (instead of processors 1 and 2).

Next, we present an example of a deletion process, which affects the index
structure. In this example, we would like to delete entry 21, expecting to get the
original tree structure shown previously before entry 21 is inserted. Figure 7.15
shows the current tree structure and the merge and collapse processes.

184 Chapter 7 Parallel Indexing

Processors 1, 2

o18 o23 o37 o65 o71 o92o46 o48

37 48 60
(a) Initial Tree

o56 o59 o60

Processor 2 Processor 2 Processor 3

Processors 1,2, 3

Insert 21 (overflow)

(b2) Split (Non Leaf Node)

Processors 1, 2

o23 o37

37 48 60

(b1) Split (Leaf Node)

Processors 1, 2, 3

Insert 21 (overflow)

o18 o21

Processors 1, 2 Processor 2

o23 o37

48 60

Processors 1, 2, 3

o18 o21

Processors 1, 2

Processor 2

21

37

o46 o48

o46 o48

(c) Restructure (Processor Re-Allocation)

o23 o37

48 60

Processors 1, 2, 3

o18 o21

Processors 1, 2

Processor 2

21

37

Processors 1, 2

Processors 2, 3

Processor 1

o46 o48

Figure 7.14 Index entry insertion in the PRI structures

As shown in Figure 7.15(a), after the deletion of entry 21, leaf node (18)
becomes underflow. A merging with its sibling leaf node needs to be carried out.
When merging two nodes, the processor(s) that own the new node are the union
of all processors owning the two old nodes. In this case, since node (18) is located
in processor 1 and node (23, 37) is in processors 1 and 2, the new merged node

7.3 Index Maintenance 185

(a) Initial Tree

o23 o37

48 60

Processors 1, 2, 3

o18 o21

Processors 1, 2

o56 o59 o60

Processor 2

21

37

Processors 1, 2

Processors 2, 3

Processor 1

Delete 21 (underflow)

o65 o71 o92

Processor 3

o46 o48

Processor 2

Processors 1, 2

(b) Merge

48 60

Processors 1, 2, 3

37

37

Processors 1, 2

Processors 2, 3

Modify

o46 o48

Processor 2

o18 o23 o37

void

Processors 1, 2

o18 o23 o37 o46 o48

37 48 60

(c) Collapse

Processor 2

Processors 1, 2, 3

Figure 7.15 Index entry deletion in PRI structures

(18, 23, 37) should be located in processors 1 and 2. Also, as a consequence of the
merging, the immediate nonleaf parent node entry has to be modified in order to
identify the maximum value of the leaf node, which is now 37, not 21. As shown
in Figure 7.15(b), the right node pointer of the nonleaf parent node (37) becomes
void. Because nonleaf node (37) has the same entry as its parent node (root node
(37)), they have to be collapsed together, and consequently a new nonleaf node
(37, 48, 60) is formed (see Fig. 7.15(c)).

The restructuring process is the same as for the insertion process. In this
example, however, processor allocation has been done correctly and hence,
restructuring is not needed.

Maintenance Algorithms

As described above, maintenance of the PRI structures relates to splitting and
merging nodes when performing an insertion or deletion operation and to restruc-
turing and reallocating nodes after a split/merge has been done. The insertion and
deletion of a key from an index tree are preceded by a searching of the node where

186 Chapter 7 Parallel Indexing

the desired key is located. Algorithm find_node illustrates a key searching proce-
dure on an index tree. The find_node algorithm is a recursive algorithm. It basi-
cally starts from a root node and traces into the desired leaf node either at the local
or neighboring processor by recursively calling the find_node algorithm and pass-
ing a child tree to the same processor or following the trace to a different processor.
Once the node has been found, an operation insert or delete can be performed.

After an operation has been carried out to a designated leaf node, if the node
is overflow (in the case of insertion) or underflow (in the case of deletion), a split
or a merge operation must be done to the node. Splitting or merging nodes are
performed in the same manner as splitting or merging nodes in single-processor
systems (i.e., single-processor B C trees).

The difficult part of the find_node algorithm is that when splitting/merging
nonleaf nodes, sometimes more processors need to be involved in addition to those
initially used. For example, in Figure 7.14(a) and (b), at first processors 1 and 2
are involved in inserting key 21 into the leaf nodes. Inserting entry 21 to the root
node involves processor 3 as well, since the root node is also replicated to pro-
cessor 3. The problem is how processor 3 is notified to perform such an operation
while only processors 1 and 2 were involved in the beginning. This is solved by
activating the find_node algorithm in each processor. Processor 1 will ultimately
find the desired leaf node (18,23,37) in the local processor, and so will processor
2. Processor 3 however, will pass the operation to processor 2, as the desired leaf
node (18,23,37) located in processor 2 is referenced by the root node in proces-
sor 3. After the insertion operation (and the split operation) done to the leaf nodes
(18,23,37) located at processors 1 and 2 has been completed, the program control
is passed back to the root node. This is due to the nature of a recursive algorithm,
where the initial copy of the algorithm is called back when the child copy of the
process has been completed. Since all processors were activated in the beginning of
the find node operation, each processor now can perform a split process (because of
the overflow to the root node). In other words, there is no special process whereby
an additional processor (in this case processor 3) needs to be invited or notified
to be involved in the splitting of the root node. Everything is a consequence of the
recursive nature of the algorithm which was initiated in each processor. Figure 7.16
lists the find_node algorithm.

After the find_node algorithm (with an appropriate operation: insert or delete),
it is sometimes necessary to restructure the index tree (as shown in Fig. 7.14(c)).
The restructure algorithm (Fig. 7.17) is composed of three algorithms. The
main restructure algorithm calls the inorder algorithm where the traversal
is done. The inorder traversal is a modified version of the traditional inorder
traversal, because an index tree is not a binary tree.

For each visit to the node in the inorder algorithm, the proc_alloc algo-
rithm is called, for the actual checking of whether the right processor has been
allocated to each node. The checking in the proc_alloc algorithm basically
checks whether or not the current node should be located at the current proces-
sor. If not, the node is deleted (in the case of a leaf node). If it is a nonleaf node, a
careful checking must be done, because even when the range of (min,max) is not

7.3 Index Maintenance 187

Algorithm: Find a node initiated in each processor

find�node (tree, key, operation)
1. if (key is in the range of local node)
2. if (local node is leaf)
3. execute operation insert or delete on local node
4. if (node is overflow or underflow)
5. perform split or merge on leaf
6. else
7. locate child tree
8. perform find�node (child, key, operation)
9. if (node is overflow or underflow)
10. perform split or collapse on non-leaf
11. else
12. locate child tree in neighbour
13. perform find�node (neighbour, key, operation)

Figure 7.16 Find a node algorithm

Algorithm:Index restructuring algorithms

restructure (tree) // Restructure in each local
processor
1. perform inorder (tree)

inorder (tree) // Inorder traversal for non-binary
// trees (like BC trees)

1. if (local tree is not null)
2. for iD1 to number of node pointers
3. perform inorder (tree!node pointer i)
4. perform proc�alloc (node)

proc�alloc (node) // Processor allocation
1. if (node is leaf)
2. if ((min,max) is not within the range)
3. delete node
4. if (node is non-leaf)
5. if (all node pointers are either void or

point to non local nodes)
6. delete node
7. if (a node pointer is void)
8. re-establish node pointer to a neighbor

Figure 7.17 Index restructuring algorithms

188 Chapter 7 Parallel Indexing

exactly within the range of the current processor, it is not necessary that the node
should not be located in this processor, as its child nodes may have been correctly
allocated to this processor. Only in the case where the current nonleaf node does
not have child nodes should the nonleaf node be deleted; otherwise, a correct node
pointer should be reestablished.

7.3.3 Maintaining a Parallel Fully Replicated Index

As an index is fully replicated to all processors, the main difference between NRI
and FRI structures is that in FRI structures, the number of data pointers coming
from an index leaf node to the record is equivalent to the number of processors.
This certainly increases the complexity of maintenance of data pointers.

In regard to involving multiple processors in index maintenance, it is not as
complicated as in the PRI structures, because in the FRI structures the index in
each processor is totally isolated and is not coupled as in the PRI structures. As a
result, any extra complication relating to index restructuring in the PRI structures
does not exist here. In fact, index maintenance of the FRI structures is similar to
that of the NRI structures, as all indexes are local to each processor.

7.3.4 Complexity Degree of Index Maintenance

The order of the complexity of parallel index maintenance, from the simplest to
the most complex, is as follows.

ž The simplest forms are NRI-1 and NRI-2 structures, as p1 D p2 and only
single processors are involved in index maintenance (insert/delete).

ž The next complexity level is on data pointer maintenance, especially when
index node location is different from based data location. The simpler one is
the NRI-3 structure, where the data pointer from an index entry to the record
is 1-to-1. The more complex one is the FRI structures, where the data pointers
are N-to-1 (from N index nodes to 1 record).

ž The highest complexity level is on index restructuring. This is applicable to
all three PRI structures.

7.4 INDEX STORAGE ANALYSIS

Even though disk technology and disk capacity are expanding, it is important to
analyze space requirements of each parallel indexing structure. When examining
index storage capacity, we cannot exclude record storage capacity. Therefore, it
becomes important to include a discussion on the capacity of the base table, and to
allow a comparative analysis between index and record storage requirement.

In this section, the storage cost models for uniprocessors is first described. These
models are very important, as they will be used as a foundation for indexing the
storage model for parallel processors. The storage model for each of the three
parallel indexing structures is described next.

7.4 Index Storage Analysis 189

7.4.1 Storage Cost Models for Uniprocessors

There are two storage cost models for uniprocessors: one for the record and the
other for the index.

Record Storage

There are two important elements in calculating the space required to store records
of a table. The first is the length of each record, and the second is the blocking fac-
tor. Based on these two elements, we can calculate the number of blocks required
to store all records.

The length of each record is the sum of the length of all fields, plus one byte for
deletion marker (Equation 7.1). The latter is used by the DBMS to mark records
that have been logically deleted but have not been physically removed, so that a
rollback operation can easily be performed by removing the deletion code of that
record.

Record length D Sum of all fields C 1 byte Deletion marker (7.1)

The storage unit used by a disk is a block. A blocking factor indicates the max-
imum number of records that can fit into a block (Equation 7.2).

Blocking factor D floor.Block size=Record length/ (7.2)

Given the number of records in each block (i.e., blocking factor), the number of
blocks required to store all records can be calculated as follows.

Total blocks for all records D ceiling.Number of records=Blocking factor/
(7.3)

Index Storage

There are two main parts of an index tree, namely leaf nodes and nonleaf nodes.
Storage cost models for leaf nodes are as follows. First, we need to identify the
number of entries in a leaf node. Then, the total number of blocks for all leaf nodes
can be determined. Each leaf node consists of a number of indexed attributes (i.e.,
key), and each key in a leaf node has a data pointer pointing to the corresponding
record. Each leaf node has also one node pointer pointing to the next leaf node.
Each leaf node is normally stored in one disk block. Therefore, it is important to
find out the number of keys (and their data pointers) that can fit into one disk block
(or one leaf node). Equation 7.4 shows the relationship between number of keys in
a leaf node and the size of each leaf node.

.plea f ð .Key size C Data pointer// C Node pointer � Block size (7.4)

190 Chapter 7 Parallel Indexing

where plea f is the number of keys in a leaf node, Key size is the size of the indexed
attribute (or key), Data pointer is the size of the data pointer, Node pointer is the
size of the node pointer, and Block size is the size of the leaf node.

The number of leaf nodes can be calculated by dividing the number of records
by the number of keys in each leaf node. Since it is likely that a node can be
partially full, an additional parameter to indicate an average percentage that each
node is full must be incorporated. The number of leaf nodes (we use the symbol of
b1) can then be calculated as follows.

b1 D ceiling.Number of records=.Percentage ð plea f // (7.5)

where Percentage is the percentage that indicates by how much percentage a node
is full.

The storage cost models for non-leaf nodes are as follows. Like that of leaf
nodes, we need to identify the number of entries in a nonleaf node. The main
difference between leaf and nonleaf nodes is that nonleaf nodes do not have data
pointers but have multiple node pointers. The number of node pointers in a nonleaf
node is always one more than the number of indexed attributes in the nonleaf node.
Hence, the number of entries in each nonleaf node (indicated by p; as opposed to
pleaf) can be calculated as follows.

.p ð Node pointer/ C ..p � 1 ð Key size/ � Block size (7.6)

Each nonleaf node has a number of child nonleaf nodes. This is called fanout of
nonleaf node (we called it fo for short). Since the index tree is likely to be nonfull,
a Percentage must be used to indicate the percentage of an index tree to be full.

fo D ceiling.Percentage ð p/ (7.7)

The number of levels in an index tree can be determined by incorporating the
fanout degree (fo) in a log function; it is actually a fo-based log function of b1. This
will actually give the number of levels above the leaf node level. Hence, the total
number of levels, including the leaf node level, is one extra level.

x D ceiling.log f o.b1// C 1/ (7.8)

where x is the number of levels of an index tree.
Since b1 is used to indicate the leaf nodes, the next level up is the first nonleaf

node level, indicated by symbol b2. The level number goes up and the last level
that is a root node level is bx , where x is the number of levels. The total number of
nonleaf nodes in an index tree is the sum of number of nonleaf nodes of all nonleaf
node levels, which is calculated as follows.

Total nonleaf nodes D
xX

iD2

bi (7.9)

where bi D ceiling (bi�1/fo)

7.4 Index Storage Analysis 191

Total index space for an index tree is the sum of leaf nodes (b1) and all nonleaf
nodes (b2::bx).

Total index blocks D b1 C Total nonleaf nodes (7.10)

7.4.2 Storage Cost Models for Parallel Processors

In this section, the storage cost models for the three parallel indexing structures are
studied.

NRI Storage

The same calculation applied to uniprocessor indexing can be used by NRI. The
only thing in NRI is that the number of records is smaller than that of the unipro-
cessors. Hence, equations 7.1 to 7.10 above can be used directly.

PRI Storage

The space required by the records is the same as that of NRI storage, since the
records are uniformly distributed to all processors. In fact, the record storage
cost models for NRI, PRI, and FRI are all the same, that is, divide the number of
records evenly among all processors, and calculate the total record blocks in each
processor.

For the index using a PRI structure, since there is only one global index shared
by all processors, the height of the tree index is higher than local NRI index trees.
Another difference lies in the overlapping of nodes in each level. For the leaf node
level, the worst case is where one leaf node on the left-hand side is replicated to
the processor on the left and one leaf node on the right-hand side is also replicated.
Assuming that the index entry distribution is uniform, the number of leaf nodes in
each processor (we call this c1, instead of b1) can be calculated as follows.

c1 D ceiling.b1=Number of processors/ C 2 (7.11)

The same method of calculation can also be applied to the nonleaf nodes (c2::cx ,
corresponding with b2::bx), except for the root node level, where cx must be equal
to bx . Total index space is the sum of c1 (leaf node level), ci where i D 2; : : : ;

x � 1 (non-leaf node level, except root level), and cx (root node level).

Total non-leaf nodes D c1 C
x�1X

iD2

ci C cx (7.12)

192 Chapter 7 Parallel Indexing

FRI Storage

As mentioned earlier, the record storage is the same for all indexing structures, as
the records are uniformly partitioned to all processors. Therefore, the main differ-
ence lies in the index storage. The index storage model for the FRI structures is
very similar to that of the NRI structures, except for the following two aspects.
First, the number of records used in the calculation of the number of entries in leaf
nodes is not divided by the number of processors. This is because the index is fully
replicated in FRI, not partitioned like in NRI. Therefore, it can be expected that
the height of the index tree is higher, which is similar to that of the PRI structures.
Second, the sizes of data pointers and node pointers must incorporate information
on processors. This is necessary since both data and node pointers may go across
to another processor.

7.5 PARALLEL PROCESSING OF SEARCH QUERIES
USING INDEX

In this section, we consider the parallel processing of search queries involving
index. Search queries where the search attributes are indexed are quite common.
This is especially true in the case where a search operation is based on a primary
key (PK) or secondary key (SK) on a table. Primary keys are normally indexed
to prevent duplicate values that exist in that table, whereas secondary keys are
indexed to speed up the searching process.

As the search attributes are indexed, parallel algorithms for these search queries
are very much influenced by the indexing structures. Depending on the number of
attributes being searched for and whether these attributes are indexed, parallel pro-
cessing of search queries using parallel index can be categorized into two types of
searches, namely (i/ parallel one-index search and (ii) parallel multi-index search.
The former deals with queries on the search operation of one indexed attribute.
This includes exact match or range queries. The latter deals with multiattribute
queries, that is, queries having search predicates on multiple indexed attributes.

7.5.1 Parallel One-Index Search Query Processing

Parallel processing of a one-index selection query exists in various formats,
depending on the query type, whether exact-match, continuous-range, or
discrete-range queries. In the next two sections, important elements in paralleliza-
tion of these search queries are examined. These are then followed by a complete
parallel algorithm.

Parallel Exact-Match Search Queries

There are three important factors in parallel exact-match search query processing:
processor involvement, index tree traversal, and record loading.

7.5 Parallel Processing of Search Queries using Index 193

ž Processor Involvement: For exact match queries, ideally parallel processing
may isolate into the processor(s) where the candidate records are located.
Involving more processors in the process will certainly not do any good,
especially if they do not produce any result. Considering that the number
of processors involved in the query is an important factor, there are two cases
in parallel processing of exact match search queries.

Case 1 (selected processors are used): This case is applicable to all
indexing structures, except for the NRI-2 structure. If the indexing
structure of the indexed attribute is NRI-1, PRI-1, or FRI-1, we can
direct the query into the specific processors, since the data partitioning
scheme used by the index is known. The same case applies with NRI-3,
PRI-3, and FRI-3. The only difference between NRI/PRI/FRI-1 and
NRI/PRI/FRI-3 is that the records may not be located at the same place
as where the leaf nodes of the index tree are located. However, from
the index tree searching point of view they are the same, and hence it is
possible to activate selected processors that will subsequently perform
an index tree traversal.
For PRI-2 indexing structure, since a global index is maintained, it
becomes possible to traverse to any leaf node from basically anywhere.
Therefore, only selected processors are used during the traversing of the
index tree.
The processor(s) containing the candidate records can be easily iden-
tified with NRI-1/3, PRI-1/3, or FRI-1/3 indexing structures. With the
PRI-2 indexing structure, searching through an index tree traversal will
ultimately arrive at the desired processor.

Case 2 (all processors are used): This case is applicable to the NRI-2
indexing structure only, because with the NRI-2 indexing structure there
is no way to identify where the candidate records are located with-
out searching in all processors. This is because there is no partition-
ing semantics in NRI-2. NRI-2 basically builds a local index based on
whatever data it has from the local processor without having global
knowledge.

ž Index Tree Traversal: Searching for a match is done through index tree
traversal. The traversal starts from the root node and finishes either at a
matched leaf node or no match is found. Depending on the indexing scheme
used, there are two cases:

Case 1 (traversal is isolated to local processor): This case is applicable
to all indexing structures but PRI-2. When any of the NRI indexing
structures is used, index tree traversal from the root node to the leaf
node will stay at the same processor.
When PRI-1 or PRI-3 is used, even though the root node is replicated
to all processors and theoretically traversal can start from any node,
the host processor will direct the processor(s) containing the candidate
results to initiate the searching. In other words, index tree traversal will

194 Chapter 7 Parallel Indexing

start from the processors that hold candidate leaf nodes. Consequently,
index tree traversal will stay at the same processor.
For any of the FRI indexing structures, since the index tree is fully
replicated, it becomes obvious that there is no need to move from one
processor to another during the traversal of an index tree.

Case 2 (traversal crosses from one processor to another): This case is
applicable to PRI-2 only, where searching that starts from a root node
at any processor may end up on a leaf node at a different processor. For
example, when a parent node at processor 1 points to a child node at
processor 2, the searching control at processor 1 is passed to proces-
sor 2.

ž Record Loading: Once a leaf node containing the desired data has been
found, the record pointed by the leaf node is loaded from disk. Again here
there are two cases:

Case 1 (local record loading): This case is applicable to NRI/PRI/FRI-1
and NRI/PRI-2 indexing structures, since the leaf nodes and the associ-
ated records in these indexing schemes are located at the same proces-
sors. Therefore, record loading will be done locally.

Case 2 (remote record loading): This case is applicable to NRI/PRI/FRI-3
indexing structures where the leaf nodes are not necessarily placed at
the same processor where the records reside. Record loading in this case
is performed by trailing the pointer from the leaf node to the record
and by loading the pointed record. When the pointer crosses from one
processor to another, the control is also passed from the processor that
holds the leaf node to the processor that stores the pointed record. This
is done similarly to the index traversal, which also crosses from one
processor to another.

Parallel Range Selection Query

For continuous-range queries, possibly more processors need to be involved. How-
ever, the main importance is that it needs to determine the lower and/or the upper
bound of the range. For open-ended continuous-range predicates, only the lower
bound needs to be identified, whereas for the opposite, only the upper bound of the
range needs to be taken into account. In many cases, both lower and upper bounds
of the range need to be determined. Searching for the lower and/or upper bounds of
the range can be directed to selected processors only because of the same reasons
as those for the exact match queries.

With the selected attribute being indexed, once these boundaries are identified
it becomes easy to trace all values within a given range, by traversing leaf nodes
of the index tree. If the upper bound is identified, leaf node traversal is done to
the left, whereas if the lower bound is identified, all leaf nodes to the right are
traversed. We must also note that record loadings within each processor are per-
formed sequentially. Parallel loading is possible only among processors, not within
each processor.

7.5 Parallel Processing of Search Queries using Index 195

For discrete-range queries, each discrete value in the search predicate is con-
verted into multiple exact-match predicates. Further processing follows the pro-
cessing method for exact-match queries.

Parallel Algorithm for One-Index Search Query Processing

The algorithm for parallel one-index search query processing consists of four mod-
ules: (i/ initialization, (ii) processor allocation, (iii) parallel searching, and (iv)
record loading. The last three modules correspond to the three important factors
discussed above, whereas the first module does the preliminary processing, includ-
ing variable declaration and initialization, and transformation of discrete-range
queries.

The algorithm is listed in Figure 7.18.

7.5.2 Parallel Multi-Index Search Query Processing

When multiple indexes on different selection attributes are used, there are two
methods in particular used to evaluate such selection predicates: one is through
the use of an intersection operation, and the other is to choose one index as the
processing base and ignore the others.

Intersection Method

With the intersection method, all indexed attributes in the search predicate are
first searched independently. Each search predicate will form a list of index entry
results found after traversing each index. After all indexes have been processed,
the results from one index tree will be intersected with the results of other index
trees to produce a final list. Once this has been formed, the pointed records are
loaded and presented to the user as the answer to the query. This intersection
method is a materialization of CPNF in a form of AND operations on the search
predicates.

Since multiple indexes are used, there is a possibility that different indexing
structures are used by each indexed attribute. For instance, the first attribute in
the search predicate might be indexed with the NRI-2 structure and the second
attribute uses PRI-3, and so on. However, there is a restriction whereby if one
index is NRI-1, PRI-1, or FRI-1, other indexes cannot be any of these three. Bear
in mind that these three indexing structures have one thing in common—that is,
the index partitioning attribute is the same as the record partitioning attribute. For
example, the table is partitioned based on EmployeeID and the index is also based
on EmployeeID. Therefore, it is just not possible that one index is based on NRI-1
and another index is based on PRI-1. This is simply because there is only one
partitioning attribute used by the table and the index. Other than this restriction, it
is possible to mix and match with other indexing structures.

196 Chapter 7 Parallel Indexing

Algorithm:Parallel-One-Index-Selection (Query Q
and Index I)

// Initialization - in the host processor processor:
1. Let P be all available processors
2. Let PQ be processors to be used by query Q
3. Let Vexact be the search value in Qexact�match
4. Let Vlower and Vupper be the range lower and upper values
5. If Q is discrete range
6. Convert Qdiscrete into Qexact�match
7. Establish an array of Vexact []

// Processor Allocation - in the host processor
processor:

8. If index I is NRI-2
9. PQ D P // use all processors
10. Else
11. Select PQ from P based on Q // use selected proc

// Parallel Search – using processor PQ:
12. For each searched value V in query Q
13. Search value V in index tree I
14. If a match is found in index tree I
15. Put index entry into an array of index entry

result
16. If Q is continuous range
17. Trace to the neighboring leaf nodes
18. Put the index entry into the array of index entry

result

// Record Loading – using processor PQ:
19. For all entries in the array of index entry result
20. Trace the data pointer to the actual record r
21. If record r is located at a different processor
22. Load the pointed remote record r thru message

passing
23. Else
24. Load the pointed local record r
25. Put record r into query result

Figure 7.18 Parallel one-index search query processing algorithm

Since the indexes in the query may be of different indexing structures, three
cases are identified.

ž Case 1 (one index is based on NRI-1, PRI-1, or FRI-1): This case is appli-
cable if one of the indexes is either NRI-1, PRI-1, or FRI-1. Other attributes
in the search predicates can be any of the other indexing structures, as long as
it is not NRI-1, PRI-1, or FRI-1. For clarity of our discussions here, we refer

7.5 Parallel Processing of Search Queries using Index 197

the first selection attribute as indexed based on NRI-1, PRI-1, or FRI-1, and
the second selection attribute as indexed based on non-NRI/PRI/FRI-1.

Based on the discussion in the previous section on parallel one-index selec-
tion, one of the key factors in determining the efficiency of parallel selec-
tion processing is processor involvement. Processor involvement determines
whether all or only selected processors are used during the operation. In
processor involvement, if the second indexing structure is NRI-2, PRI-2, or
FRI-3, only those processors used for processing the first search attribute
(which uses either NRI/PRI/FRI-1) will need to be activated. This is because
other processors, which are not used by the first search attribute, will not pro-
duce a final query result anyway. In other words, NRI/PRI/FRI-1 dictate other
indexed attributes to activate only the processors used by NRI/PRI/FRI-1.
This process is a manifestation of an early intersection.

Another important factor, which is applicable only to multiattribute search
queries, is the intersection operation. In the intersection, particularly for
NRI-3 and PRI-3, the leaf nodes found in the index traversal must be sent
to the processors where the actual records reside, so that the intersection
operation can be carried out there. This is particularly required because
NRI-3 and PRI-3 leaf nodes and their associated records may be located
differently. Leaf node transfer is not required for NRI-2, PRI-2, or even
FRI-3. The former two are simply because the leaf nodes and the records are
collocated, whereas the last is because the index is fully replicated, and no
physical leaf node transfer is required.

ž Case 2 (one index is based on NRI-3, PRI-3, or FRI-3): This is appli-
cable to the first index based on NRI/PRI/FRI-3 and the other indexes
based on any other indexing structures, including NRI/PRI/FRI-3, but
excluding NRI/PRI/FRI-1. The combination between NRI/PRI/FRI-3 and
NRI/PRI/FRI-1 has already been covered by case 1 above.

Unlike case 1 above where processor involvement is an important factor,
case 2 does not perform any early intersection. This is because, in this case,
there is no way to tell in advance which processors hold the candidate records.
Therefore, processor involvement will depend on each individual indexing
structure, and does not influence other indexing structures.

The intersection operation, particularly for NRI/PRI-3, will be carried out
as for case 1 above; that is, leaf nodes found in the searching process will
need to be sent to where the actual records are stored and the intersection will
be locally performed there.

ž Case 3 (one index is based on NRI-2 or PRI-2): This case is applicable for
multiattribute search queries where all indexes are either NRI-2 or PRI-2.
The main property of these two indexing structures is that the leaf nodes
and pointed records are collocated, and hence there is no need for leaf node
transfer.

In terms of processor involvement, like case 2 above, there will be no early
intersection, since none of NRI/PRI/FRI-1 is used.

198 Chapter 7 Parallel Indexing

Algorithm:Parallel-Multi-Index-Selection-Intersection-
Version (Query Q and Index I)

// Initialization - in host processor
1. Let PQ be all processors to be used by Q
2. Let PS[k] be processors to be used by S[k] where (k½1)
3. Let S[1] be the first index and S[2] be other indexes
4. If S[1] is NRI-1 or PRI-1 or FRI-1 Then
5. If S[2] is NRI-2 or PRI-2 or FRI-2 Then
6. Let PS[1] be processors to be used by all

predicates S
7. PQ D PS[1]

// Individual Index Access - using processor PQ:
8. Call Parallel-One-Index-Selection

(selection predicate S, index I)

// Intersection – using processor PQ:
9. If record r is located at different processor as

the found leaf node Then
10. Send leaf node to processor r
11. Intersect all found index entry leaf nodes

in each proc.
12. Put the index entry into array of index entry result

// Record Loading – using processor PQ:
13. For all entries in the array of index entry result
14. Load the pointed local record r
15. Put record r into query result

Figure 7.19 Parallel multi-index search query processing algorithm (intersection version)

An algorithm for parallel multi-index search query processing is presented in
Figure 7.19.

In the initialization module, the processors and the search predicates are initial-
ized. If one index is based on NRI/PRI/FRI-1 and the other is based on NRI/PRI-2
or FRI-3, then all selected processors are used.

In the individual index access module, a parallel one-index search query algo-
rithm is called, where each search predicate is processed independently.

In the intersection module, the actual intersection of results obtained by each
individual search is performed. If, in a particular searching, a leaf node points to a
remote record, the index entry in this leaf node has to be transferred to where the
remote record is located, so that the intersection operation can be done indepen-
dently in each processor.

Finally, in the record loading module, the results of the intersection operation,
which is a list of index entries that satisfy all the search predicate of the query

7.5 Parallel Processing of Search Queries using Index 199

pointing to the associated records, are loaded and placed into the query results to
be presented to users.

One-Index Method

The second method for processing multi-index search queries is by using just one
of the indexes. With this method, one indexed attribute that appears in the search
predicates is chosen. The processing follows the parallel one-index search query
processing. Once the found records are identified, other search predicates are eval-
uated. If all search predicates are satisfied (i.e., CPNF), the records are selected
and put in the query result.

There are two main factors in determining the efficiency of this method: (i/ the
selectivity factor of each search predicate and (ii) the indexing structure that is
used by each search predicate. Regarding the former, it will be ideal to choose a
search predicate that has the lowest selectivity ratio, with a consequence that most
records have already been filtered out by this search predicate and hence less work
will be done by the rest of the search predicates. In the latter, it will be ideal to
use an indexing structure that uses selected processors, local index traversals, and
local record loading. Thorough analysis is needed to correctly identify a search
predicate that delivers the best performance.

An algorithm for parallel multi-index search query processing using a one-index
method is presented in Figure 7.20.

Algorithm: Parallel-Multi-Index-Selection-One-Index-
Access-Version (Query Q and Index I)

// Initialization - in host processor
1. Let S[k] be all selection predicates
2. Choose a selection attribute S[m] where (1� m � k)
3. Let PQ be the processors to be used by S[m]

// One-Index Access - using processor PQ:
4. Call Parallel-One-Index-Selection

(selection predicate S[m], index I[m])

// Other Predicates Evaluation – using processor PQ:
5. For all entries in the array of index entry result
6. Load the pointed local record r
7. Perform all other selection predicate S[k] on

record r
8. If record r satisfies S[k]
9. Put record r into query result

Figure 7.20 Parallel multi-index search query processing algorithm (one-index version)

200 Chapter 7 Parallel Indexing

In the initialization module, the most efficient predicate is chosen as the basis of
the search operation. Then in the one-index access module, the parallel one-index
search algorithm is called upon to process this search predicate. Finally, in the
other predicates evaluation module, the records obtained from the one-index
access module are evaluated against all other predicates.

7.6 PARALLEL INDEX JOIN ALGORITHMS

In this section, the central focus is on index-join queries. Index-join queries are
join queries involving index. It is common to expect that one or both join attributes
are indexed. This is especially true in the case where a join between two tables
is based on a primary key (PK) on one table and a foreign key (FK) on the other
table. Primary keys are normally indexed to prevent duplicate values that exist
in that table. PK-FK join is common in relational databases because a database
is composed of many tables and the tables are linked between each other through
PK-FK relationships, in which referential integrity is maintained. Such join queries
are called “index-join” queries (not to be confused with “join indices,” which is a
specialized data structure for efficient access path).

There are two categories of index-join queries: (i) one-index join and (ii)
two-index join, depending on the existence of an index on one or two tables to be
joined.

A one-index join query, as the name states, is a join query whereby one join
attribute is indexed while the other is not. This is typical of a primary key—foreign
key (PK-FK) join, in which the primary key is normally indexed, while the foreign
key may not be. Processing a one-index join query can be done through a nested
block index; that is, for each record of the non-index join attribute, search for a
match in the index attribute.

A two-index join query is a join query on two indexed attributes. The main
characteristic of a two-index join query is that processing such a query can be done
by merging the two indexes. In other words, joining is carried out by a matching
scan of the leaf nodes of the two indexes.

The main difference in processing the two index join query types is that the
two-index join is mainly concerned with leaf node scanning, whereas the one-index
join focuses primarily on index searching. Details of parallel processing of both
index-join queries are discussed next.

7.6.1 Parallel One-Index Join

Parallel one-index join processing, involving one nonindexed table (say table
R) and one indexed table (say table S), adopts a nested index block processing,
whereby for each nonindexed record R, we search for a matching index entry of
table S. Like other parallel join processing methods, parallel one-index join query
processing is divided into data partitioning and local join steps.

7.6 Parallel Index Join Algorithms 201

In the data partitioning step, depending on which parallel indexing scheme is
used by table S, data partitioning to table R may or may not be conducted. Four
different cases are identified and explained as follows.

Case 1 (NRI-1 and NRI-3)

This case is applicable if table S is indexed with either the NRI-1 or NRI-3 struc-
tures. Suppose the index of table S uses a range partitioning function rangefunc().
At the initial stage of processing, table R, as well as table S, has already been par-
titioned and placed into each processor. This is called data placement. A number
of data placement methods have been discussed in Chapter 3 on parallel search.

In the data partitioning step of parallel one-index join algorithm, records of table
R are repartitioned according to the same range partitioning function already used
by table S, namely, rangefunc(). Both the records and index tree of table S are not
at all mutated. At the end of the data partitioning step, each processor will have
records R and index tree S having the same range of values of the join attribute.
Subsequently, the local join step can start.

Case 2 (NRI-2)

If table S is indexed with the NRI-2 structure, the above data partitioning method
used by Case 1 will not work, since NRI-2 does not have a partitioning function for
the index. The partitioning function is in fact not for the index, but for the table,
which is not applicable to one-index join processing. Consequently, the nonin-
dexed table R has to be broadcasted to all processors. It is not possible to partition
the nonindexed table.

Case 3 (PRI)

If table S is indexed with any of the PRI structures (i.e., PRI-1, PRI-2, or PRI-3),
the nonindexed table R does not need to be redistributed, since by using a PRI
structure, the global index is maintained and, more importantly, the root index
node is replicated to all processors so that tracing to any leaf node can be done
from any root node at any processor. In the case where the location of the root
node is different from that of the requested leaf node, the traversal of the index tree
must cross the processor boundary in which the traversal moves from one parent
node on one processor to a child node on another processor.

Case 4 (FRI)

If table S is indexed with any of the FRI structures (i.e., FRI-1 or FRI-3), like
Case 3 above, the nonindexed table R is not redistributed either. The reason for
not redistributing records R is, however, different from that of Case 3. The main
reason is quite obvious: the global indexed table has been fully replicated. Each
record R will now be compared with a full global index s in each processor.

202 Chapter 7 Parallel Indexing

According to the four cases above, it can be summarized that data/record parti-
tioning is applicable to Case 1, and data/record broadcasting to Case 2. Other cases
do not require the data partitioning step.

In the local join step, each processor performs its joining operation indepen-
dently of the others. Using a nested block index join method as described earlier,
for each record R, search for a matching index entry of table S. If a match is found,
depending on the location of the record (i.e., whether it is located at the same place
as the leaf node of the index), record loading is performed. An algorithm for par-
allel one-index join processing is described in Figure 7.21.

In the implementation, there are two technical elements that need mentioning:
one is when record S is located at a different place from the index entry, partic-
ularly if table S is indexed with either NRI-3, PRI-3, or FRI-3. When a match is
found in the searching, a message has to be sent to the processor holding the actual
record S. This is performed by sending a message from the processor holding the
index entry to the processor that stores the record. After this, the latter processor
loads the requested record S and sends it to the former processor to be placed in
the query result. The main concern of this process is that the searching process
should not wait for record S to be retrieved, either locally or even through a mes-
sage passing to load a remote record S. The searching process should continue.

Algorithm:Parallel-One-Index-Join (table R and index S)

// Data Partitioning - in each processor:
1. If index S is NRI-1 or NRI-3 -- Case 1
2. Let range partitioning for index tree S is

called rangefunc()
3. For each record r
4. Redistribute record R according to rangefunc()
5. If index S is NRI-2 -- Case 2
6. For each record R
7. Broadcast record R to all processors

// Local Join - in each processor:
8. For each record R
9. Load record R and read join attribute value av
10. Search value av of record R in index tree

of table S
11. If a match is found in index tree S Then
12. Trace the data pointer to the actual record S
13. If record S is located at a different processor
14. Load pointed remote record S thru message

passing
15. Else
16. Load the pointed local record S
17. Concatenate records R and S into query results

Figure 7.21 Parallel one-index-join query processing algorithm

7.6 Parallel Index Join Algorithms 203

Practically speaking, this can be achieved by creating a separate thread from the
searching thread every time a match is found. This thread sends a message to the
corresponding processors that hold the record, waits until the record is sent back,
and puts it into the query results together with record R. By using this approach,
searching is not halted.

Another technical element in the searching is when any of the PRI structures
is involved. The searching that starts from a root node at any processor may end
up with a leaf node at a different processor. When a parent node at processor 1
points to a child node at processor 2, the searching control at processor 1 is passed
to processor 2, in which a new searching thread at processor 2 is created. If later,
processor 2 passes its control to processor 3 and a leaf node is found there, data
loading as described in the previous paragraph can be applied. The main concern
is that the retrieved record S needs to be passed back to the original processor
where the searching started in order to be concatenated with the record R. As a
result, the retrieved record S needs to return to the original processor. This can be
implemented with a similar threading technique whereby, when searching control
is passed from one processor to another, a new searching thread at the new pro-
cessor is created. When the desired record has been retrieved, the retrieved record
travels in a reverse direction.

Figure 7.22 shows an architecture of a processor in which the processor consists
of two thread groups: one is for the searching process, and the other is for the data
loading to serve either another processor or the same processor. The first thread
in the first thread group is the searching thread. If a traversal from the current
processor to another processor is necessary, the thread control is passed to another
processor. If a match is found, it creates a new thread to handle the data retrieval.
This thread actually sends a message to another thread, which may be located
at a different processor. This thread informs the I/O thread to actually load the
requested data. Once it has been loaded from a disk, it is sent to the requested
thread.

7.6.2 Parallel Two-Index Join

Parallel two-index join processing is where each processor performs an indepen-
dent merging of the leaf nodes, and the final query result is the union of all tem-
porary results gathered by each processor. Because there are a number of parallel
indexing schemes, it is possible that the two tables to be joined may have adopted
different parallel indexing schemes. For example, one table uses NRI-1, whereas
the other uses FRI-3. In this circumstance, two cases are available.

Case 1

Case 1 is applicable to all parallel indexing structures except NRI-2 and PRI-2.
For example, the case of two tables to be joined, where one of the tables is indexed
with NRI-3 and the other is indexed with PRI-1, falls into this category. It may also
be true that both indexes may use the same indexing structure, such as both using

204 Chapter 7 Parallel Indexing

Searching

Create a thread

Record
Retrieval

FOUND

Send a message

Receive the record

Message
Handling

Receive a message

Send the record

Load a
Record

Query
Result

Processor:

Thread Group 1:

Thread Group 2:

Go to other processor
searching thread

TRAVERSAL

Pass record to
the previous

processor

Figure 7.22 A searching architecture

7.6 Parallel Index Join Algorithms 205

FRI-1. Whichever parallel indexing structure is used, they must adopt the same
index partitioning function. For instance, if the join attribute is based on ID field,
both tables must adopt the same partitioning function for the ID field, such as IDs
0–99 go to processor 1, IDs 100–199 go to processor 2, and so on.

Basically, the main processing in parallel two-index join processing is a merging
operation of the leaf nodes of the two index trees in each processor. Merging all
leaf nodes in each processor can be performed by first scanning the left-most leaf
node and then following the node pointer to the next leaf node on the right until all
leaf nodes have been scanned. As merging involves leaf nodes only, nonleaf nodes
contribute very little to the overall performance of the operation.

If one or both indexes are NRI-1 or NRI-3, leaf node scanning can be quite sim-
ple, as the local index in one processor has no overlap with the local index in other
processors. Local merging is simply done as for normal merging in uniprocessors.
This is also similar to PRI-1 and PRI-3, even through the first and/or the last leaf
nodes in each processor may be replicated in the neighboring processors.

Merging that involves FRI-1 or FRI-3 can be a little more complex, as the full
global index exists in each processor. One simplistic merging method is to merge
all leaf nodes. A better merging is achieved by setting up a range for merging in
each processor, so that each processor does not merge the whole global index but
only part of the global index, as in that of PRI structures. Workload division can be
accomplished by consulting the range function used in the base table partitioning
or simply by dividing the workload equally. In either case, the range of the two
extremes, the starting and ending values of each range, must be determined. Once
these values have been obtained, each processor knows where to start and where
to stop when merging.

An algorithm for parallel two-index join processing is presented in Figure 7.23.
Step 2 in the algorithm is to find out the starting and ending nodes for the merging
process. In particular, this is needed especially if one or both of the indexes are fully
replicated indexes. For nonreplicated and partially replicated indexes, the starting
and ending nodes for merging are obvious; that is, the left-most leaf nodes and the
right-most leaf nodes.

Case 2

This case assumes that the join attributes are indexed with either NRI-2 or PRI-2.
Unfortunately, parallel two-index join query processing cannot make use of these
indexes. Therefore, NRI-2 and PRI-2 are useless for parallelizing two-index join
query processing.

Imagine that two tables (say table Employee and table Student) are to be joined
based on their ID fields, and the indexes are based on their Name fields with
either NRI-2 or PRI-2. Suppose that the base table partitioning function is a simple
range partitioning whereby names starting from A to G go to processor 1, H–M
to processor 2, and so on. NRI-2 and PRI-2 build their local indexes on the ID

206 Chapter 7 Parallel Indexing

Algorithm: Parallel-Two-Index-Join-Category-1
(indexes R & S)

// In each processor:
1. Let starting and ending values of the range

partitioning used are startval and endval
2. If FRI-1 or FRI-3 is used Then

Determine startval by searching a startval in
index tree
And
the last node visited in this index tree becomes
the starting node of the index in the merging
process

Else
Starting node for comparison is the left most
leaf node
And ending node for comparison is the right
most leaf node in each processor

3. Merge leaf nodes of indexes R and S from the
respective starting leaf nodes

4. If matched Then
Trace the data pointer to the base record.
If the base record is located at a different
processor
Load the pointed remote record thru message
passing

Else
Load the pointed local record

Concatenate the two records into query results
5. Repeat steps 3-4 until one of the indexes’ leaf nodes

have run out or contain index entry greater or equal
to endval

Figure 7.23 Parallel two-index-join query processing algorithm (category 1)

fields based on the local data. A possible scenario for ID distribution is such that
Employee IDs 7, 188, are located in processor 1, Employee IDs 9, 155 are in pro-
cessor 2, Student IDs 7, 9 are located in processor 1, and Student IDs 155, 188
are in processor 2. It is impossible for each processor to perform an independent
merging of the indexes on the ID field, as the indexes of both tables located at
one processor bear no identical semantics on the ID field. This is because data
placement (records and index nodes) is done based on a nonjoin attribute.

If table R is indexed with either NRI-2 or PRI-2, and table S is indexed with
neither NRI-2 nor PRI-2, the index is ignored and table R is assumed to be
not indexed. Join processing then follows parallel one-index join processing as
described in the previous section.

7.7 Comparative Analysis 207

If table R and table S are indexed with either NRI-2 or PRI-2 but the indexing
structure of both tables are different, the index NRI-2 is ignored, and join process-
ing follows that of parallel one-index join. The reason for ignoring NRI-2 and using
PRI-2 instead is that with PRI-2 in parallel one-index join, the nonindexed table
does not need to be redistributed. If, for example, NRI-2 is used instead, the other
table needs to be broadcasted. Broadcasting all records is expensive and therefore
is avoided.

If both indexes use the same indexing structure, either NRI-2 or PRI-2, both
indexes cannot be used, as described earlier. Hence, common parallel join process-
ing without indexes (e.g., parallel hash join) is applied instead.

7.7 COMPARATIVE ANALYSIS

As there are different kinds of parallel indexing structures and consequently vari-
ous parallel algorithms for search and join queries involving index, as studied in the
previous sections, it becomes important to analyze the efficiency of each parallel
indexing structure in the context of parallel search and join query processing.

7.7.1 Comparative Analysis of Parallel Search Index

In this section, parallel one-index and multi-index search query processing are
examined, followed by some discussions.

Analyzing Parallel One-Index Search Query Processing

As mentioned previously, in parallel one-index search query processing there are
three main elements: (i/ processor involvement, (ii) index traversal, and (ii) record
loading. In processor involvement, it is either selected or involves all processors. In
index traversal, traversal may be localized in each processor or it may sometimes
be required to traverse to a different processor. Meanwhile, the record loading may
be done locally at the same processor or remotely at a different processor where
searching is performed.

Based on these three factors, Figure 7.24 presents a matrix to show a comparison
among parallel indexing structures. The shaded cells show more expensive opera-
tions in comparison with others within the same operation, whereas the nonshaded
cells indicate cheaper operations.

Based on this table comparison, each parallel indexing structure shows some
advantages as well as disadvantages in supporting parallel index search query pro-
cessing. It is clear from the table in Figure 7.24 that NRI/PRI/FRI-1 indexing
structures provide more advantages than others, since only selected processors are
used and index traversal and record loading are locally done.

Less attractive indexing structures are offered by NRI/PRI/FRI-3 where record
loading may be done remotely. The efficiency of remote data loading is very
much determined by the selectivity factor of the query. The higher the selectivity,

N
R

I
Sc

he
m

es
P

R
I

Sc
he

m
es

F
R

I
Sc

he
m

es
N

R
I-

1
N

R
I-

2
N

R
I-

3
P

R
I-

1
P

R
I-

2
P

R
I-

3
F

R
I-

1
F

R
I-

3
P

ro
c
e
s
s
o

r
S

el
ec

te
d

A
ll

S
el

ec
te

d
S

el
ec

te
d

S
el

ec
te

d
S

el
ec

te
d

S
el

ec
te

d
S

el
ec

te
d

In
v
o

lv
e

m
e

n
t

p
ro

ce
ss

o
rs

p
ro

ce
ss

o
rs

p
ro

ce
ss

o
rs

p
ro

ce
ss

o
rs

p
ro

ce
ss

o
rs

p
ro

ce
ss

o
rs

p
ro

ce
ss

o
rs

p
ro

ce
ss

o
rs

In
d

e
x

Lo
ca

l
Lo

ca
l

Lo
ca

l
Lo

ca
l

R
em

o
te

Lo
ca

l
Lo

ca
l

Lo
ca

l
T
ra

v
e
rs

a
l

se
ar

ch
se

ar
ch

se
ar

ch
se

ar
ch

se
ar

ch
se

ar
ch

se
ar

ch
se

ar
ch

R
e

c
o

rd
Lo

ca
l

Lo
ca

l
R

em
o

te
Lo

ca
l

Lo
ca

l
R

em
o

te
Lo

ca
l

R
em

o
te

L
o

a
d

in
g

re
co

rd
lo

ad
re

co
rd

lo
ad

re
co

rd
lo

ad
re

co
rd

lo
ad

re
co

rd
lo

ad
re

co
rd

lo
ad

re
co

rd
lo

ad
re

co
rd

lo
ad

F
ig

u
re

7.
2

4
A

co
m

p
ar

at
iv

e
ta

b
le

fo
r

p
ar

al
le

lo
n

e-
in

d
ex

se
le

ct
io

n
q

u
er

y
p

ro
ce

ss
in

g

208

7.7 Comparative Analysis 209

the more records to be loaded, and there is a great chance the records need
to be loaded remotely and this incurs overhead. In contrast, if the selectivity
ratio is very small, overheads for record loading can be minimal. Consequently,
NRI/PRI/FRI-3 can be as good as NRI/PRI/FRI-1 indexing structures particularly
for parallel one-index selection query processing.

The other option is the NRI/PRI-2 indexing structure. NRI-2 requires all pro-
cessors to be used. If the selectivity ratio is very small, most processors will not
produce any results. From an elapsed time point of view (speed up), it may not be
a problem, but from a throughput point of view (scale up), those processors that
do not bring any results may waste a lot of unnecessary processing time. PRI-2,
on the other hand, may isolate into selected processors, but traversal may need to
move from one processor to another, thereby increasing communication overhead.

Analyzing Parallel Multi-Index Search Query Processing

In parallel multi-index search query processing, two main methods are considered:
(i) the intersection method and (ii) the one-index access method.

Analyzing the Intersection Method

There are two important key factors to consider when determining the efficiency
of the intersection method: (i) individual index searching and (ii) the intersection
operation. In individual index searching, basically processor involvement is criti-
cal, as this can identify whether or not early intersection can be carried out. In the
intersection operation, the focus is on whether the found leaf nodes in each indi-
vidual search predicate evaluation need to be sent from one processor to another
for an intersection operation with other found leaf nodes.

Figure 7.25 illustrates these two key factors. Since each factor is further catego-
rized into two possibilities, a matrix 2 ð 2 is conveniently drawn (see Fig. 7.25(a)).
Figure 7.25(b) to (d) shows the three cases explained above.

Figure 7.25(b) shows the properties of case 1 (one index is based on
NRI/PRI/FRI-1 and the other is not) in terms of their processor involvement
in each individual index attribute searching and the intersection operation that
intersects all results obtained from each individual index attribute searching. The
selected processor involvement cells explain an early intersection mechanism
imposed in this case, whereas the intersection operation may or may not involve
leaf node transfer depending on whether or not NRI/PRI-3 is used.

Case 2 (Fig. 7.25(c)) shows that no early intersection is carried out since there is
no effect on individual searching in terms of their processor involvement. In other
words, processor involvement is dictated by individual index attribute searching.

Case 3 (Fig. 7.25(d)) is a subset of case 2, where in the intersection operation
leaf node transfer is unnecessary since the records and their leaf nodes in the index
tree are collocated.

An ideal situation is clearly displayed in Figure 7.25(e), where an early
intersection is enforced through the use of selected processors as dictated by

210 Chapter 7 Parallel Indexing

(a) (b) Case 1

Individual
Index
Searching

Individual
Index
Searching

Intersection
Operation

Individual
Index
Searching

Intersection
Operation

Individual
Index
Searching

Intersection
Operation

Individual
Index
Searching

Intersection
Operation

(c) Case 2 (d) Case 3
No Effect on
Individual
Index
Searching

Leaf Node
Transfer

Leaf Node
Transfer

No Leaf
Node
Transfer

No Effect on
Individual
Index
Searching

No Leaf
Node
Transfer

(e) IdealCase
Selected
Processors

Leaf Node
Transfer

No Leaf
Node
Transfer

Selected
Processors

General
Matrix

Intersection
Operation

No Effect on
Individual
Index
Searching

No Leaf
Node
Transfer

Figure 7.25 A comparative table for parallel multi-index selection query processing using an
intersection method

NRI/PRI/FRI-1, and record loading is done locally as in NRI/PRI/FRI-1 and
NRI/PRI-2.

Analyzing the One-Index Access Method

The main aim of the one-index access method is to minimize as much I/O as pos-
sible, so that further search predicate evaluations based on the records that have
been selected through one-index access may evaluate as small a number of records
as possible. In other words, the first search predicate, which uses an index, should
have the smallest selectivity ratio.

Another important factor following this is that when a set of records have been
initially selected by the index attribute searching, it would be ideal for these records
to be spread to multiple processors, so that further search predicate evaluation can
be done in parallel on multiple processors.

N
R

I
Sc

he
m

es
P

R
I

Sc
he

m
es

F
R

I
Sc

he
m

es
N

R
I-

1
N

R
I-

2
N

R
I-

3
P

R
I-

1
P

R
I-

2
P

R
I-

3
F

R
I-

1
F

R
I-

3
E

x
a
c
t-

M
a
tc

h
Is

o
la

te
d

R
ec

o
rd

R
ec

o
rd

Is
o

la
te

d
R

ec
o

rd
R

ec
o

rd
Is

o
la

te
d

R
ec

o
rd

S
e

a
rc

h
re

co
rd

lo
ad

in
g

lo
ad

in
g

re
co

rd
lo

ad
in

g
lo

ad
in

g
re

co
rd

lo
ad

in
g

Q
u

e
ri

e
s

lo
ad

in
g

p
o

ss
ib

ly
p

o
ss

ib
ly

lo
ad

in
g

p
o

ss
ib

ly
p

o
ss

ib
ly

lo
ad

in
g

p
o

ss
ib

ly
sp

re
ad

(i
f

sp
re

ad
(i

f
sp

re
ad

(i
f

sp
re

ad
(i

f
sp

re
ad

(i
f

n
o

n
u

n
iq

u
e)

n
o

n
u

n
iq

u
e)

n
o

n
u

n
iq

u
e)

n
o

n
u

n
iq

u
e)

n
o

n
u

n
iq

u
e)

C
o

n
ti

n
u

o
u

s
-

R
ec

o
rd

R
ec

o
rd

R
ec

o
rd

R
ec

o
rd

R
ec

o
rd

R
ec

o
rd

R
ec

o
rd

R
ec

o
rd

R
a
n

g
e

lo
ad

in
g

lo
ad

in
g

lo
ad

in
g

lo
ad

in
g

lo
ad

in
g

lo
ad

in
g

lo
ad

in
g

lo
ad

in
g

S
e

a
rc

h
p

o
ss

ib
ly

p
o

ss
ib

ly
p

o
ss

ib
ly

p
o

ss
ib

ly
p

o
ss

ib
ly

p
o

ss
ib

ly
p

o
ss

ib
ly

p
o

ss
ib

ly
Q

u
e
ri

e
s

sp
re

ad
,b

u
t

sp
re

ad
sp

re
ad

sp
re

ad
,b

u
t

sp
re

ad
sp

re
ad

sp
re

ad
,b

u
t

sp
re

ad
n

o
t

ra
n

d
o

m
ra

n
d

o
m

ly
ra

n
d

o
m

ly
n

o
t

ra
n

d
o

m
ra

n
d

o
m

ly
ra

n
d

o
m

ly
n

o
t

ra
n

d
o

m
ra

n
d

o
m

ly

F
ig

u
re

7.
2

6
A

co
m

p
ar

at
iv

e
ta

b
le

fo
r

p
ar

al
le

lm
u

lt
i-

in
d

ex
se

le
ct

io
n

q
u

er
y

p
ro

ce
ss

in
g

u
si

n
g

a
o

n
e-

in
d

ex
ac

ce
ss

m
et

h
o

d

211

212 Chapter 7 Parallel Indexing

Both of these factors determine the efficiency of parallel multi-index search
query processing based on the one-index access method. The selectivity factor is
greatly determined by the type of the search query, whereas the spread of records
is influenced by the indexing scheme used. Figure 7.26 shows a comparative table
for parallel multi-index search query processing based on the one-index access
method.

In the exact-match search queries, the selected records might be either unique
or nonunique. In the case of unique results, the selectivity must be very low, as low
as one record selected. With NRI/PRI/FRI-1 indexing structure, record loading is
isolated to a single processor only. Even when the records are not unique, I/O is
still isolated to a single processor. However, the objective of spreading the I/O for
further search predicate evaluation is not met. If the other indexing structure is
used instead, record loading is randomly spread if the records are not unique.

In the continuous-range search queries, record loading will likely be spread to
multiple processors, unless the range is quite small and fits into one processor,
especially when NRI/PRI/FRI-1 is used. When NRI/PRI-FRI-1 is used, the spread
is likely to be nonrandom, meaning that the spread is, for example, from one pro-
cessor to the neighboring processors only. This is because the records are sorted
within and among other processors. However, if the other indexing structure is
used, the spread will most likely be more random.

Discrete-range search queries are not included in the comparison chart,
since they can be regarded as a combination of exact-match selection and
continuous-range search, in terms of record loading and its spread.

From the table in Figure 7.26, a few lessons can be learned. One is that the
smallest selectivity ratio is given by an exact-match search predicate with unique
records, and the most efficient indexing structure is NRI/PRI/FRI-1. Therefore,
this is the most preferable indexing structure. The next preferable option will be
exact-match search predicates of nonunique records or continuous-range search
predicates depending on the selectivity ratio with NRI-2/3 or PRI-2/3 or FRI-3. In
this case, it is hard to predefine which one is better unless performance measure-
ment is conducted.

Discussions

In wrapping up the comparison, it can be clearly seen that NRI/PRI/FRI-1 offer
much benefit for parallel search query processing involving index. These index-
ing structures clearly offer the best performance, especially for parallel one-index
search query processing. The main difference between these three indexing struc-
tures is the structure of the index, where NRI-1 is purely local index, PRI-1 main-
tains a global index that is spread among processors, and FRI-1 replicates the
whole index. Since extra benefits of PRI-1 and FRI-1 are not obvious, at least in
parallel one-index search query processing, maintaining global index as in PRI-1
and replicating the whole index as in FRI-1 do not offer extra benefits. In fact, the
drawback of PRI-1 and FRI-1 is quite clear, as PRI-1 needs to maintain the link
from one index node of one processor to another node in another processor and

7.7 Comparative Analysis 213

FRI-1 needs enormous extra space to maintain the index. On the other hand, NRI-1
is sufficient to provide support for parallel one-index search query processing.

The second preferable indexing structure to support parallel search query pro-
cessing cannot be easily identified. NRI/PRI/FRI-3 indexing structures are quite
favorable, particularly in parallel one-index search query processing. On the other
hand, NRI/PRI-2 indexing structures are favorable in the intersection method of
parallel multi-index search query processing. Therefore, further performance anal-
ysis, incorporating storage space analysis and other operation analysis, is necessary
in order to identify the efficiency of these indexing structures.

7.7.2 Comparative Analysis of Parallel Index Join

In this section, parallel one-index and multi-index join query processing are exam-
ined.

In parallel one-index join processing, there are two main elements in particular:
(i) data partitioning of the nonindexed table and (ii) local join. Data partitioning is
either to partition, to broadcast, or to do nothing to the nonindexed table. In local
join, two major factors, searching of the indexed table and data/record loading
pointed by an index entry, are highlighted. In the searching process, the searching
may be localized in each processor or it may sometimes be required to traverse to
a different processor. Meanwhile, the record loading may be done locally at the
same processor or remotely at a different processor where searching is performed.

In parallel two-index join processing, two main factors are considered:
(i/ determining merge starting and ending points through searching and (ii)
data/record loading. The starting and ending points in merging can be determined
either directly in each processor or by a searching process. The record loading
factor is the same as that of parallel one-index join processing, that is, record
loading locally or remotely.

Based on the above-mentioned factors, a matrix is drawn to show a compari-
son among parallel indexing structures. This is shown in Figure 7.27. The heavily
shaded cells show more expensive operations in comparison with others within the
same operation, whereas the lightly shaded cells indicate operations that are not
as expensive as those of the heavily shaded cells. The nonshaded cells indicate the
cheapest operations.

Based on the above table comparison, each parallel indexing structure has
advantages and disadvantages in supporting parallel index-join processing. There
is no single parallel indexing structure that is the most efficient in all aspects.
However, it is noted that NRI-2 and PRI-2 do not support parallel index-join
processing efficiently. Therefore, the use of these parallel indexing structures is
not suggested.

The comparison shows that NRI-1 requires data partitioning of the nonindexed
table, whereas NRI-3 adds remote data loading of the indexed table in both parallel
one-index and parallel two-index join processing. The efficiency of remote data
loading is very much determined by the selectivity factor of the query. The higher

N
R

I
Sc

he
m

es
P

R
I

Sc
he

m
es

F
R

I
Sc

he
m

es
P

R
I-

2
P

R
I-

1
P

R
I-

3
N

R
I-

2
N

R
I-

1
N

R
I-

3
F

R
I-

1
F

R
I-

3
D

at
a

pa
rt

iti
on

in
g

Pa
rt

iti
on

B
ro

ad
ca

st
Pa

rt
iti

on
N

o
Pa

rt
iti

on
N

o
Pa

rt
iti

on
N

o
Pa

rt
iti

on
N

o
Pa

rt
iti

on
N

o
Pa

rt
iti

on
In

de
xe

d
ta

bl
e

se
ar

ch
in

g
L

oc
al

se
ar

ch
L

oc
al

se
ar

ch
L

oc
al

se

ar
ch

R
em

ot
e

se
ar

ch
R

em
ot

e
se

ar
ch

R
em

ot
e

se
ar

ch
L

oc
al

se

ar
ch

L
oc

al

se
ar

ch

P
ar

al
le

l
O

ne
-I

nd
ex

Jo
in

L
oc

al
jo

in
In

de
xe

d
ta

bl
e

re
co

rd
 lo

ad
in

g
L

oc
al

 d
at

a
lo

ad
L

oc
al

 d
at

a
lo

ad
R

em
ot

e
da

ta
 lo

ad
R

em
ot

e
da

ta
 lo

ad
R

em
ot

e
da

ta
 lo

ad
R

em
ot

e
da

ta
 lo

ad

R
em

ot
e

da
ta

 lo
ad

R
em

ot
e

da
ta

 lo
ad

Se
ar

ch
in

g
st

ar
t

an
d

en
d

va
lu

es
N

ot
ne

ce
ss

ar
y

N
ot

ne
ce

ss
ar

y
N

ot

ne
ce

ss
ar

y
N

ot
ne

ce
ss

ar
y

Se
ar

ch
in

g
ne

ed
ed

Se
ar

ch
in

g
ne

ed
ed

P
ar

al
le

l
T

w
o-

In
de

x
Jo

in

M
er

gi
ng

D
at

a
lo

ad
in

g
L

oc
al

 d
at

a
lo

ad

N
/A

R
em

ot
e

da
ta

 lo
ad

L
oc

al
 d

at
a

lo
ad

N
/A

R
em

ot
e

da
ta

 lo
ad

L
oc

al
 d

at
a

lo
ad

R
em

ot
e

da
ta

 lo
ad

F
ig

ur
e

7.
27

A
co

m
pa

ra
tiv

e
ta

bl
e

fo
r

pa
ra

lle
li

nd
ex

-j
oi

n
qu

er
y

pr
oc

es
si

ng

214

7.7 Comparative Analysis 215

the selectivity, the more records to be loaded, and there is a great chance the records
need to be loaded remotely and this incurs overhead. Comparing PRI-1 with PRI-3,
both seek remote index searching and data loading in parallel one-index join. Addi-
tionally, PRI-3 needs remote record loading in parallel two-index join. FRI-1 and
FRI-3 are similar, since both require remote data loading in parallel one-index join
and searching for starting and ending values for merging in parallel two-index join.
However, in parallel two-index join FRI-3 needs remote data loading as well.

When designing a parallel database system, especially when building a parallel
index, we are left with two options: The first is to construct an index based on
the partitioning attribute used in the table partitioning, and the second is to build
an index totally based on a nonpartitioning attribute. The first option is to choose
whether to adopt NRI-1, PRI-1, or FRI-1, whereas the second option is between
NRI-3, PRI-3, and FRI-3 (not that NRI-2 and PRI-2 have been eliminated from
the options). Consequently, it is reasonable to determine which parallel indexing
structure is suitable for each of the two situations above.

Let us compare NRI-1, PRI-1, and FRI-1 first. Based on parallel one-index join
operation, NRI-1 and FRI-1 are quite comparable, in that NRI-1 requires data par-
titioning of the nonindexed table, whereas FRI-1 does not require data partitioning
but imposes remote data loading. Also, note that FRI-1 for parallel one-index join
is not as expensive as PRI-1, because PRI-1, in addition to what FRI-1 requires,
needs remote index searching. Based on parallel two-index join operation, NRI-1
is the best, as data loading is local and does not need searching for starting/ending
points like FRI-1. On a whole, it can be said that NRI-1 is quite promising for
parallel index-join processing. FRI-1 seems to be very good, while PRI-1, on the
other hand, is less attractive.

Comparing NRI-3, PRI-3, and FRI-3, based on parallel one-index join opera-
tion FRI-3, which requires remote data loading, offers the best option, compared
with PRI-3, which additionally needs to do a remote index searching, and with
NRI-3, which additionally needs data partitioning. NRI-3 and PRI-3 are the same
in parallel two-index join, where both require remote data loading. On the other
hand, FRI-3 requires an additional searching for starting/ending values for merg-
ing. Depending on which is more expensive, data partitioning or remote searching
in parallel one-index join, the efficiency of NRI-3 and PRI-3 are quite comparable.
FRI-3 seems to be good for both parallel index-join processing, as it needs only a
small overhead for searching of starting/ending values in the merging process.

To conclude our comparison, it is generally expected that fully replicated sys-
tems offer a great number of benefits in parallel processing, which in this case is
confirmed in parallel one-index join and parallel two-index join processing. An
obvious drawback is storage overhead, which can be enormously large. If storage
overhead is to be minimized, the nonreplicated parallel indexing structures, in par-
ticular NRI-1 and NRI-3, are favorable. On the other hand, the PRI structures do
not seem to provide any advantages in addition to those already offered by NRI
and FRI.

216 Chapter 7 Parallel Indexing

7.8 SUMMARY

Indexing is important in database systems, and consequently operations involv-
ing index are significant and need comprehensive examination. First, three aspects
of parallel indexing are discussed: parallel indexing structures, parallel indexing
maintenance, and parallel indexing storage.

ž Parallel Indexing Structures
Three parallel indexing structures are presented and discussed. They

are nonreplicated indexing structures (NRI), partially replicated indexing
structures (PRI), and fully replicated indexing structures (FRI). Both NRI
and PRI structures have three different variations: the index attribute is also
the record partitioning attribute: the local index is built from its local data:
and the indexed partitioning attribute is different from the record partitioning
attribute (the record partitioning may be unknown or different from the
indexed attribute). For the FRI structures, only two variations are known,
these being the first and the third of the above.

ž Parallel Indexing Maintenance
Index maintenance, including insertion and deletion operations, focuses

on the complexity/simplicity of each of the parallel index structures. This
chapter has described how maintenance of the PRI structures can be done and
discussed to some degree the complexity involved in splitting, merging, and
index restructuring. Data pointer maintenance for NRI and FRI structures is
also explained.

ž Parallel Indexing Storage
There are two important components of storage: storage for tables and

storage for indexes. Parallel indexing storage is similar to indexing storage
for uniprocessors. This chapter has also studied both indexing storage for
uniprocessors and for parallel environments.

Further, the use of parallel index is applied to two operations: search and
join operations.

ž Parallel Index-Search Query Processing
Parallel index-search query processing algorithms exists in two forms:

one-index search queries and multiple-index search queries. Parallel
one-index selection queries are for search queries on a single attribute and
this attribute is indexed, whereas parallel multiple-index search queries
are for search queries on multiple attributes and consequently on multiple
indexes.

The comparison among these parallel indexing structures particularly in
supporting the efficiency of parallel index-search query algorithms shows
clearly that NRI/PRI/FRI-1 are the most supportive. Others offer various
advantages and disadvantages. Examining this matter in more detail, it
appears that PRI/FRI structures do not add extra benefits. The decision
to choose another index for other attributes is determined by the balance
between storage versus performance.

7.10 Exercises 217

ž Parallel index-join query processing
Parallel index-join algorithms exist in two forms: parallel one-index join

and two-index join queries. Parallel one-index join focuses more on index
node searching, as for nested block index join algorithms, whereas parallel
two-index join is mainly concerned with leaf node merging. We have consid-
ered how the two parallel index join might use the available parallel indexing
structures.

The comparison among these parallel indexing structures, particularly in sup-
porting the efficiency of parallel index-join algorithms, shows clearly that NRI-2
and PRI-2 indexing structures are not supportive. Others offer various advantages
and disadvantages. Looking into this matter in more detail, it appears that PRI
structures do not add extra benefits, and therefore only NRI-1/3 and FRI-1/3 are
left as plausible options. The decision is determined by striking a balance between
storage versus performance.

7.9 BIBLIOGRAPHICAL NOTES

Standard database textbooks, like Elmasri and Navathe (2007) and Ramakrishnan
and Gehrke (2000) cover basic indexing structures (e.g., BC trees) for database
systems.

Indexing for parallel database systems was covered in Honishi et al. (1992).
Index structures for shared-nothing architecture were presented by Achyutuni et al
(SIGMOD 1996), presenting techniques for online index modification, and Feel-
ifl et al. (DEXA 2000), proposing an online heat-balancing. Index structures to
improve query performance were presented by Berchtold et al. (EDBT 1998),
where the performance of high-dimensional index is improved by bulk-load oper-
ations, and Omiecinski et al. (1990), focusing on parallel join processing using
nonclustered indexes.

Newer work on parallel indexing includes parallel indexing for multidimen-
sional data (Ali et al. DAPD 2005; Bok et al. WAIM 2005 and DASFAA 2006;
Dehne et al. 2003) and semistructured data (Cooper et al. 2002).

7.10 EXERCISES

7.1. Given a data set D D f55; 30; 68; 39; 1; 4; 49; 90; 34; 76; 82; 56; 31; 25; 78; 56; 38;

32; 88; 9; 44; 98; 11; 70; 66; 89; 99; 22; 23; 26g, construct an index tree of this data
set with a BC tree structure. Assume that the maximum number of pointers in each
node is 4.

7.2. Using the index tree built in the exercise 7.1, and assuming that there are three pro-
cessors, construct parallel indexes with the following parallel indexing schemes:

a. NRI-1 scheme

b. PRI-1 scheme

218 Chapter 7 Parallel Indexing

7.3. Using the PRI-1 results from exercise 7.2, show step by step how data item 33 is
inserted into the index tree.

7.4. Using the PRI-1 results from exercise 7.2, show how data item 33 can be deleted.

7.5. Compare the storage size of parallel indexes using the NRI-1 scheme and the NRI-2
scheme. Also compare the storage size of NRI-1 and NRI-3 schemes.

7.6. Using the PRI-1 index tree in exercise 7.2, show step by step how the following
parallel search works:

a. Search data item 78.

b. Search a range of data items from 70 to 79, inclusive.

c. Search data items ending with a zero between 10 and 90, inclusive (e.g., 10, 20,
30, : : : , 90).

7.7. For parallel one-index search query processing, list in order of preference the parallel
indexing structures according to their efficiency.

7.8. For parallel one-index join query processing in Figure 7.27, explain why data parti-
tioning is not needed for the PRI and FRI schemes.

7.9. Explain why NRI-2 and PRI-2 are useless for parallelizing two-index join query pro-
cessing.

7.10. Investigate how parallel indexes are expressed in SQL.

Chapter8

Parallel Universal
Qualification—Collection
Join Queries

The birth of the collection join is due to two things: one is an extension to rela-
tional division, which is a manifestation of universal quantification, and the other
is the existence of collection types and collection attributes in database systems,
particularly in object-based databases. This chapter focuses on the issues surround-
ing collection join queries—including collection join query types and their parallel
algorithms.

In Section 8.1, collection join queries in association with relational division are
highlighted. In Section 8.2, different kinds of collection types and collection join
queries are described. Section 8.3 outlines parallelism for collection join queries.
This is elaborated in more detail in the following three sections.

Section 8.4 studies parallel algorithms for collection-equi join queries. This
includes disjoint data partitioning and several local join techniques, including
double sort-merge, sort-hash, and hash.

Section 8.5 focuses on parallel algorithms for collection-intersect join queries.
Several non-disjoint data partitioning methods become the central focus. The local
join makes use of a combination of sort, merge, and hash.

Finally, Section 8.6 describes parallel algorithms for subcollection join queries.
The properties of these algorithms are very much influenced by the previous two
parallel algorithms.

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

219

220 Chapter 8 Parallel Universal Qualification—Collection Join Queries

8.1 UNIVERSAL QUANTIFICATION
AND COLLECTION JOIN

A relational division operation is a manifestation of a universal quantifier. The
collection join query is actually an extension of the concept of relational division.
To illustrate this concept, let us see how relational division operation works.

Figure 8.1 shows an example of a relational division operation. In this case,
the dividend table is a union of all editors-in-chief, and the divisor table is the
program-chairs of a conference object p. The editor-in-chief table consists of two
attributes: the first attribute is the journal name and the second attribute is the
editor-in-chief ID. Assume that each person identified in this table has a unique ID
that is associated with the details of each person. The conference table also consists
of two attributes: the conference name and the ID of its program-chair. The result
of this division is the combination of b and p.

Now assume that there are many conferences, and we would like to repeat the
division process; then we would have repeated relational division operations for
each conference. Figure 8.2 gives this illustration. The results of this repeated rela-
tional division is b–p and i–w (the results are based on this incomplete data).

all editors-in-chief program-chairs division

a 250 of a conference result

a 75 dividedby p 123 giving b p
b 210 p 210
b 123
c 125
c 181
...
...
...

...

...

...
i 80
i 70 Figure 8.1 Relational division

all editors-in-chief program-chairs division
a 250 of all conference results
a 75 dividedby p 123 giving b p
b 210 p 210
b 123
c 125 r 50
c 181 r 40
d 4
d 237 w 80 i w
e 289 w 70
...
...
...

...

...

...
i 80
i 70

Figure 8.2 Repeated relational
division

8.1 Universal Quantification and Collection Join 221

Class A Class B

a(250, 75)
b(210, 123)
c(125, 181)
d(4, 237)
e(289, 290)
f(150, 50, 250)
g(270)
h(190, 189, 170)
i(80, 70)

p(123, 210)
q(237)
r(50, 40)
s(125, 180)
t(50, 60)
u(3, 1, 2)
v(100, 102, 270)
w(80, 70)

(Journal) (Proceedings)

Journal OIDs

editor-in-chief OIDs

Proceedings OIDs

program-chair OIDs
Figure 8.3 Sample data

The example in Figure 8.2 can be redrawn so that each journal and con-
ference is represented as a unit (record). Each journal may consist of multiple
editors-in-chief, and each conference may also consist of multiple program-chairs.
Figure 8.3 shows a different look at Figure 8.2 (with a more complete journal and
conference data).

The sample data shown in Figure 8.3 is not a relational structure, since multiple
values (editors-in-chief and program-chairs) exist in each journal and conference
records. However, this is possible in object-based databases as an attribute can
be of a collection type, not only an atomic type. Therefore, the data shown in
Figure 8.3 is more relevant to object-based databases. However, since the concept
is very similar to relational division, it is also interesting to include a discussion on
possible queries arising from this new data structure.

The sample data in Figure 8.3 above will be used as a running example
throughout this chapter. Suppose class A and class B are Journal and Proceedings,
respectively. Both classes contain a few objects, shown by their OIDs (e.g., objects
a to i are Journal objects and objects p to w are Proceedings objects). The join
attributes are editor-in-chief of Journal and program-chair of Proceedings and
are of type collection Person. The OIDs of each person in these attributes are
shown in brackets. For example, a.250; 75/ denotes a Journal object with OID a,
and the editors of this journal are Persons with OIDs 250 and 75. The elements
250 and 75 form a collection for journal a. This collection attribute consists
of multiple elements of the same type, in this case Persons’ OIDs. Depending
on how the elements are arranged, whether they are in a particular order, and
whether the elements can be repeated within a collection, there are many different
kinds of collection types. Because there are various collection types available,
there are many different kinds of join queries involving collection attributes.
In the next sections, various collection types and collection join queries are
discussed.

222 Chapter 8 Parallel Universal Qualification—Collection Join Queries

8.2 COLLECTION TYPES AND COLLECTION JOIN
QUERIES

The Object Database Standard ODMG has formulated four kinds of collection
types, namely:

ž Set
ž List
ž Array
ž Bag

Sets are basically unordered collections that do not allow duplicates. Each object
that belongs to a set is unique. Lists are ordered collections that allow duplicates.
The order of the elements in a list is based on the insertion order or the semantic
of the elements. Arrays are one-dimensional arrays with variable length, and they
allow duplicates. The main difference between a list and an array is in the method
used to store the pointers that assign the next element in the list/array. Because this
difference is mainly from the implementation point of view, lists and arrays will
have the same treatment in this book. A bag is similar to a set except for allowing
duplicate values to exist. Thus, it is an unordered collection that allows duplicates.

For example, an attribute author of class Book has a collection of Person as
its domain. Because the order of persons in the attribute author is significant, the
collection must be of type list. In other words, the type of the attribute author is
list of Person. This shows that the domain can be a collection, not only a single
value or a single object.

Based on these collection types, three collection-join queries are defined,
namely, (i/ collection-equi, (ii) collection-intersect, and (iii) subcollection joins.

8.2.1 Collection-Equi Join Queries

Collection-equi join queries contain join predicates in the form of a standard com-
parison using a relational operator, particularly the equality operator (i.e., the D
operator). The operands of these queries are attributes of any collection types.

A typical collection-equi join query is used to compare two collections for a
full equality. Suppose the attribute editor-in-chief of class Journal and the attribute
program-chair of class Proceedings are of type arrays of Person. To retrieve con-
ferences chaired by all editors-in-chief of a journal, the join predicate becomes
(editor-in-chief = program-chair). Only pairs having an exact match
between the join attributes will be retrieved. The query expressed in OQL (Object
Query Language) can be written as follows:

Query 8.1:

Select A, B
From A in Journal, B in Proceedings
Where A.editor-in-chief = B.program-chair

8.2 Collection Types and Collection Join Queries 223

The query results using the sample data shown in Figure 8.3 depend on the
collection type adopted by the join attributes. If the attributes are of type array or
list, the query results are a concatenation between object i of class Journal and
object w of class Proceedings, since both have the exact match not only on the
OIDs of all elements but also in that order. However, if the join attributes are of
type set, the query results also include objects b–p.

Relational operators, like the D operator, are overloaded functions. This feature
is not new to object-oriented join queries, because long before object-oriented
databases existed, relational operators in relational joins have shown this
capability. For example, it is permitted to compare an integer with a real
number. One of the operands is automatically converted to the type of the
other operand (in this case, integer to real). Casting a collection, however,
must be done explicitly in the join predicate. Using the previous example,
if editor-in-chief is a list and program-chair is a set, the equality predicate
becomes (listtoset(editor-in-chief) D program-chair), where the
editor-in-chief is converted from a list to a set. Comparing two sets/bags can then
be done easily by sorting them before the actual comparison.

8.2.2 Collection–Intersect Join Queries

Collection-intersect join queries contain a join predicate where one collection
attribute of the join predicate is compared against another collection attribute and
the predicate checks for an intersection. An intersect predicate can be written by
applying an intersection between the two sets and comparing the intersection result
with an empty set. Collection-intersect join predicates have to use two operators,
namely an intersect operator and a !D (not equal) operator. The reason is that
according to ODMG, an intersect operator is a binary operator, not a Boolean
operator. On the other hand, predicates are Boolean, not binary. To solve this mis-
match, checking whether there is an intersection between two collections or not
must obtain intersection results through the use of the intersect operator first,
and then it checks whether or not these results are empty.

An example of a collection-intersect join is to retrieve pairs of Journal
and Proceedings, where the program-chairs of a conference intersect with the
editors-in-chief of a journal. The query expressed in OQL can be written as
follows:

Query 8.2:

Select A, B
From A in Journal, B in Proceedings
Where (A.editor-in-chief intersect B.program-chair)
!= set(nil)

Note that the join predicate is in a form of (attr1 intersect attr2) ! D
set(nil), and both attributes attr1 and attr2 are of type set. Seven pairs of
Journal-Proceedings objects are formed as a result of the above query. They are:
b–p, c–s, d–q, f–r, f–t, g–v, and i–w.

224 Chapter 8 Parallel Universal Qualification—Collection Join Queries

Bag intersection is similar to set intersection as shown in the above example,
but it has a distinctive feature, which is different from that of set intersection, that
is, intersection of 2 bags yields a bag that contains the maximum for each of the
duplicate values. For example, bag(1,2,2,3) intersect bag(2,3,3,4) D
bag (2,2,3,3), not just bag(2,3) as one might expect. Despite this unique
feature of bag intersection as defined by ODMG, there is no difference in the con-
text of join predicates used in a collection-intersect join, as the predicates check
whether or not the result of the intersection is nil.

List or array intersection is not yet defined by ODMG, and hence the semantics
of list/array intersection is still unclear. One simple way to deal with collections of
type list or array is done simply by converting them into bags in which duplicates
are reserved but the order of the elements is lost.

8.2.3 Subcollection Join Queries

Subcollection join queries contain a join predicate where one collection attribute
of the join predicate is compared against another collection attribute and the pred-
icate evaluates for a subset, sublist, proper subset, or proper sublist. The differ-
ence between proper and nonproper is that the proper predicates require both join
operands to be a proper subcollection. This means that if both operands are the
same they do not satisfy the predicate, and hence return a false result. The dif-
ference between subset and sublist originated from the basic difference between
sets and lists. In other words, subset predicates are applied to sets/bags, whereas
sublists are applied to lists/arrays.

A subset predicate can be written by applying an intersection between the two
sets and comparing the intersection result with the smaller set. It is normally
in a form of (attr1 intersect attr2) D attr1. Attributes attr1 and
attr2 are of type set. If one or both of them are of type bag, they must be
converted to sets. An example of a subcollection join is to retrieve pairs of Jour-
nal and Proceedings, where the program-chairs of a conference are a subset of
the editors-in-chief of a journal. The query expressed in OQL can be written as
follows:

Query 8.3:

Select A, B
From A in Journal, B in Proceedings
Where (A.editor-in-chief intersect B.program-chair)
= B.program-chair

Using the previous sample data, there are three pairs of objects produced by
the query, namely, b–p; d–q , and i–w. The first and the last pairs are produced
because both collections within each pair are the same, whereas the second pair
is produced because the collection in q is a subset of that of d . If a proper subset
predicate is required instead, a further process is needed to eliminate the pairs in
which both collections are identical. In this case, the final query result will be
just d–q .

8.4 Parallel Collection-Equi Join Algorithms 225

If the join predicate is a proper subset, the Where clause of the above query
must be ANDed with A.editor-in-chief !DB.program-chair. This is
necessary to enforce that both operands are not identical.

The sublist predicate checks whether the first list is a sublist of the second. Two
identical lists are regarded as one list being a sublist of the other. If the predicate
is a proper sublist instead, identical lists are not allowed. The difference between
sublist and subset predicate is determined by the type of the operand.

The sublist predicate is very complex in its original form. Suppose a sublist
expression is available that builds all possible sublists of a given list. For example,

sublist (list(1, 2, 3)) D list(list(1), list(2),
list(3), list(1,2), list(2,3), list(1,2,3))

By combining an in operator with the sublist operator, a predicate to check for a
sublist can be constructed. The sublist join predicate may look like the following:
(attr2 in sublist(attr1)), where attr1 and attr2 are of type list. To
implement a proper sublist predicate, it must further check that the two lists are not
identical.

8.3 PARALLEL ALGORITHMS FOR COLLECTION
JOIN QUERIES

As there are three types of collection join queries, parallel algorithms for each of
these collection join queries are studied, particularly:

ž Parallel collection-equi join algorithms,
ž Parallel collection-intersect join algorithms, and
ž Parallel subcollection join algorithms

Parallel join algorithms are normally decomposed into two steps: data parti-
tioning and local join. Data partitioning creates parallelism, as it divides the data to
multiple processors so that the join can then be performed locally in each processor
without interfering with others.

General data partitioning exists in two forms: disjoint and overlap (non-
disjoint). Disjoint partitioning is available to parallel collection-equi join
algorithms, whereas the other two parallel algorithms have to adopt a non-disjoint
data partitioning.

The local join processing exists in various forms, such as sort-merge, hash, and
sort-hash. When hashing is used for collection, multiple hash tables may need to
be employed.

8.4 PARALLEL COLLECTION-EQUI JOIN
ALGORITHMS

Parallel algorithms for collection-equi join queries exist in three forms, depending
on the techniques used in the local joining process. They are:

226 Chapter 8 Parallel Universal Qualification—Collection Join Queries

ž Parallel double sort-merge algorithm,
ž Parallel sort-hash algorithm, and
ž Parallel hash algorithm

The first algorithm is based on the sort-merge technique, whereas the other two
parallel algorithms are based on a hashing technique.

Similar to any other parallel join algorithms, these algorithms proceed in two
steps. The data partitioning step produces disjoint partitions, whereas the joining
step is the local join operation. In this section, we study the disjoint data partition-
ing first, followed by the three parallel algorithms for collection-equi join queries.

8.4.1 Disjoint Data Partitioning

The data partitioning method for parallel collection-equi join is highly influenced
by common practices of array/set comparison in programming. An array can be
compared with another array by evaluating each pair of elements from the same
position of the two arrays. A characteristic of array comparison is that once an ele-
ment is found to be different from its counterpart (i.e., element of the same position
from the other array), the comparison stops and returns a negative result. Unlike
array comparison, set comparison is not based on the position of each element
in the collection, since the order of the elements is not significant. For example,
array(2,3,1) 6D array(3,2,1), but set(2,3,1) D set(3,2,1). In comparing two sets, it
will become easier if the two sets are alphabetically/numerically presorted. For
instance, set(2,3,1) is sorted to be set(1,2,3), and so is the second set. Comparison
can then be carried out as per array comparison.

It is clear that an array comparison very much depends on the position of each
element in an array. The first element will open the gate for further element com-
parisons only if the first pair is evaluated to be true. In contrast, set comparison
depends on the smallest element in a set, which is the first element after sorting.
This element acts like the first element in the array. Based on these characteristics,
the first element of an array and the smallest element of a set play an important role
in data partitioning. Common horizontal data partitioning methods, such as range
or hash, can be used to produce disjoint (non-overlap) partitions. If the collection
is an array or a list, partitioning is based solely on the first element of the list/array,
since a list/array comparison operates on the original element composition of the
collection. If the partitioning attribute is a set or a bag, partitioning is based on
the smallest element of the collection, because a set/bag comparison requires the
collections to be sorted.

Figure 8.4 shows the data partitioning for parallel collection-equi join based
on the sample data shown in Figure 8.3. Two cases are presented as an example.
Case 1 is where the two collections are arrays, and case 2 is where the collec-
tions are sets. Note the difference that determines which element in each collec-
tion is chosen as the basis for data partitioning (the chosen elements are given
in bold).

8.4 Parallel Collection-Equi Join Algorithms 227

Notes:
Collections 1 and 2 are sets,
3 processors are used,
Range partitioning is used (processor 1 = 0-99, processor 2 =
100-199, and processor 3 = 200-299)
Partitioning is based on the smallest element in each collection
Each collection is sorted first, and then all collections are sorted
based on their first elements.

Notes:
Collections 1 and 2 are arrays,
3 processors are used,
Range partitioning is used (processor 1 = 0-99, processor 2
= 100-199, and processor 3 = 200-299)
Partitioning is based on the first element in each collection
Collections are sorted based on their first elements.

d(4, 237)
i(80, 70)

CASE 1: ARRAYS

Processor 1
(Range 0-99)

CASE 2: SETS

c(125, 181)
f(150, 50, 250)
h(190, 189, 170)

a(250, 75)
b(210, 123)
e(289, 290)
g(270)

r(50, 40)
t(50, 60)
u(3, 1, 2)
w(80, 70)

p(123, 210)
s(125, 180)
v(100, 102, 270)

q(237)

Processor 2
(Range 100-199)

Processor 3
(Range 200-299)

Processor 1
(Range 0-99)

Processor 2
(Range 100-199)

Processor 3
(Range 200-299)

r(50, 40)
t(50, 60)
u(3, 1, 2)
w(80, 70)

p(123, 210)
s(125, 180)
v(100, 102, 270)

q(237)

d(4, 237)

i(80, 70)

c(125, 181)

f(150, 50, 250)

h(190, 189, 170)

a(250, 75)

b(210, 123)

e(289, 290)
g(270)

Figure 8.4 Disjoint data
partitioning

8.4.2 Parallel Double Sort-Merge Collection-Equi
Join Algorithm

The joining step is decomposed into the sorting and merging phases. The sorting
operation is applied twice: to the collections and to the class. A sorting of each
collection is needed only if the collection is a set or a bag, and sorting the objects

228 Chapter 8 Parallel Universal Qualification—Collection Join Queries

Algorithm: Parallel-Double-Sort-Merge-Collection-
Equi-Join

// step 1: partitioning step
Partition the objects of both classes based on their
first elements (for lists/arrays), or their minimum
elements (for sets/bags).

// step 2: joining step (in each processor)
// a. sort phase

(i) Sort elements of each collection (sets/bags
only)

(ii) Sort the objects based on the 1st element of
the collection.

// b. merge phase
(iii) Merge the objects of both classes based on

their first element on the join attribute.
(iv) If matched, merge the two collection

attributes based on their individual
elements (starting from the second
element).

Figure 8.5 Parallel double sort-merge collection-equi join algorithm

is based on the first element (if it is an array or a list) or on the smallest element
(if it is a set or a bag). The sorting phase is not carried out before data partitioning,
as sorting that is done in parallel in each processor after data partitioning will
minimize the elapsed time.

Like the sorting phase, the merging phase consists of two operations: class-level
merging and collection-level merging. Merging the objects of the two classes is
based on the first element of each collection. If they are matched, a subsequent
element comparison can proceed.

The complete parallel algorithm based on double sort-merge for collection-equi
join queries is shown in Figure 8.5. Figure 8.6 gives an illustration of the result
of the algorithm. Two cases are presented as examples. Case 1 is where the two
collections are arrays, and case 2 is where the collections are sets.

8.4.3 Parallel Sort-Hash Collection-Equi Join
Algorithm

Parallel sort-hash algorithm is based on a combination of both sort and hashing
techniques. Since the join attributes are of type collections, hashing on a collection
necessitates multiple hash tables. Each hash table contains all elements of the same
position of all collections. For example, entries in hash table 1 contain all first
elements in the collections. The number of hash tables is determined by the largest

8.4 Parallel Collection-Equi Join Algorithms 229

Notes: Each collection is sorted first, and then all
collections are sorted based on their first
elements.

Notes: Collections are sorted based on their first
elements.

d(4, 237)
i(80, 70)

CASE 1: ARRAYS

Processor 1
(Range 0-99)

CASE 2: SETS

Results = (i, w)

c(125, 181)
f(150, 50, 250)
h(190, 189, 170)

a(250, 75)
b(210, 123)

e(289, 290)
g(270)

r(50, 40)
t(50, 60)

u(3, 1, 2)

w(80, 70)

p(123, 210)
s(125, 180)

v(100, 102, 270)

q(237)

d(4, 237)

h(170, 189, 190)

e(289, 290)
g(270)

t(50, 60)

p(123, 210)
s(125, 180)

v(100, 102, 270)

q(237)

c(125, 181)

Processor 2
(Range 100-199)

Results = nil

Processor 3
(Range 200-299)

Results = nil

f(50, 150, 250)
i(70, 80)
a(75, 250)Results = (i, w)

Results = (b, p)

Results = nil

w(70, 80)

u(1, 2, 3)
r(40, 50)

b(123, 210)

Processor 1
(Range 0-99)

Processor 2
(Range 100-199)

Processor 3
(Range 200-299)

Figure 8.6 Results of parallel
double sort-merge algorithm

collection among objects of the class to be hashed. If the collection is a list/array,
the position of the element is similar to the original element composition in each
collection. If the collection is a set/bag, the smallest element within each collection
will be hashed into the first hash table, the second smallest element is hashed to
the second hash table, and so on.

Set/bag hashing will be enhanced if the set/bag is preprocessed by means of
sorting, so that the hashing process will not have to search for the order of the
elements within the set/bag. Figure 8.7 shows an example in which three objects
are hashed into multiple hash tables. Case 1 is where the objects are arrays, and
case 2 is where the objects are sets.

In the case of collision, it will be resolved as per normal collision handling.
However, it must be noted that the same element value and position in another
collection (especially set) may not necessary result in a collision. For example, a
new collection h(150,50,25) is to be hashed. If collection h is a set, the elements
150, 50, and 25 will be hashed to the hash tables 3, 2, and 1, respectively. No

230 Chapter 8 Parallel Universal Qualification—Collection Join Queries

Case 1: ARRAYS

Hash Table 1

a(250, 75)
b(210, 123)
f(150, 50, 250)

150(f)

210(b)

250(a)

50(f)

75(a)

123(b)

Hash Table 2

250(f)

Hash Table 3

Case 2: SETS

Hash Table 1

a(250, 75)
b(210, 123)
f(150, 50, 250)

Hash Table 2

250(f)

Hash Table 3

Sort

50(f)

75(a)

123(b)

150(f)

210(b)

250(a)

a(75, 250)
b(123, 210)
f(50, 150, 250)

Figure 8.7 Multiple hash tables

collision will occur between h(150,50,25) and collection f (150,50,250). Collision
will occur, however, if collection h is a list. The element 150(h/ will be hashed to
hash table 1 and will collide with 150(f /. Subsequently, the element 150(h/ will
go to the next available entry in hash table 1, as a result of the collision.

Once the multiple hash tables have been built, the probing process begins. The
probing process is basically the central part of collection join processing. The prob-
ing function for collection-equi join is called a function universal. It recursively

8.4 Parallel Collection-Equi Join Algorithms 231

checks whether a collection exists in the multiple hash table and the elements
belong to the same collection. Since this function acts like a universal quantifier
where it checks only whether all elements in a collection exist in another collection,
it does not guarantee that the two collections are equal. To check for the equality
of two collections, it has to check whether collection of class A (collection in the
multiple hash tables) has reached the end of collection. This can be done by check-
ing whether the size of the two matched collections is the same. Figure 8.8 shows
the algorithm for the parallel sort-hash collection-equi join algorithm.

Algorithm: Parallel-Sort-Hash-Collection-Equi-Join

// step 1 (disjoint partitioning):
Partition the objects of both classes based on their
first elements (for lists/arrays), or their minimum
elements (for sets/bags).

// step 2 (local joining):
In each processor, for each partition
// a. preprocessing (sorting) // sets/bags only

For each collection of class A and class B
Sort each collection

// b. hash
For each object of class A
Hash the object into multiple hash tables

// c. hash and probe
For each object of class B
Call universal (1, 1) // element 1,hash table 1
If TRUE AND the collection of class A has
reached end of collection
Put the matching pair into the result

Function universal (element i, hash table j): Boolean
Hash and Probe element i to hash table j
If matched // match the element and the
object Increment i and j
// check for end of collection of the probing class.
If end of collection is reached
Return TRUE

If hash table j exists // check for the hash
table result D universal (i, j)

Else
Return FALSE

Else
Return FALSE

Return result

Figure 8.8 Parallel sort-hash collection-equi join algorithm

232 Chapter 8 Parallel Universal Qualification—Collection Join Queries

8.4.4 Parallel Hash Collection-Equi Join Algorithm

Unlike the parallel sort-hash explained in the previous section, the algorithm
described in this section is purely based on hashing only. No sorting is necessary.
Hashing collections or multivalues is different from hashing atomic values. If the
join attributes are of type list/array, all of the elements of a list can be concatenated
and produce a single value. Hashing can then be done at once. However, this
method is applicable to lists and arrays only. When the join attributes are of type
set or bag, it is necessary to find new ways of hashing collections.

To illustrate how hashing collections can be accomplished, let us review how
hashing atomic values is normally performed. Assume a hash table is implemented
as an array, where each hash table entry points to an entry of the record or object.
When collision occurs, a linear linked-list is built for that particular hash table
entry. In other words, a hash table is an array of linear linked-lists. Each of the
linked-lists is connected only through the hash table entry, which is the entry point
of the linked-list.

Hash tables for collections are similar, but each node in the linked-list can be
connected to another node in the other linked-list, resulting in a “two-dimensional”
linked-list. In other words, each collection forms another linked-list for the second
dimension. Figure 8.9 shows an illustration of a hash table for collections. For
example, when a collection having three elements 3, 1, 6 is hashed, the gray nodes
create a circular linked-list. When another collection with three elements 1, 3, 2
is hashed, the white nodes are created. Note that nodes 1 and 3 of this collection
collide with those of the previous collection. Suppose another collection having
duplicate elements (say elements 5, 1, 5) is hashed; the black nodes are created.
Note this time that both elements 5 of the same collection are placed within the
same collision linked-list. Based on this method, the result of the hashing is always
sorted.

When probing, each probed element is tagged. When the last element within
a collection is probed and matched, a traversal is performed to check whether
the matched nodes form a circular linked-list. If so, it means that a collection is
successfully probed and is placed in the query result.

Figure 8.10 shows the algorithm for the parallel hash collection-equi join algo-
rithm, including the data partitioning and the local join process.

1

2

3

4

5

6
Figure 8.9 Hashing collections/multivalues

8.5 Parallel Collection-Intersect Join Algorithms 233

Algorithm: Parallel-Hash-Collection-Equi-Join

// step 1 (data partitioning)
Partition the objects of both classes to be joined
based on their first elements (for lists/arrays), or
their smallest elements (for sets/bags) of the
join attribute.

// step 2 (local joining): In each processor
// a. hash

Hash each element of the collection.
Collision is handled through the use of linked-
list within the same hash table entry.
Elements within the same collection are linked
in a different dimension using a circular
linked-list.

// b. probe
Probe each element of the collection.
Once a matched is not found:
Discard current collection, and
Start another collection.

If the element is found Then
Tag the matched node

If the element found is the last element in the
probing collection Then
Perform a traversal

If a circle is formed Then
Put into the query result

Else
Discard the current collection
Start another collection

Repeat until all collections are probed.

Figure 8.10 Parallel hash collection-equi join algorithm

8.5 PARALLEL COLLECTION-INTERSECT JOIN
ALGORITHMS

Parallel algorithms for collection-intersect join queries also exist in three forms,
like those of collection-equi join. They are:

ž Parallel sort-merge nested-loop algorithm,
ž Parallel sort-hash algorithm, and
ž Parallel hash algorithm

234 Chapter 8 Parallel Universal Qualification—Collection Join Queries

There are two main differences between parallel algorithms for collection-
intersect and those for collection-equi. The first difference is that for collection-
intersect, the simplest algorithm is a combination of sort-merge and nested-loop,
not double-sort-merge. The second difference is that the data partitioning used in
parallel collection-intersect join algorithms is non-disjoint data partitioning, not
disjoint data partitioning.

8.5.1 Non-Disjoint Data Partitioning

Unlike the collection-equi join, for a collection-intersect join, it is not possible to
have non-overlap partitions because of the nature of collections, which may be
overlapped. Hence, some data needs to be replicated. There are three non-disjoint
data partitioning methods available to parallel algorithms for collection-intersect
join queries, namely:

ž Simple replication,
ž Divide and broadcast, and
ž Divide and partial broadcast.

Simple Replication

With a Simple Replication technique, each element in a collection is treated as a
single unit and is totally independent of other elements within the same collection.
Based on the value of an element in a collection, the object is placed into a partic-
ular processor. Depending on the number of elements in a collection, the objects
that own the collections may be placed into different processors. When an object
has already been placed at a particular processor based on the placement of an
element, if another element in the same collection is also to be placed at the same
place, no object replication is necessary.

Figure 8.11 shows an example of a simple replication technique. The bold
printed elements are the elements, which are the basis for the placement of those
objects. For example, object a(250, 75) in processor 1 refers to a placement for
object a in processor 1 because of the value of element 75 in the collection. And
also, object a(250, 75) in processor 3 refers to a copy of object a in processor 3
based on the first element (i.e., element 250). It is clear that object a is replicated
to processors 1 and 3. On the other hand, object i(80, 70) is not replicated since
both elements will place the object at the same place, that is, processor 1.

Divide and Broadcast

The divide and broadcast partitioning technique basically divides one class into a
number of processors equally and broadcasts the other class to all processors. The
performance of this partitioning method will be strongly determined by the size of
the class that is to be broadcasted, since this class is replicated on all processors.

8.5 Parallel Collection-Intersect Join Algorithms 235

i(80, 70)

Processor 1

Processor 2

Processor 3

Class A

(range 0-99)

(range 100-199)

(range 200-299)

c(125, 181)
f(150, 50, 250)
h(190, 189, 170)

a(250, 75)
b(210, 123)

g(270)

r(50, 40)
t(50, 60)
u(3, 1, 2)
w(80, 70)

p(123, 210)
s(125, 180)
v(100, 102, 270)

q(237)

d(4, 237)
f(150,50, 250)

e(289, 290)

p(123, 210)

b(210, 123)

f(150, 50, 250)

d(4, 237)

a(250, 75)

Class B

v(100, 102, 270)
Figure 8.11 Simple replication
technique for parallel
collection-intersect join

There are two scenarios for data partitioning using divide and broadcast. The
first scenario is to divide class A and to broadcast class B, whereas the second
scenario is the opposite. With three processors, the result of the first scenario is as
follows. The division uses a round-robin partitioning method.

Processor 1: class A (a; d; g/ and class B (p; q; r; s; t; u; v; w/

Processor 2: class A (b; e; h/ and class B (p; q; r; s; t; u; v; w/

Processor 3: class A (c; f; i/ and class B (p; q; r; s; t; u; v; w/

Each processor is now independent of the others, and a local join operation can
then be carried out. The result from processor 1 will be the pair d � q . Processor 2
produces the pair b � p, and processor 3 produces the pairs of c � s; f � r; f � t ,
and i � w. With the second scenario, the divide and broadcast technique will result
in the following data placement.

Processor 1: class A (a; b; c; d; e; f; g; h; i/ and class B (p; s; v/.

Processor 2: class A (a; b; c; d; e; f; g; h; i/ and class B (q; t; w/.

Processor 3: class A (a; b; c; d; e; f; g; h; i/ and class B (r; u/.

The join results produced by each processor are as follows. Processor 1 pro-
duces b–p and c–s, processor 2 produces d–q; f –t , and i–w, and processor 3
produces f –r . The union of the results from all processors gives the final query
result.

Both scenarios will produce the same query result. The only difference lies in
the partitioning method used in the join algorithm. It is clear from the examples
that the division should be on the larger class, whereas the broadcast should be on
the smaller class, so that the cost due to the replication will be smaller.

Another way to minimize replication is to use a variant of divide and broadcast
called “divide and partial broadcast”. The name itself indicates that broadcasting
is done partially, instead of completely.

236 Chapter 8 Parallel Universal Qualification—Collection Join Queries

Algorithm: Divide and Partial Broadcast

// step 1 (divide)
1. Divide class B based on largest element in each

collection
2. For each partition of B (i D 1, 2, ..., n)

Place partition Bi to processor i

// step 2 (partial broadcast)
3. Divide class A based on smallest element in each

collection
4. For each partition of A (i D 1, 2, ..., n)

Broadcast partition Ai to processor i to n

Figure 8.12 Divide and partial broadcast algorithm

Divide and Partial Broadcast

The divide and partial broadcast algorithm (see Fig. 8.12) proceeds in two steps.
The first step is a divide step, and the second step is a partial broadcast step. We
divide class B and partial broadcast class A.

The divide step is explained as follows. Divide class B into n number of par-
titions. Each partition of class B is placed in a separate processor (e.g., partition
B1 to processor 1, partition B2 to processor 2, etc). Partitions are created based on
the largest element of each collection. For example, object p(123, 210), the first
object in class B, is partitioned based on element 210, as element 210 is the largest
element in the collection. Then, object p is placed on a certain partition, depend-
ing on the partition range. For example, if the first partition is ranging from the
largest element 0 to 99, the second partition is ranging from 100 to 199, and the
third partition is ranging from 200 to 299, then object p is placed in partition B3,
and subsequently in processor 3. This is repeated for all objects of class B.

The partial broadcast step can be described as follows. First, partition class A
based on the smallest element of each collection. Then for each partition Ai where
i D 1 to n, broadcast partition Ai to processors i to n. This broadcasting tech-
nique is said to be partial, since the broadcasting decreases as the partition number
increases. For example, partition A1 is basically replicated to all processors, parti-
tion A2 is broadcast to processor 2 to n only, and so on.

The result of the divide and partial Broadcast of the sample data shown earlier
in Figure 8.3 is shown in Figure 8.13.

In regard to the load of each partition, the load of the last processor may be the
heaviest, as it receives a full copy of A and a portion of B. The load goes down
as class A is divided into smaller size (e.g., processor 1). To achieve more load
balancing, we can apply the same algorithm to each partition but with a reverse
role of A and B; that is, divide A and partial broadcast B (previously it was divide

8.5 Parallel Collection-Intersect Join Algorithms 237

(range 0-99)

(range 100-199)

(range 200-299)

Partition A1

Partition A2

Partition A3

Class A
Partition A1
Objects: a, d, f, i

Class B
Partition B1
Objects: r, t, u, w

Class A
Partition A1
Objects: a, d, f, i

Class B
Partition B2
Object: s

Class A
Partition A2
Objects: b, c, h

Class A
Partition A1
Objects: a, d, f, i

Class B
Partition B3
Objects: p, q, v

Class A
Partition A2
Objects: b, c, h

Class A
Partition A3
Objects: e, q

Processor 1 :

Processor 2 :

Processor 3 :

DIVIDE

e(289, 290)
g(270)

r(50, 40)

u(3, 1, 2)
w(80, 70)

t(50,60)

s(125,180)

p(123, 210)

v(100, 102,270)
q(237)

d(4, 237)
a(250, 75)

f(150, 50, 250)
i(80, 70)

c(125, 181)
h(190, 189, 170)

b(210, 123)

Class A Class B

(range 0-99)

(range 100-199)

(range 200-299)

Partition B1

Partition B2

Partition B3

(Divide based on the largest)

PARTIAL BROADCAST

(Divide based on the smallest)

Figure 8.13 Divide and partial broadcast example

B and partial broadcast A). This is then called a “two-way” divide and partial
broadcast.

Figure 8.14(a and b) shows the results of reverse partitioning of the initial
partitioning. Note that from processor 1, class A and class B are divided into three

f(
15

0,
 5

0,
 2

50
)

d(
4,

 2
37

)

i(
80

, 7
0)

F
ro

m
 P

ro
ce

ss
or

 1

h(
19

0,
 1

89
, 1

70
)

a(
25

0 ,
 7

5)

t(
50

, 6
0)

s(
12

5,
 1

80
)

v(
10

0,
 1

02
, 1

04
)

e(
28

9,
 2

90
)

g(
27

0)

r(
50

, 4
0)

u(
3,

 1
, 2

)
w

(8
0,

 7
0)

p(
12

3,
 2

10
)

q(
23

7)

c(
12

5,
 1

81
)

i(
80

, 7
0)

d(
4,

 2
37

)

f(
15

0,
 5

0,
 2

50
)

h(
19

0,
 1

89
, 1

70
)

c(
12

5,
 1

81
)

i(
80

, 7
0)

d(
4,

 2
37

)
a(

25
0,

 7
5)

a(
25

0,
 7

5)

f(
15

0,
 5

0,
 2

50
)

b(
21

0,
 1

23
)

Pa
rt

iti
on

 A
11

Pa
rt

iti
on

 A
12

Pa
rt

iti
on

 A
13

Pa
rt

iti
on

 B
11

Pa
rt

iti
on

 B
12

Pa
rt

it i
on

 B
13

Pa
rt

iti
on

 A
21

Pa
rt

iti
on

 A
22

Pa
rt

iti
on

 A
23

Pa
rt

iti
on

 B
21

Pa
rt

iti
on

 B
22

Pa
rt

iti
on

 B
23

F
ro

m
 P

ro
ce

ss
or

 2
F

ro
m

 P
ro

ce
ss

or
 3

Pa
rt

iti
on

 B
31

Pa
rt

iti
on

 B
32

Pa
rt

iti
on

 B
33

Pa
rt

iti
on

 A
31

Pa
rt

iti
on

 A
32

Pa
rt

iti
on

 A
33

1.
 D

IV
ID

E

b(
21

0 ,
 1

23
)

F
ig

ur
e

8.
14

(a
)

Tw
o-

w
ay

di
vi

de
an

d
pa

rt
ia

lb
ro

ad
ca

st
(d

iv
id

e)

238

F
ro

m
 P

ro
ce

ss
or

 1

Pa
rt

iti
on

 A
11

Pa
rt

iti
on

 A
21

P
ar

ti
ti

on
 A

12

Pa
rt

iti
on

 A
13

Pa
rt

iti
on

 B
11

F
ro

m
 P

ro
ce

ss
or

 2

2.
 P

A
R

T
IA

L
 B

R
O

A
D

C
A

ST

Pa
rt

iti
on

 B
11

P
ar

ti
ti

on
 B

12

Pa
rt

iti
on

 B
11

P
ar

ti
ti

on
 B

12

P
ar

ti
ti

on
 B

13

B
uc

ke
t 1

1

B
uc

ke
t 1

2

B
uc

ke
t 1

3

Pa
rt

iti
on

 A
22

Pa
rt

iti
on

 A
23B

uc
ke

t 2
1

B
uc

ke
t 2

2

B
uc

ke
t 2

3P
ar

ti
ti

on
 B

21

P
ar

ti
ti

on
 B

21

Pa
rt

iti
on

 B
22

P
ar

ti
ti

on
 B

21

Pa
rt

iti
on

 B
22

P
ar

ti
ti

on
 B

23

F
ro

m
 P

ro
ce

ss
or

 3

Pa
rt

iti
on

 A
31

Pa
rt

iti
on

 A
32

Pa
rt

iti
on

 A
33B

uc
ke

t 3
1

B
uc

ke
t 3

2

B
uc

ke
t 3

3P
ar

ti
ti

on
 B

31

P
ar

ti
ti

on
 B

31

Pa
rt

iti
on

 B
32

P
ar

ti
ti

on
 B

31

Pa
rt

iti
on

 B
32

Pa
rt

iti
on

 B
33

F
ig

ur
e

8.
14

(b
)

Tw
o-

w
ay

di
vi

de
an

d
pa

rt
ia

lb
ro

ad
ca

st
(p

ar
tia

lb
ro

ad
ca

st
)

239

240 Chapter 8 Parallel Universal Qualification—Collection Join Queries

partitions each (i.e., partitions 11, 12, and 13). Partition A12 of class A and parti-
tions B12 and B13 of class B are empty. Additionally, at the broadcasting phase,
bucket 12 is “half empty” (contains collections from one class only), since parti-
tions A12 and B12 are both empty. This bucket can then be eliminated. In the same
manner, buckets 21 and 31 are also discarded.

Further load balancing can be done with the conventional bucket tuning
approach, whereby the buckets produced by the data partitioning are redistributed
to all processors to produce more load balanced. For example, because the number
of buckets is more than the number of processors (e.g., 6 buckets: 11, 13, 22,
23, 32 and 33, and 3 processors), load balancing is achieved by spreading and
combining partitions to create more equal loads. For example, buckets 11, 22
and 23 are placed at processor 1, buckets 13 and 32 are placed at processor 2,
and bucket 33 is placed at processor 3. The result of this placement, shown in
Figure 8.15, looks better than the initial placement.

In the implementation, the algorithm for the divide and partial broadcast is
simplified by using decision tables. Decision tables can be constructed by first
understanding the ranges (smallest and largest elements) involved in the divide and
partial broadcast algorithm. Suppose the domain of the join attribute is an integer
from 0–299, and there are three processors. Assume the distribution is divided
into three ranges: 0–99, 100–199, and 200–299. The result of one-way divide and
partial broadcast is given in Figure 8.16.

There are a few things that we need to describe regarding the example shown in
Figure 8.16.

First, the range is shown as two pairs of numbers, in which the first pairs indicate
the range of the smallest element in the collection and the second pairs indicate the
range of the largest element in the collection.

Second, in the first column (i.e., class A/, the first pairs are highlighted to
emphasize that collections of this class are partitioned based on the smallest ele-
ment in each collection, and in the second column (i.e., class B/, the second pairs
are printed in bold instead to indicate that collections are partitioned according to
the largest element in each collection.

Third, the second pairs of class A are basically the upper limit of the range,
meaning that as long as the smallest element falls within the specified range, the
range for the largest element is the upper limit, which in this case is 299. The
opposite is applied to class B, that is, the range of the smallest element is the base
limit of 0.

Finally, since class B is divided, the second pairs of class B are disjoint. This
conforms to the algorithm shown above in Figure 8.12, particularly the divide
step. On the other hand, since class A is partially broadcast, the first pairs of class
A are overlapped. The overlapping goes up as the number of bucket increases.
For example, the first pair of bucket 1 is [0–99], and the first pair of bucket 2 is
[0–199], which is essentially an overlapping between pairs [0–99] and [100–199].
The same thing is applied to bucket 3, which is combined with pair [200–299] to

C
la

ss
 A

Pa

rt
iti

on
 A

11

O
bj

ec
ts

:
i

C
la

ss
 B

Pa

rt
iti

on
 B

11

O
bj

ec
ts

:
r,

 t,
 u

, w

C
la

ss
 A

Pa

rt
iti

on
 A

13

O
bj

ec
ts

:
a,

 d
, f

C
la

ss
 B

Pa

rt
iti

on
 B

11

O
bj

ec
ts

:
t,

r,
 u

, w

C
la

ss
 A

Pa

rt
iti

on
 A

32

O
bj

ec
ts

:
c,

 h

C
la

ss
 A

Pa

rt
iti

on
 A

33

O
bj

ec
ts

:
a,

 d
, f

, b
, e

, g

C
la

ss
 B

Pa

rt
iti

on
 B

32

O
bj

ec
ts

: p

P
ro

ce
ss

or
 1

:
P

ro
ce

ss
or

 2
:

P
ro

ce
ss

or
 3

:

C
la

ss
 A

Pa

rt
iti

on
 A

22

O
bj

ec
ts

:
c,

 h

C
la

ss
 B

Pa

rt
iti

on
 B

22
O

bj
ec

ts
:

s,
 v

C
la

ss
 A

Pa

rt
iti

on
 A

23

O
bj

ec
ts

:
a,

 d
, f

, b

C
la

ss
 B

Pa

rt
iti

on
 B

22

O
bj

ec
ts

:
s,

 v

C
la

ss
 B

Pa

rt
iti

on
 B

32

O
bj

ec
ts

: p

C
la

ss
 B

Pa

rt
iti

on
 B

33

O
bj

ec
ts

: q

P
ro

ce
ss

or
 A

llo
ca

ti
on

B
uc

ke
t 1

1

B
uc

ke
t 2

2

B
uc

ke
t 2

3

B
uc

ke
t 1

3

B
uc

ke
t 3

2

B
uc

ke
t 3

3

F
ig

ur
e

8.
15

Pr
oc

es
so

r
al

lo
ca

tio
n

241

242 Chapter 8 Parallel Universal Qualification—Collection Join Queries

Class A Class B

Bucket 1 [0-99] .. [0-299] [0-99] .. [0-99]
Bucket 2 [0-199] .. [0-299] [0-199] .. [100-199]
Bucket 3 [0-299] .. [0-299] [0-299] .. [200-299]

Figure 8.16 “One-way” divide and partial broadcast

Class A Class B
Bucket 11 [0-99] .. [0-99] [0-99] .. [0-99]
Bucket 12 [0-99] .. [100-199] [0-199] .. [0-99]
Bucket 13 [0-99] .. [200-299] [0-299] .. [0-99]
Bucket 21 [0-199] .. [0-99] [0-99] .. [100-199]
Bucket 22 [0-199] .. [100-199] [0-199] .. [100-199]
Bucket 23 [0-199] .. [200-299] [0-299] .. [100-199]
Bucket 31 [0-299] .. [0-99] [0-99] .. [200-299]
Bucket 32 [0-299] .. [100-199] [0-199] .. [200-299]
Bucket 33 [0-299] .. [200-299] [0-299] .. [200-299]

Figure 8.17 “Two-way” divide and partial broadcast

produce pair [0–299]. This kind of overlapping is a manifestation of partial broad-
cast as denoted by the algorithm, particularly the partial broadcast step. Figure 8.17
shows an illustration of a “two-way” divide and partial broadcast.

There are also a few things that need clarification regarding the example shown
in Figure 8.17.

First, the second pairs of class A and the first pairs of class B are now printed in
bold to indicate that the partitioning is based on the largest element of collections
in class A and on the smallest element of collections in class B. The partitioning
model has now been reversed.

Second, the nonhighlighted pairs of classes A and B of buckets xy (e.g., buckets
11, 12, 13) in the “two-way” divide and partial broadcast shown in Figure 8.17
are identical to the highlighted pairs of buckets x (e.g., bucket 1) in the “one-way”
divide and partial broadcast shown in Figure 8.16. This explains that these pairs
have not mutated during a reverse partitioning in the “two-way” divide and par-
tial broadcast, since buckets 11, 12, and 13 basically come from bucket 1, and
so on.

Finally, since the roles of the two classes have been reversed, in that class A is
now divided and class B is partially broadcast, note that the second pairs of class
A originated from the same bucket in the “one-way” divide and partial broadcast
are disjoint, whereas the first pairs of class B originated from the same buckets are
overlapped.

Now the decision tables, which are constructed from the above tables, can be
explained, First the decision tables for the “one-way” divide and partial broadcast,
followed by those for the “two-way” version. The intention is to outline the dif-
ference between the two methods, particularly the load involved in the process, in

8.5 Parallel Collection-Intersect Join Algorithms 243

Class A

Range Buckets

Smallest Largest 1 2 3

0-99 0-99
0-99 100-199
0-99 200-299
100-199 100-199
100-199 200-299
200-299 200-299

Figure 8.18(a) “One-way” divide and partial broadcast decision table for class A

Class B

Range Buckets

Smallest Largest 1 2 3

0-99 0-99

0-99 100-199

0-99 200-299

100-199 100-199

100-199 200-299

200-299 200-299

Figure 8.18(b) “One-way” divide and partial broadcast decision table for class B

which the “two-way” version filters out more unnecessary buckets. Based on the
division tables, implementing a “two-way” divide and partial broadcast algorithm
can also be done with multiple checking.

Figures 8.18(a) and (b) show the decision table for class A and class B for
the original “one-way” divide and partial broadcast. The shaded cells indicate the
applicable ranges for a particular bucket. For example, in bucket 1 of class A the
range of the smallest element in a collection is [0–99] and the range of the largest
element is [0–299]. Note that the load of buckets in class A grows as the bucket
number increases. This load increase does not happen that much for class B, as
class B is divided, not partially broadcast. The same bucket number from the two
different classes is joined. For example, bucket 1 from class A is joined only with
bucket 1 from class B.

Figures 8.19(a) and (b) are the decision tables for the “two-way” divide and
partial broadcast, which are constructed from the ranges shown in Figure 8.17.
Comparing decision tables of the original “one-way” divide and partial broadcast
and that of the “two-way version”, the lighter shaded cells are from the “one-way”
decision table, whereas the heavier shaded cells indicate the applicable range for

244 Chapter 8 Parallel Universal Qualification—Collection Join Queries

Class A

Range Buckets

Smallest Largest 11 12 13 21 22 23 31 32 33

0-99 0-99
0-99 100-199
0-99 200-299
100-199 100-199
100-199 200-299
200-299 200-299

Figure 8.19(a) “Two-way” divide and partial broadcast decision table for class A

Class B

Range Buckets

Smallest Largest 11 12 13 21 22 23 31 32 33

0-99 0-99
0-99 100-199
0-99 200-299
100-199 100-199
100-199 200-299
200-299 200-299

Figure 8.19(b) “Two-way” divide and partial broadcast decision table for class B

each bucket with the “two-way” method. It is clear that the “two-way” version has
filtered out ranges that are not applicable to each bucket. In terms of the difference
between the two methods, class A has significant differences, whereas class B has
marginal ones.

8.5.2 Parallel Sort-Merge Nested-Loop
Collection-Intersect Join Algorithm

The join algorithms for the collection-intersect join consist of a simple sort-merge
and a nested-loop structure. A sort operator is applied to each collection, and then
a nested-loop construct is used in join-merging the collections. The algorithm uses
a nested-loop structure, not only because of its simplicity, but also because of the
need for all-round comparisons among objects.

There is one thing to note about the algorithm: To avoid a repeated sorting
especially in the inner loop of the nested-loop, sorting of the second class is taken
out from the nested loop and is carried out before entering the nested-loop.

8.5 Parallel Collection-Intersect Join Algorithms 245

Algorithm: Parallel-Sort-Merge-Collection-Intersect-Join

// step 1 (data partitioning):
Call DivideBroadcast or DividePartialBroadcast

// step 2 (local joining): In each processor
// a: sort class B

For each object b of class B
Sort collection bc of object b

// b: merge phase
For each object a of class A
Sort collection ac of object a
For each object b of class B
Merge collection ac and collection bc
If matched Then
Concatenate objects a and b into query result

Figure 8.20 Parallel sort-merge collection-intersect join algorithm

In the merging, it basically checks whether there is at least one element that is
common to both collections. Since both collections have already been sorted, it is
relatively straightforward to find out whether there is an intersection. Figure 8.20
shows a parallel sort-merge nested-loop algorithm for collection-intersection join
queries.

Although it was explained in the previous section that there are three data
partitioning methods available for parallel collection-intersect join, for parallel
sort-merge nested-loop we can only use either divide and broadcast or divide and
partial broadcast. The simple replication method is not applicable.

8.5.3 Parallel Sort-Hash Collection-Intersect Join
Algorithm

A parallel sort-hash collection-intersect join algorithm may use any of the three
data partitioning methods explained in the previous section. Once the data parti-
tioning has been applied, the process continues with local joining, which consists
of hash and hash probe operations.

The hashing step is to hash objects of class A into multiple hash tables, like that
of parallel sort-hash collection-equi join algorithms. In the hash and probe step,
each object from class B is processed with an existential procedure that checks
whether an element of a collection exists in the hash tables.

Figure 8.21 gives the algorithm for parallel sort-hash collection-intersect join
queries.

246 Chapter 8 Parallel Universal Qualification—Collection Join Queries

Algorithm: Parallel-Sort-Hash-Collection-Intersect-Join

// step 1 (data partitioning):
Choose any of the data partitioning methods:
Simple Replication, or
Divide and Broadcast, or
Divide and Partial Broadcast

// step 2 (local joining): In each processor
// a. hash

For each object of class A
Hash the object into the multiple hash tables

// b: hash and probe
For each object of class B
Call existential procedure

Procedure existential (element i, hash table j)
For each element i
For each hash table j
Hash element i into hash table j
If TRUE
Put the matching objects into query result

Figure 8.21 Parallel sort-hash collection-intersect join algorithm

8.5.4 Parallel Hash Collection-Intersect Join
Algorithm

Like the parallel sort-hash algorithm, parallel hash may use any of the three
non-disjoint data partitioning available for parallel collection-intersect join, such
as simple replication, divide and broadcast, or divide and partial broadcast.

The local join process itself, similar to those of conventional hashing tech-
niques, is divided into two steps: hash and probe. The hashing is carried out to
one class, whereas the probing is performed to the other class. The hashing part
basically runs through all elements of each collection in a class. The probing part
is done in a similar way, but is applied to the other class. Figure 8.22 shows the
pseudocode for the parallel hash collection-equi join algorithm.

8.6 PARALLEL SUBCOLLECTION JOIN ALGORITHMS

Parallel algorithms for subcollection join queries are similar to those of parallel
collection-intersect join, as the algorithms exist in three forms:

ž Parallel sort-merge nested-loop algorithm,

8.6 Parallel Subcollection Join Algorithms 247

Algorithm: Parallel-Hash-Collection-Intersect-Join

// step 1 (data partitioning):
Choose any of the data partitioning methods:
Simple Replication, or
Divide and Broadcast, or
Divide and Partial Broadcast

// step 2 (local joining): In each processor
// a. hash

For each object a(c1) of class R
Hash collection c1 to a hash table

// b. probe
For each object b(c2) of class S
Hash and probe collection c2 into the hash table
If there is any match
Concatenate object B and the matched object A
into query result

Figure 8.22 Parallel hash collection-intersect join algorithm

ž Parallel sort-hash algorithm, and
ž Parallel hash algorithm

The main difference between parallel subcollection and collection-intersect
algorithms is, in fact, in the data partitioning method. This is explained in the
following section.

8.6.1 Data Partitioning

In the data partitioning, parallel processing of subcollection join queries has to
adopt a non-disjoint partitioning. This is clear, since it is not possible to deter-
mine whether one collection is a subcollection of the other without going through
full comparison, and the comparison result cannot be determined by just a single
element of each collection, as in the case of collection-equi join, where the first
element (in a list or array) and the smallest element (in a set or a bag) plays a
crucial role in the comparison. However, unlike parallelism of collection-intersect
join, where there are three options for data partitioning, parallelism of subcollec-
tion join can only adopt two of them, divide and broadcast partitioning and its
variant divide and partial broadcast partitioning.

The simple replication method is simply not applicable. This is because with
the simple replication method each collection may be split into several proces-
sors because of the value of each element in the collection, which may direct the

248 Chapter 8 Parallel Universal Qualification—Collection Join Queries

placement of the collection into different processors, and consequently each pro-
cessor will not be able to perform the subcollection operations without interfering
with other processors. The idea of data partitioning in parallel query processing,
including parallel collection-join, is that after data partitioning has been com-
pleted, each processor can work independently to carry out a join operation without
communicating with other processors. The communication is done only when the
temporary query results from each processor are amalgamated to produce the final
query results.

8.6.2 Parallel Sort-Merge Nested-Loop
Subcollection Join Algorithm

Like the collection-intersect join algorithm, the parallel subcollection join algo-
rithm also uses a sort-merge and a nested-loop construct. Both algorithms are
similar, except in the merging process, in which the collection-intersect join uses
a simple merging technique to check for an intersection but the subcollection join
utilizes a more complex algorithm to check for subcollection.

The parallel sort-merge nested-loop subcollection join algorithm, as the name
suggests, consists of a simple sort-merge and a nested-loop structure. A sort oper-
ator is applied to each collection, and then a nested-loop construct is used in
join-merging the collections. There are two important things to mention regard-
ing the sorting: One is that sorting is applied to the is � subset predicate only, and
the other is that to avoid a repeated sorting especially in the inner loop of the nested
loop, sorting of the second class is taken out from the nested loop. The algorithm
uses a nested-loop structure, not only for its simplicity but also because of the need
for all-round comparisons among all objects.

In the merging phase, the is � subcollection function is invoked, in order to com-
pare each pair of collections from the two classes. In the case of a subset predicate,
after converting the sets to lists the is � subcollection function is executed. The
result of this function call becomes the final result of the subset predicate. If the
predicate is a sublist, the is � subcollection function is directly invoked, without the
necessity to convert the collection into lists, since the operands are already lists.

The is � subcollection function receives two parameters: the two collections to
compare. The function first finds a match of the first element of the smallest list
in the bigger list. If a match is found, subsequent element comparisons of both
lists are carried out. Whenever the subsequent element comparison fails, the pro-
cess has to start finding another match for the first element of the smallest list
again (in case duplicate items exist). Figure 8.23 shows the complete parallel
sort-merge-nested-loop join algorithm for subcollection join queries.

Using the sample data in Figure 8.3, the result of a subset join is (g; v/,(i; w/,
and (b; p/. The last two pairs will not be included in the results, if the join predicate
is a proper subset, since the two collections in each pair are equal.

Regarding the sorting, the second class is sorted outside the nested loop similar
to the collection-intersect join algorithm. Another thing to note is that sorting is
applied to the is � subset predicate only.

8.6 Parallel Subcollection Join Algorithms 249

Algorithm: Parallel-Sort-Merge-Nested-Loop-Subcollection

// step 1 (Data Partitioning):
Call DivideBroadcast or DividePartialBroadcast

// step 2 (Local Join in each processor)
// a: sort class B (is_subset predicate only)

For each object of class B
Sort collection b of class B.

// b: nested loop and sort class A
For each collection a of class A
For each collection b of class B
If the predicate is subset or proper subset
Convert a and b to list type

// c: merging
If is�subcollection(a,b)
Concatenate the two objects into query
result

Function is�subcollection (L1, L2: list): Boolean
Set i to 0
For jD0 to length(L2)
If L1[i] D L2[j]
Set Flag to TRUE
If i D length(L1)-1 // end of L1
Break

Else
i++ // find the next match

Else
Set Flag to FALSE // reset the flag
Reset i to 0

If Flag D TRUE and i D length(L1)-1
Return TRUE
(for is_proper predicate:
If len(L1) != len(L2)
Return TRUE

Else
Return FALSE

Else
Return FALSE

Figure 8.23 Parallel sort-merge-nested-loop sub-collection join algorithm

8.6.3 Parallel Sort-Hash Subcollection Join
Algorithm

In the local join step, if the collection attributes where the join is based are sets or
bags, they are sorted first. The next step would be hash and probe.

In the hashing part, the supercollections (e.g., collection of class B/ are hashed.
Once the multiple hash tables have been built, the probing process begins. In the

250 Chapter 8 Parallel Universal Qualification—Collection Join Queries

probing part, each subcollection (e.g., collection of class A in this example) is
probed one by one. If the join predicate is an is � proper predicate, it has to make
sure that the two matched collections are not equal. This can be implemented in
two separate checkings with an XOR operator. It checks either the first matched
element is not from the first hash table, or the collection of the first class has
not been reached. If either condition (not both) is satisfied, the matched collec-
tions are put into the query result. If the join predicate is a normal subset/sublist
(i.e., nonproper), apart from the probing process, no other checking is necessary.
Figure 8.24 gives the pseudocode for the complete parallel sort-hash subcollection
join algorithm.

The central part of the join processing is basically the probing process. The
main probing function for subcollection join queries is called function some.
It recursively checks for a match for the first element in the collection. Once a
match has been found, another function called function universal is called. This
function checks recursively whether a collection exists in the multiple hash table
and the elements belong to the same collection. Figure 8.25 shows the pseudocode
for the two functions for the sort-hash version of the parallel subcollection join
algorithm.

Algorithm: Parallel-Sort-Hash-Sub-Collection-Join

// step 1 (data partitioning):
Call DivideBroadcast or
Call DivideAndPartialBroadcast partitioning

// step 2 (local joining): In each processor
// a: preprocessing (sorting) (set/bags only)

For each object a and b of class A and class B
Sort each collection ac and bc of object a and b

// b: hash
For each object b of class B
Hash the objectinto multiple hash tables

// c: probe
For each object of class A
Case is_proper predicate:
If some(1,1) // element 1, hash table 1
If first match is not from the first hash
table
XOR not end of collection of the first class

Put the matching pairs into the result
Case is_non_proper predicate:
If some(1,1) Then
Put the matching pair into the result

Figure 8.24 Parallel sort-hash sub-collection join algorithm

8.6 Parallel Subcollection Join Algorithms 251

Algorithm: Probing Functions

Function some (element i, hash table j) Return Boolean
Hash and Probe element i to hash table j
// match the element and the object
If matched
Increment i and j
//check for end of collection of the probing class
If end of collection reached
Return TRUE

// check for the hash table
If hash table j exists Then
Result D universal (i, j)

Else
Return FALSE

Else
Increment j
// continue searching the next hash table

(recursive)
Result D some (i, j)

Return result
End Function

Function universal (element i, hash table j) Return
Boolean
Hash and Probe element i to hash table j
// match the element and the object
If matched Then
Increment i and j
//check for end of collection of the probing class
If end of collection is reached
Return TRUE

// check for the hash table
If hash table j exists

Result D universal (i, j)
Else
Return FALSE

Else
Return FALSE

Return result

Figure 8.25 Probing functions

8.6.4 Parallel Hash Subcollection Join Algorithm

The features of a subcollection join are actually a combination of those of
collection-equi and collection-intersect join. This can be seen in the data
partitioning and local join adopted by the parallel hash subcollection join
algorithm.

252 Chapter 8 Parallel Universal Qualification—Collection Join Queries

The data partitioning is based on DivideBroadcast or DividePartialBroadcast
partitioning, which is a subset of data partitioning methods available for parallel
collection-intersection join.

Local join of subcollection join queries is similar to that of collection-equi,
since the hashing and probing are based on collections, not on atomic values as
in parallel collection-intersect join. The difference is that, when probing, a cir-
cle does not become a condition for a result. The condition is that as long as all
elements probed are in the same circular linked-list, the result is obtained. The
circular condition is only applicable if the subcollection predicate is a nonproper
subcollection predicate, where the predicate checks for the nonequality of both
collections. Figure 8.26 shows the pseudocode for parallel hash subcollection join
algorithm.

8.7 SUMMARY

This chapter focuses on universal quantification found in object-based databases,
namely, collection join queries. Collection join queries are join queries
based on collection attributes (i.e., nonatomic attributes), which are common in
object-based databases. There are three collection join query types: collection-equi
join, collection-intersect join, and subcollection join. Parallel algorithms for these
collection join queries have also been explained.

ž Parallel Collection-Equi Join Algorithms
Data partitioning is based on disjoint partitioning. The local join is available
in three forms, double sort-merge, sort-hash, and purely hash.

ž Parallel Collection-Intersect Join Algorithms
Data partitioning methods available are simple replication, divide and broad-
cast, and divide and partial broadcast. These are non-disjoint data partition-
ing. The local join process uses sort-merge nested-loop, sort-hash, or pure
hash. When sort-merge nested-loop is used, the simple replication data parti-
tioning is not applicable.

ž Parallel Subcollection Join Algorithms
Data partitioning methods available are divide and broadcast and divide and
partial broadcast. The simple replication method is not applicable to sub-
collection join processing. The local join uses techniques similar to those
of collection-intersect, namely, sort-merge nested-loop, sort-hash, and pure
hash. However, the actual usage of these techniques differs, since the join
predicate is now checking for one collection being a subcollection of the
other, not one collection intersecting with the other.

8.8 BIBLIOGRAPHICAL NOTES

One of the most important works in parallel universal quantification was presented
by Graefe and Cole (ACM TODS 1995), in which they proposed and evaluated

8.8 Bibliographical Notes 253

Algorithm: Parallel-Hash-Sub-Collection-Join

// step 1 (data partitioning)
Call DivideBroadcast or
Call DivideAndPartialBroadcast partitioning

// step 2 (local joining): In each processor
// a. hash

Hash each element of the collection.
Collision is handled through the use of linked-
list within the same hash table entry.
Elements within the same collection are linked in
a different dimension using a circular
linked-list.

// b. probe
Probe each element of the collection.
Once a matched is not found
Discard current collection, and
Start another collection.

If the element is found Then
Tag the matched node

If the element found is the last element in the
probing collection Then
Perform a traversal
If all elements probed are matched with nodes
from the same circular linked-list Then
Put the matched objects into the query result

Else
Discard the current collection
Start another collection.

Repeat until all collections are probed

Figure 8.26 Parallel hash sub-collection join algorithm

parallel algorithms for relational division using sort-merge, aggregate, and
hash-based methods.

The work in parallel object-oriented query started in the late 1980s and early
1990s. The two most early works in parallel object-oriented query processing were
written by Khoshafian et al. (ICDE 1988), followed by Kim (ICDE 1990). Leung
and Taniar (1995) described various parallelism models, including intra- and
interclass parallelism. The research group of Sampaio and Smith et al. published
various papers on parallel algebra for object databases (1999), experimental
results (2001), and their system called Polar (2000).

254 Chapter 8 Parallel Universal Qualification—Collection Join Queries

Table R Table S
A 7, 202, 4 P 75, 18
B 20, 111, 66 Q 25, 95
C 260, 98 R 220
D 13 S 100, 205
E 12, 17 T 270, 88, 45, 3
F 8, 75, 88 U 99, 199, 299
G 9, 200 V 11
H 170 W 100, 200
I 100, 205 X 4, 7
J 112 Y 60, 161, 160
K 160, 161 Z 88, 2, 117, 90
L 228
M 122, 55
N 18, 75
O 290, 29 Figure 8.27 Sample data

One of the features of object-oriented queries is path expression, which does
not exist in the relational context. Path expression in parallel object-oriented query
processing is discussed in Wang et al. (DASFAA 2001) and Taniar et al. (1999).

8.9 EXERCISES

8.1. Using the sample tables shown in Figure 8.27, show the results of the following col-
lection join queries (assume that the numerical attributes are of type set):

a. Collection-equi join,

b. Collection-intersect join, and

c. Subcollection join.
8.2. Assuming that the numerical attributes are now of type array, repeat exercise 8.1.

8.3. Parallel collection-equi join query exercises:

a. Taking the sample data shown in Figure 8.27 where the numerical attributes are
of type set, perform an initial disjoint data partitioning using a range partitioning
method over three processors. Show the partitions in each processor.

b. Perform a parallel double sort-merge algorithm on the partitions. Using the sample
data, show the steps of the algorithm from the initial data partitioning to the query
results.

8.4. Parallel collection-intersect join query exercises:

a. Using the sample data shown in Figure 8.27 (numerical attribute of type set), show
the results of the following partitioning methods:
Ž Simple replication technique,
Ž Divide and broadcast technique,
Ž One-way divide and partial broadcast technique, and
Ž Two-way divide and partial broadcast technique.

b. Adopting the two-way divide and partial broadcast technique, show the results of the
collection-intersect join query using the parallel sort-merge nested-loop algorithm.

8.5. Parallel subcollection join query exercises:

8.9 Exercises 255

a. Adopting the two-way divide and partial broadcast technique in exercise 8.4, show
the result of the subcollection join query using the parallel sort-merge nested-loop
algorithm.

8.6. Discuss why parallel collection-equi join uses a disjoint data partitioning, whereas the
other two parallel collection joins (i.e., parallel collection-intersect join and parallel
subcollection join) use non-disjoint data partitioning.

8.7. Should the above sample data be written in a relational table structure, how can collec-
tion join queries be expressed in SQL?

Chapter9

Parallel Query Scheduling
and Optimization

A query in a database system is conveniently expressed in a nonprocedural lan-
guage such as SQL, where the user does not specify the precise algorithm for retriev-
ing the information, but only the requirements of the desired information. Therefore,
it is possible to have many different access paths in executing a query. The optimiza-
tion technique becomes significant as it formulates and chooses the most efficient
way to deliver the query results to the user.

Query optimization in database systems is a classical problem and has been rec-
ognized as one of the most difficult problems to solve, since it has proven to be
NP-complete; that is, there is no polynomial time algorithm to solve the problem,
and therefore more realistic approaches, such as heuristic, cost-based, or semantic
optimization, must be employed. The main task of query optimization is to find the
most efficient access so that the query response time can be reduced.

A query, before it is executed, is usually scanned and parsed into some internal
representation. A typical form used is some kind of query tree or query decomposi-
tion. This internal representation is then transformed into an optimized query tree.
The rules that transform the initial tree into the final tree must preserve the equiva-
lence. This final query tree is sometimes known as a query access plan, which will
be executed to obtain the query result.

Figure 9.1 shows the steps for query processing and optimization. The tasks of
parallel query optimization can be divided into two major areas, parallel query opti-
mization and parallel query execution. Parallel query optimization includes access
plan formulation and execution scheduling. Access plan formulation is for develop-
ing the best sequential query access plan, whereas execution scheduling is for incor-
porating parallelism scheduling into the query access plans. Parallelization models

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

256

9.1 Query Execution Plan 257

Scanning and
Parsing

Query

Internal form of query

Execution plan

Result

Parallel Query
Optimization

Parallel Query
Execution

* Access Plan Formulation
* Scheduling Execution

* Parallelization Models
* Parallel Algorithms

Figure 9.1 Query
optimization

and parallel algorithms contain the basic form of parallelism for basic query opera-
tions. Complex queries are normally decomposed into multiple basic operations, and
for each basic operation an appropriate parallelism algorithm is applied. Execution
scheduling deals with managing execution plans among these parallelizable basic
operations.

All of the previous chapters deal with parallel query execution, focusing on effi-
cient formulation of parallel algorithms of each query operation. This chapter, on
the other hand, concentrates on parallel query optimization, and in particular parallel
subquery scheduling and dynamic parallel query optimization.

This chapter starts with a query execution plan to be described in Section 9.1.
Section 9.2 describes subquery scheduling. Section 9.3 compares and contrasts the
two subquery scheduling mechanisms, namely, serial subquery scheduling and par-
allel subquery scheduling, and Section 9.4 presents the scheduling rules. Section 9.5
introduces the cluster query processing model, and Section 9.6 describes dynamic
cluster query optimization. Finally, Section 9.7 briefly discusses other approaches to
dynamic query optimization.

9.1 QUERY EXECUTION PLAN

A query execution may consist of a number of subqueries, and a subquery is the
basic processing unit that involves one or more operations to be processed together.
The query execution plan is expressed by a query tree with each node represent-
ing a subquery and an arc between two nodes specifying the execution order of
the subqueries. A node may have one or more incoming arcs and one outgo-
ing arc, except for the root of the tree, which gives the final result of the query.

258 Chapter 9 Parallel Query Scheduling and Optimization

Each node with incoming arc(s) cannot be executed until its predecessor node(s)
finish.

A typical execution method follows a phase-oriented paradigm, whereby the
operations of a query plan are performed by several execution phases. The first
phase involves the operations that require only base tables. The next phase may
then contain the operations that become ready to process after the completion of
the previous phase. The last phase produces the result of the query. Within an
execution phase, each of the operations is allocated to one or more processors such
that all operations in the phase are processed in parallel and are expected to finish
at about the same time.

The execution of a query may be divided into a number of sequential phases.
Within each phase, a number of operations are executed in parallel, and the results
from one phase will be passed to the next for further processing. Depending on how
the results need to be finally presented, a consolidation operator may be required
to arrange the results in an appropriate final form. If necessary, the consolida-
tion operator will redistribute the output objects for further processing. However,
the final consolidation operation is not parallelizable, so it involves the bringing
together of parallel results for final presentation.

The task of the consolidation operator can vary from collecting the result of
two operators at a time to collecting the result of all operators at once. Thus, the
degree of parallelization can be classified into four categories: left-deep tree par-
allelization, bushy-tree parallelization, right-deep tree parallelization, and flat-tree
parallelization. Figure 9.2 illustrates these four types of trees, where a node rep-
resents a predicate evaluation of a class. In this example, node A can be regarded
as the first predicate evaluation, node B as the second, and so on. Furthermore,
the result of each predicate is subsequently joined. For example, AB indicates the
result of joining process (implicitly or explicitly) between the first and the second
predicates.

It is obvious from the parallelization trees shown in Figure 9.2 that the purpose
of parallelization is to reduce the height of the tree. The height of a balanced bushy

left-deep tree

right-deep tree

bushy-tree

flat-tree

B D

AB

ABC

ABCD

A B C D

AB CD

ABCD

A B C DBAC D

ABCD

ABCD

CD

BCD

CA

Figure 9.2 Parallelization trees

9.2 Subqueries Execution Scheduling Strategies 259

tree is equal to log2 N , where N is the number of nodes. When each predicate
evaluation is independent of the others, bushy-tree parallelization is the best, since
the reduction of the height of the tree is quite significant. However, in the case
where each predicate evaluation is dependent on the previous ones (e.g., in path
expressions), bushy-tree parallelization is inapplicable.

Left-deep tree and right-deep tree are similar to sequential processing with a
reduction of one phase only. These parallelization techniques are suitable for pred-
icate evaluations that must follow a sequential order; that is, the result of a predicate
evaluation will become an input to the next predicate evaluation. This mechanism
is like a pipeline-style parallelization. Left-deep trees are not much different from
right-deep trees, except for the order of processing the predicates. When a query
follows a particular direction to process the predicates for efficiency reasons, only
one of these methods can be used. In contrast, when the query disregards the direc-
tion, the query optimizer must be able to decide which method will be used that
will produce a minimum cost.

Flat-tree parallelization is a tree of height one. Here, the consolidation opera-
tor can be very heavily loaded, since the results of all predicate evaluations are
collected at the same time. Hence, parallelization may not have much improve-
ment. However, this technique works well for queries with a single table and many
predicates, because no join operation is needed.

In a simpler parallelization, a query tree (or indeed part of a query tree) con-
sists of two main subqueries, which may be processed simultaneously since each
of them is independent of the others. In this scenario, the main objective is to
complete all subqueries as early as possible, since the operation of the next phase
cannot start before the completion of all subqueries. In the following sections, two
subqueries scheduling strategies are discussed in greater detail.

9.2 SUBQUERIES EXECUTION SCHEDULING
STRATEGIES

Apart from the availability of parallel algorithms for each basic operation in the
query, scheduling subqueries execution plays an important role. There are two
existing approaches to the subqueries execution scheduling: One way is to pro-
cess each subquery one by one (serial scheduling). The other way is to process all
subqueries concurrently (parallel scheduling). Performance of these scheduling
strategies is much influenced by the presence of load skew in each subquery.

9.2.1 Serial Execution Among Subqueries

In serial scheduling, the operations in a given query access plan are carried out
one after another, proceeding from the leaf operations to the root operation that
produces the query result. When a subquery is being processed, all resources are
allocated to it. For each operation, parallel processing is exploited by partitioning
and distributing objects over all available processors, followed by an execution of

260 Chapter 9 Parallel Query Scheduling and Optimization

Subqueries

processors

1

2

n

queue

12

Figure 9.3 Serial execution among subqueries

the operation in parallel. If multiple subqueries exist in a phase, the order of the
execution of these subqueries does not matter, as they do not have any interdepen-
dence. One essential element is that these subqueries must be completed before
the next phase can start. Figure 9.3 gives an illustration of serial execution among
subqueries.

When the operands of each operation are uniformly distributed to the proces-
sors, that is no load skew, maximum speed up of the operation is achieved, since no
processors are idle when others are busy working. However, if load skew occurs,
some processors may have heavier loads than others and require more time to
complete the portion of the assigned operation. The completion time of the whole
operation therefore would be much higher than expected since it is determined by
the time required for the heaviest loaded processor.

Skewness has been one of the major problems in parallel database systems.
Load skew refers to the nonuniform distribution of workload among the processors.
Load skew is a main obstacle to achieving load balancing and linear speed up. In
the presence of skew, query execution time depends on the most heavily loaded
processors, and those processors finishing early would have to wait.

Load skew in single-table queries is mainly caused by nonuniform data parti-
tioning (e.g., hash or range partitioning). With nonuniform data partitioning, an
exact-match or range query on the partitioning attribute can be localized to a small
subset of processors containing the desired data. This kind of query normally
requires minimal resources (depending on the range for range queries). Hence,
activating all processors, most of which will not produce any result, is often a
waste. However, choosing a correct partitioning attribute is similar to an index
selection problem, which is known to be difficult. Moreover, exact-match or range
queries on a nonpartitioning attribute make the initial partitioning meaningless, as
the data partitioning does not offer any benefit to processing these queries. Since
the partitioning is nonuniform, the processing of these queries will produce a skew
problem.

Load skew in join queries is a result of partitioning on the join attribute. Parallel
processing of join queries is normally made up of two stages: partitioning and local
joining. In the partitioning stage, data from the two classes to be joined are par-
titioned based on the joining attribute. The results of this partitioning are disjoint
partitions. Subsequently, these partitions are processed locally in each processor.
The partitioning method used is a nonuniform data partitioning method (normally

9.2 Subqueries Execution Scheduling Strategies 261

0

1

2

3

4

5

6

7

8

9

10

Processor

Efficiency

Linear

Near Linear

Slightly Skewed

Highly Skewed

1 2 3 4 5 6 7 8 9 100

Figure 9.4 Linear speed up vs. skewed performance

hash partitioning is used). Depending on the partitioning function and the actual
data distribution in the joining attributes, load skew may vary from lightly to heav-
ily skewed.

The biggest impact of load skew is performance degradation. If linear speed
up is drawn as a linear function f .x/ D x , performance of a skewed operation
is lower than the desired speed up. Figure 9.4 shows a performance comparison
between linear speed up and skew.

In situations where there is a high degree of skew, adding more resources will
not improve the efficiency significantly. This fact is known as the skew principle,
which states that allocating a large number of resources to a skewed operation
will not improve performance significantly, and may lead to degradation in perfor-
mance under certain circumstances.

9.2.2 Parallel Execution Among Subqueries

In parallel scheduling, multiple subqueries within one phase are executed simulta-
neously. The execution of the phases is still carried out in sequence, as this follows
a phased-oriented paradigm. Figure 9.5 illustrates parallel execution among sub-
queries.

When executing multiple subqueries within one phase the resources must be
efficiently divided, so that all of these subqueries may finish at the same time and,
most importantly, they are expected to complete the jobs as early as possible, so
that the execution of the next phase can proceed as early as possible. Intuitively,
one would allocate more resources to a larger subquery. However, if this sub-
query contains a high degree of skewness, the allocation of more resources may
not improve performance significantly. Hence, one might allocate fewer resources
than initially planned and give away some of the resources to the other subqueries
whenever possible.

262 Chapter 9 Parallel Query Scheduling and Optimization

Subqueries

processors

1

2

k

k + 1

n

1

2

Figure 9.5 Parallel execution among subqueries

Given two subqueries in a phase, where subquery 1 is large but skewed and
subquery 2 is small but not skewed, a dilemma of the parallel approach can be
explained as follows. One method is to allocate fewer resources to subquery 1
(because it is skewed), which will result in the subquery taking more time to
finish the job, while subquery 2 finishes very early. Another method is to allocate
more resources to subquery 1, although subquery 1 is expected to improve just
slightly. Subquery 2 with fewer resources will finish more slowly as compared to
the previous method. Hence, it is necessary to find a trade-off between these two
approaches.

Resource division has been recognized as one of the most difficult problems in
scheduling and processor allocation. Basically, there are two main approaches to
resource division, static and dynamic resource division. The static resource divi-
sion is based on the precomputed workload. This is often estimated with cost
models. Suppose that N is the number of processors to be divided among two sub-
queries (S1 and S2); the algorithm in Figure 9.6 can be used to divide resources
to the two subqueries. The algorithm basically runs through all possible processor
configurations for the two subqueries, from one extreme case (1 processor for sub-
query 1 and N � 1 processors for subquery 2) to the other extreme case (N � 1
processor for subquery 1 and 1 processor for subquery 2). The most optimal con-
figuration will be between these two extremes.

With the static method, the workload of S1 and S2 must be known before the
execution at runtime. This is sometimes unreasonable, since workload estimation is
difficult most of the time. This is one of the reasons that researchers prefer the sec-
ond method, that is, the dynamic resource division. The dynamic resource division
is basically to divide the resources at runtime.

The main aims of resource division are to achieve an equal finishing time of
the parallel tasks and to reduce the total execution time, which is determined by
the latest-finished task. To achieve these goals, a number of approaches have been
taken. The first approach is to use an algorithm to calculate the load of each task

9.2 Subqueries Execution Scheduling Strategies 263

Algorithm: Function CalculateResourceDivision
(S1, S2: subqueries; N: number of processors)

Return: processors_for_S1

Initialize: Total_Time D max number
For i D 1 To (N-1)
Calculate max (S1/i)
Calculate max (S2/(N� i))
If time (S1) > time (S2) Then
Store time (S1) to Temp

Else
Store time (S2) to Temp

If Temp < Total_Time Then
Store Temp to Total_Time
Processor for S1 D i

Return Processors_for_S1

Figure 9.6 Static resource division

and to do an adjustment afterwards. The algorithm usually receives the load of
each task and determines the load distribution. The load distribution calculation
is normally a polynomial-time algorithm. The estimation of the load of each task
is acknowledged to be difficult, and assumptions are often made to simplify the
problem.

The second approach is to use a time equalization method. Based on a target
time taken to be efficient for a given query phase, each operation in that phase is
given a number of processors that will enable it to complete the task within that
time.

Other methods include task stealing and partition tuning. Task stealing is a
dynamic load balancing, where load balancing is achieved by tackling the skew
problem when it occurs at the joining phase. Based on the global information, an
idle processor determines the donor (the overloaded processor) and the amount of
load to be transferred. This process of stealing is repeated until some criterion,
which indicates that the minimum completion time has been achieved, has been
satisfied.

Partition tuning is accomplished by producing more partitions than the number
of available processors. Processor allocation is done by distributing several parti-
tions to each processor, so that the load of each processor is equal. The simplest
tuning algorithm is one where each processor sorts its local partitions and retains
a number of its largest partitions. The coordinator then receives a report from each
processor regarding its load and reallocates the excess partitions from the over-
loaded processors to the underloaded processors. Partition tuning is a static load
balancing, in which load balancing is achieved by pre-estimating that the load will
be balanced during the join operation.

264 Chapter 9 Parallel Query Scheduling and Optimization

9.3 SERIAL VS. PARALLEL EXECUTION
SCHEDULING

Execution scheduling for subqueries in a query is influenced particularly by two
factors: skewness and the size of the subqueries. Three cases are considered:

(i) Both subqueries are not skewed.

(ii) Both subqueries are skewed.

(iii) One of them is skewed.

9.3.1 Nonskewed Subqueries

Consider a query having two subqueries. The two subqueries involve selection
operations on single tables. If a round-robin partitioning is used, neither subquery
will produce load skew. The number of objects per processor of the first subquery
can be represented as a function f .x/ D r1

x , where r1 is the number of records and
x is the number of processors used to process the subquery. If n processors are
available, then 1 � x � n. Likewise, the number of objects per processor of the
second subquery can be represented as: g.x/ D r2

x . We note that both f .x/ and
g.x/ are decreasing functions of x .

When a serial execution of subqueries is used, the total elapsed time for phase
1 is calculated by adding f .n/ and g.n/. If a parallel execution method is used,
it is essential to locate the intersection between f .x/ and g.x/ to find the most
efficient processor configuration, since the intersection represents equal finishing
times for both subqueries without any idleness. This can be done by mirroring g.x/

and shifting as far as n � 1, resulting in g.n � x/. Subsequently, the intersection
between the two subqueries can be found by equating:

f .x/ D g.n � x/
r1

x
D r2

n � x

x D
�

r1

r1 C r2

�
n (9.1)

By using this value for x , we can show that f .n/ C g.n/ D f .x/. This is true
because

f .n/ C g.n/ D f .x/

r1

n
C r2

n
D f

�
r1 Ð n

r1 C r2

�

r1 C r2

n
D r1

r1Ðn
r1Cr2

r1 C r2

n
D r1

r1 C r2

r1 Ð n
r1 C r2

n
D r1 C r2

n

9.3 Serial vs. Parallel Execution Scheduling 265

which is obviously true. Likewise, f .n/ C g.n/ D g.n � x/, which is true because

f .n/ C g.n/ D g.n � x/

r1

n
C r2

n
D g

�
n � r1 Ð n

r1 C r2

�

r1 C r2

n
D r2

n � r1Ðn
r1Cr2

r1 C r2

n
D r2

.r1Cr2/n
r1Cr2

� r1Ðn
r1Cr2

r1 C r2

n
D r2

r1ÐnCr2Ðp�r1Ðn
r1Cr2

r1 C r2

n
D r2 Ð r1 C r2

r2 Ð n
r1 C r2

n
D r1 C r2

n

which is obviously true. Since x is not always an integer, it needs to be rounded
off. Hence, the intersection of f .x/ and g.x/ is actually either ceil(x) or floor(x).
The most efficient parallel scheduling time is determined by the minimum of either
f (ceil(x)) or g.n � floor.x//. Hence, we need to prove that:

f .n/ C g.n/ D min. f .ceil.x//; g.n � f loor.x/// (9.2)

Condition 9.2 can be proven by showing that

f .x/ < f .ceil.x//andg.n � x/ < g.n � f loor.x//

Noting that both f .x/ and g.x/ are decreasing functions, and since x < ceil.x/,
hence f .x/ < f .ceil.x//, and since x > floor.x/, hence n � x < n � floor.x/,
and g.n � x/ < g.n � floor.x//.

As condition 9.2 has been proven, it means that when there is no skew involved
in the two subqueries, serial scheduling is better than parallel scheduling to the two
subqueries.

This can also be shown with a graphical representation. Suppose the second
subquery time is reflected; g.x/ becomes g.n � x/ D r2

n�x , where g.n � x/ is a
reflection along x D 2=n. The new curve shows that the number of processors used
in the second subquery is n � x processors, where x is the number of processors for
the first subquery. Figure 9.7c shows the curve for g.n � x/. Figure 9.7d shows an
intersection between f .x/ and g.n � x/, which can be calculated by equation 9.1.

9.3.2 Skewed Subqueries

If each subquery is partitioned with a hash or a range data partitioning, load
skew may occur as the result of an imbalance in data partitioning. Load skew
is frequently modelled by means of the Zipf distribution. Incorporating the Zipf

266 Chapter 9 Parallel Query Scheduling and Optimization

f (x) = r1/x

f (x) = r1/x

g (x) = r2/x

 1 n

Processors for f (x)

time

(a) Subquery 1 Function

1 n
Processors for g (x)

time

(b) Subquery 2 Function

time

1 1n–1 n–1n n

Processors for f (x) Processors for f (x)

g (n–x) = r2/(n–x)

g (n–x) = r2/(n–x)

(c) Mirror Function for Subquery 2

(d) Intersecting f (x) and g(n–x)

time

Figure 9.7 Performance graphs of nonskewed subqueries

distribution to model skew, the function for a subquery with the class size r1 is
indicated by f .x/ D r1

Hx
, where x is the number of processors used to process the

subquery. This function represents the most overloaded processor and determines
the total execution time for this subquery. Figure 9.8a shows the shape of the
function f .x/ from x D 1 (1 processor used) to x D n (n processors used).

For the second subquery, the function is g.x/, which is given by g.x/ D r2
Hx

,
where the class size for the second subquery is r2. The similarity between f .x/

and g.x/ is that the function uses the same skew model, that is, the Zipf model (as
indicated by the denominator Hx), and the number of processors used is x . The
main difference between f .x/ and g.x/, however, is the table size, that is, r1 and
r2, respectively. Hence, the shape of both functions drawn in a graph should be the
same (see Fig. 9.8a). The actual line graph for f .x/ and g.x/ can go up or down
depending on the value of the numerator, which is indicated by either r1 and r2.

The difference between f .x/ D r1
Hx

and g.x/ D r2
Hx

is analogous to that of the
functions for nonskewed subqueries f .x/ D r1

x and g.x/ D r2
x . In other words, the

distribution, whether it is normal or skewed, is determined by the denominator (i.e.,
x for normal distribution or nonskewed or Hx for skewed distribution modeled with
the Zipf model). Compared with nonskewed subqueries, the shape of the functions

9.3 Serial vs. Parallel Execution Scheduling 267

1 n

time time

1 n–1 n

(a) Functions for Subqueries 1 and 2 (b) Intersecting f (x) and g (n–x)

f (x) = r1/Hx or g (x) = r2/Hx f (x) = r1/Hx

Processors for f (x) or g (x) Processors for f (x)

g (n–x) = r2/H(n–x)

Figure 9.8 Performance graphs of skewed subqueries

for skewed subqueries is different. The shape of the function for a skewed subquery
does not go down as steeply as that of a nonskewed subquery.

Likewise for the nonskewed subqueries, an intersection between the two func-
tions f .x/ and g.x/ can be determined by making a mirror function for one of the
two subqueries. If g.x/ is mirrored and shifted as far as n � 1; g.n � x/ becomes:
g.n � x/ D r2

Hn�x
. This does not admit an analytical solution since

r1

Hx
D r2

Hn�x
r1

γ C ln x
D r2

γ C ln.n � x/

r1 Ð γ � r2 Ð γ D ln xr2 � ln.n � x/r1

er1Ðγ�r2Ðγ D xr2

.n � x/r1

Solving for x in closed form in this is generally not possible. It is difficult to
show analytically that f .n/ C g.n/ > max. f .x/; g.n � x//. Even a solution in an
approximate form is difficult to obtain. Since the objective is to find an intersection
point that is indicated by x , we can obtain an approximate value for x through a
graphical solution. Figure 9.8b shows an intersection between f .x/ and g.n �
x/. The intersection determines the most efficient processor configuration for both
subqueries where these subqueries do not overlap when occupying the resources.

9.3.3 Skewed and Nonskewed Subqueries

If one of the subqueries is not skewed and the other one is skewed, the sizes of the
subqueries play an important role in deciding the execution scheduling strategy.
In this section, three cases are considered. Case 1 is where the two subqueries are
approximately equal in size. Case 2 is where the skewed subquery is larger, and

268 Chapter 9 Parallel Query Scheduling and Optimization

(a) Nonskewed and Skewed
Subqueries (same sizes)

1 n–1 n

1 n–1 n

1 n–1 n
Processors for subquery 1 Processors for subquery 1

Processors for subquery 1

Time Time

Time

Subquery 1
(Nonskewed)

Subquery 1
(Nonskewed)

Subquery 1
(Nonskewed)

Subquery 2
(Skewed)

Subquery 2
(Skewed)

Subquery 2
(Skewed)

(b) Nonskewed and Skewed
Subqueries (Nonskewed)

(c) Nonskewed and Skewed Sub-
Queries (Skewed < Nonskewed)

Figure 9.9 Intersection of nonskewed subquery and skewed subquery

case 3 is where the nonskewed subquery is larger. The intersection of the three
cases is illustrated in Figure 9.9.

Assume that the first subquery is not skewed and the second subquery is skewed.
Using the functions f .x/ and g.x/ to represent the subqueries, the functions for
the first and the second subqueries are:

f .x/ D r1

x
and g.x/ D r2

Hx
(9.3)

The intersection between the two subquery functions is shown by equating

r2

Hx
D r1

n � x
r2

γ C ln x
D r1

n � x
r2 Ð n � r2 Ð x D r1 Ð γ C ln xr1

r1 Ð ln x C r2 Ð x D r2 Ð n � r1 Ð γ

In x can be expanded in a form of series, which is as follows: ln x D �
x�1

x

Ð C
1
2

�
x�1

x

Ð2 C 1
3

�
x�1

x

Ð3 C 1
4

�
x�1

x

Ð4 C Ð Ð Ð. The longer the terms, the more accurate
is the result for ln x . The value of x is determined by the number of processors,

9.4 Scheduling Rules 269

which can be a few (possibly 2, 4, or 8) to large (particularly in massively parallel
systems). Therefore, the first term

�
x�1

x

Ð
is just less than 1. Since .x � 1/=x < 1,

the values for the second and subsequent terms must be < 0:5; < 0:33; < 0:25; : : :.
To obtain a rough approximation, we may omit the second and subsequent terms
from the ln x expansion. The final result may not be that accurate, but at least it is
shown that a closed form for x is rather difficult to obtain. In omitting the second
and subsequent terms from the ln x expansion:

r1

�
x � 1

x

�
C r2 Ð x D r2 Ð n � r1 Ð γ

r1 Ð x � r1 C r2 Ð x2 D r2 Ð n Ð x � r1 Ð γ Ð x

r2 Ð x2 C .r1 C r1 Ð γ � r2 Ð n/ Ð x � r1 D 0

x ³
r2 Ð n � r1.1 C γ/

š
p

.r2 Ð n � r1.1 C γ//2 C 4 Ð r1 Ð r2

2 Ð r2

Better, but slightly more cumbersome, approximations may be obtained by
taking more terms from the ln x expansion, giving rise to cubic, quartic, etc. expan-
sions that still admit direction solution. Since an analytical solution is difficult to
obtain, a graphical solution is necessary.

It can be concluded from Figure 9.9 that in some cases there is no solution to
the problem of optimally allocating a processor. The same lesson is also learned
from Figure 9.8. In general, if one or both of the subqueries involve any degree of
skewness (i.e., 0 < θ � 1), an advance estimation (before runtime) of optimal pro-
cessor configuration is difficult. However, it does not mean that at runtime optimal
processor configuration cannot be obtained. An optimal processor configuration is
still achievable through dynamically allocating processors at runtime.

9.4 SCHEDULING RULES

Processor allocation in parallel query processing is to assign resources (i.e., pro-
cessors) to incoming queries with possible multiple subqueries in such a way that
the query execution times are minimized. Three rules are developed around the two
execution scheduling strategies. Two factors in particular are considered: skewness
and the size of each subquery.

Rule 1: Given two subqueries in a phase, if both subqueries do not involve any
skewness, serial execution of the subqueries may be usefully adopted.

Since the subqueries are not skewed, linear speed up may be attainable. In other
words, the addition of resources to the operation will proportionally increase per-
formance. Because of the potential of linear speed up, the two subqueries can be
viewed as one large subquery consisting of the two smaller subqueries running
one after another. Should the two subqueries be run concurrently instead, without

270 Chapter 9 Parallel Query Scheduling and Optimization

a careful resource division, it will be likely that these subqueries may not finish at
the same time, causing some processors to be idle.

Rule 2: Given two subqueries in a phase, if both subqueries involve a certain
degree of skewness, the parallel execution of the subqueries may be usefully
adopted.

Using the skew principle, it is known that adding new processors to a skewed
operation will not always make a significant impact on performance improvement.
Since the resources are limited, it will be better to keep the number of processors
minimal for a particular operation. Hence, the resources are divided into multiple
operations (e.g., two subqueries). Although the execution time of each operation is
increased because of fewer resources being allocated to it, the overall performance
of the two subqueries is improved because the operations are executed in parallel.

Rule 3: Given two subqueries in a phase, if one subquery involves skewness
and the other does not, the decision on the appropriate execution schedul-
ing depends on the largest subquery. If the largest subquery is skewed, the
parallel execution of the subqueries is preferred. Otherwise, the serial exe-
cution of the subqueries is preferable. In the case where the two subqueries
are roughly equal in size, the skewed subquery is more dominant, and hence
parallel execution is more desirable.

The largest subquery makes the biggest impact on overall performance, since
the average performance of the smallest subquery is usually smaller than that of
the largest subquery. Incorporating the skew principle, execution scheduling is also
determined by the presence of skewness in the case when the two subqueries are
equal in size.

9.5 CLUSTER QUERY PROCESSING MODEL

The motivation to use parallelism for performance benefits is also influenced by
the fact that parallel architecture is no longer a monopoly of supercomputers. As
already mentioned in Chapter 1, parallel architectures are now available in many
forms, such as systems consisting of a small number but powerful processors (i.e.,
SMP machines), massively parallel processors (i.e., MPP), and clusters of SMP
machines (i.e., hybrid architectures).

As described in Chapter 1, the “shared-something” architecture compromises
the extensibility limitation of shared-memory and the load balancing problem of
shared-nothing. Basically, each node is a shared-memory architecture connected
to an interconnection network a la shared-nothing. Each node maintains a group of
processing elements. The entire cluster architecture is then composed of a set of
SMP nodes. In other words, a node consists of a number of shared-memory pro-
cessors, and a cluster architecture consists of a number of shared-memory nodes.

Obvious features of a cluster architecture include flexibility in the configuration
(i.e., number of nodes, size of nodes) and lower network communication traffic

9.5 Cluster Query Processing Model 271

as the number of nodes is reduced. Intraquery parallelization can be isolated to a
single multiprocessor shared-memory node, as it is far easier to parallelize a query
in a shared-memory than a distributed system, and moreover, the degree of paral-
lelism on a single shared-memory node may be sufficient for most applications. On
the other hand, interquery parallelization is consequently achieved through parallel
execution among nodes.

The popularity of cluster architectures is also influenced by the fact that proces-
sor technology is moving rapidly. This also means that a powerful computer today
will be out of date within a few years. Consequently, computer pricing is falling
not only because of competitiveness, but also because of the facts presented above.
Therefore, it makes sense to be able to plug in new processing elements to the
current system and to take out the old ones. To some degree, this can be done to
SMP machines (e.g., shared-memory machines), considering scaling limitations
and that only identical processors can be added. Although, theoretically, MPP
machines (shared-nothing machines) do not impose scaling limitations, their con-
figurations are difficult to alter, and hence they cannot keep pace with up-to-date
technology, not to mention the high cost of MPP machines. On the other hand,
since SMP machines are becoming popular because of their competitiveness in
pricing and power, it becomes easier and more feasible to add SMP machines to
an interconnection network. Therefore, the cluster of SMP becomes demanding. In
the following sections, the cluster technology is used as the basic architecture for
parallel query optimization.

9.5.1 Overview of Dynamic Query Processing

An example of a query execution plan is shown in Figure 9.10. The query
consists of five subqueries P1 to P5 including three join subqueries P2; P3; P5

and two restriction subqueries P1; P4. The query involves four relations, namely
R1; R2; R3, and R4, located at processing nodes 1, 2, 3 and 4, respectively.
Associated with each node are its processing node, processing method, and the
estimated execution cost.

To choose an optimal query plan, the cost associated with each possible query
plan needs to be estimated. To estimate such costs, it is necessary to estimate the
sizes of the intermediate result relations in the query. The estimation methods can
be based on (i) perfect knowledge, (ii) statistical model or histograms, or (iii) a
combination of both. With a perfect knowledge method, exact information about
all parameters required in an estimation formula is known. Thus the size of the
result of an operation can be calculated accurately. However, if such information
is not available, a statistical method may be used. With a statistical method, the
parameters in the estimation formula are first characterized by some statistical
model. The expected values of the parameters are then estimated based on the
model.

An optimal query plan that minimizes the execution cost or execution time of
the query can be formulated statically at compile time. In practice, however, a
statically formulated query plan may not have a guaranteed expected performance

272 Chapter 9 Parallel Query Scheduling and Optimization

P5

P3

P2

P1

P4

R1

R2 R3

R4

processing
node 1

processing
node 2

processing
node 3

processing
node 4

processing
node 3

processing node 2

processing node 4

processing node 1

processing node 3

Figure 9.10 Query execution plan

since the plan formulation uses estimates of dynamic parameters. Dynamic param-
eters are those for which actual values can be obtained only during query execution,
such as intermediate result sizes of the query and site loads of the system. Dynamic
query plan formulation attempts to ensure the good performance of a query plan
either by delaying important optimization decisions until the query is ready to be
executed or by modifying, during execution, any decisions made in static plan
formulation that are found to be wrong. As the query execution proceeds and
up-to-date information about dynamic parameters becomes available, better opti-
mization decisions can be made.

9.5.2 A Cluster Query Processing Architecture

Queries can arrive at any one of the processing nodes, and hence a decentralized
processing control scheme must be used. The processing architecture consists of
a set of nodes with identical configurations and processing capacities. The nodes
are connected by a high-bandwidth network, and the database is partitioned over
the processing nodes with the possibility of some degree of replication. A single
processing node model is shown in Figure 9.11.

Each processing node has a ready queue and a suspended queue. The ready
queue stores the ready-to-process subqueries, whereas the suspended queue stores
the subqueries waiting for the completion of other subqueries. When a query is ini-
tiated, the query, possibly consisting of subqueries, is sent to the processing nodes
assigned by the query plan, entering ready queues or suspended queues depending

9.5 Cluster Query Processing Model 273

Data transmission

from network to network

Suspended queue

Terminal

Ready queue

Data request queue
Processor

Disk

Figure 9.11 A processing node

on whether they have predecessor tasks. Each of the processing nodes chooses the
subquery(s) in the ready queue to run and produces an intermediate result of the
query. During the execution, the subqueries in the suspended queue will be moved
to the ready queue as soon as its operand relations are available. A query is done
when all the subqueries involved have been completed. In the case of parallel pro-
cessing of a subquery, the fragments of the subquery are sent to several processing
nodes. The processing nodes do not need to treat the subquery or the fragments
differently in terms of the execution, although the full intermediate result of the
subquery must be consolidated after the parallel execution.

9.5.3 Load Information Exchange

Based on the above processing model, one way to measure the processing node
load is to take the sum of the estimated subquery costs in each queue, thereby
giving accurate load information. However, since the algorithm is concerned pri-
marily with the subqueries that may be migrated or partitioned, such information
is not critical. Therefore, the number of subqueries in the ready queue determines
the processing node load. Given a predefined constant N , a processing node is
categorized into:

ž Low load processing node, if the ready queue is empty (a subquery may,
however, be being processed), or

ž Medium load processing node, if the number of subqueries in the ready queue
is less than a predefined constant N , or

ž High load processing node otherwise.

274 Chapter 9 Parallel Query Scheduling and Optimization

The constant N serves as a design parameter for the migration process described
in the following section. A small N leads to frequent subquery migration because
many processing nodes would be classified as high load. By increasing N , the
attempt for migrations will certainly reduce. Therefore, the selection of N depends
on the possible performance gains and the overhead of the migration algorithm on
the underlying system configurations.

Every processing node maintains a load table that stores the most recent load
information of all processing nodes. The entry for each node in the load table
contains:

ž Load level,
ž Complete time, the estimated time that the processing node will take to com-

plete the subquery under processing, used only when the node is at low load
level,

ž Parallel group, the group with which the processing node is participating in
parallel processing, and

ž Update time, the time when the last update is made.

The complete and update times are useful in the algorithm to estimate the delay
of the next subquery execution. This delay is taken into account when a subquery
is considered for parallel processing.

The load table at each processing node is updated when the load level of any
node changes. This can be simply done by every node with load change broad-
casting a load update message. However, this simple scheme may be improved to
reduce the messages across the network. Since the query processing is carried out
in a cooperative manner, the processing node that initiates a query or coordinates
parallel execution of a subquery may send the load update message on behalf of
all nodes involved in the execution. Therefore, the following rules are used for
message broadcast in the algorithm:

ž The processing node that initiates a new query updates the load levels for
every node that is assigned with some subqueries and broadcasts a load update
message including all updated load information. The new load level for each
of the processing nodes is determined by the current load level plus the num-
ber of new subqueries allocated to the node.

ž Each processing node that receives a load update message checks its update
load level made by the query initiating node against the actual load level. If it
is incorrect, a load message is sent to all processing nodes.

ž The processing node that relocates a subquery to a low load processing node
updates the load levels for both the reallocated node and itself, and sends a
load update message.

ž The processing node that parallelizes a subquery with a set of low load pro-
cessing nodes updates the load levels for all the nodes involved and sends
a load update message including information about parallel group and data
partitioning.

9.6 Dynamic Cluster Query Optimization 275

ž The processing node that has completed a subquery updates its load level and,
if the level reduces, sends a load update message.

To increase the performance, “correction, migration, and partition” approaches
can be adopted. Correction is used to alter the initial query execution plan based
on dynamic information that states that the initial query execution plan is no
longer feasible because of some errors in the initial estimate. Migration is used to
reallocate the whole query/subquery from one node to another, whereas partition
is used to partition a query/subquery originated from one node into a number
of nodes for parallel processing. The details are explained in the following
sections.

9.6 DYNAMIC CLUSTER QUERY OPTIMIZATION

The steps for dynamic query processing in clusters are as follows:

(i) Static Query Plan Formulation: A query execution plan is first statically
formulated at compile time without using dynamic load information. The
subqueries involved in the plan are distributed to the processing nodes ini-
tially assigned by the plan with the objective of minimizing total query
execution costs.

(ii) Load Information Exchange: The processing nodes that participate in
query processing communicate with each other whenever their load levels
are changed.

(iii) Query Plan Correction: During execution, the intermediate results pro-
duced by the subqueries defined in the query execution plan are monitored.
If the actual result size of a completed subquery is found to be far differ-
ent from its expected value, the processing node will report this error to
the query coordinator node, which then starts a plan correction process. A
new query plan for the so far unexecuted subqueries will be formulated
and replace the existing plan.

(iv) Subquery Migration: During this process, subqueries that are assigned to
the processing nodes with medium to high level loads will be reallocated
to lightly loaded nodes.

(v) Subquery Partition: When there is no high load of processing nodes across
the system, a processing node with medium load may initiate a paralleliza-
tion process to probe some low load processing nodes. If some or all these
nodes agree, the subquery at the initiating node will be processed in paral-
lel by the nodes obtained.

Static plan formulation and load exchange information (i.e., steps (i) and (ii))
have been explained in the previous sections. This section focuses on steps (iii) to
(v), which are query execution plan correction, subquery migration, and subquery
partition.

276 Chapter 9 Parallel Query Scheduling and Optimization

A biased load balancing and parallelizing strategy is used; that is, the query
plan correction and subquery migration takes place whenever it is needed, while
subquery partition is carried out only when the overall system load is relatively
low. There are several observations. First, the subquery migration is simple and
involves fewer overheads than parallel processing in a distributed environment.
Second, when parallel processing of a subquery is applied, the reduction in execu-
tion time is gained in a trade of increase in the sum of the processing costs over
the clusters. Such cost increase is not desirable when the overall system loads are
already high. Parallel processing improves the query response time significantly,
as the system load is low to medium, but does not perform well for a high sys-
tem load. In addition, the parallel processing may suffer from the problem of data
partitioning skew, which causes uneven distribution of operand relations over the
processing nodes and thus delays the completion time of the subquery. Therefore,
a biased scheme appears to be a promising approach.

In designing a decentralized dynamic algorithm, it would be desirable to reduce
to a minimum the changes that the introduction of migration will make to a query
plan. An algorithm that uses a static plan formulation and dynamic correction
scheme will not introduce new complexity into the query optimization process
and will keep the dynamic mechanism in a simple form. In addition, the overheads
of subquery migration and partition are kept small since (i) an initial subquery
allocation is done at compile time and this may not change significantly during
execution; (ii) migration and partition are attempted only when there exist low
load processing nodes.

9.6.1 Correction

The process first formulates a static query execution plan at compile time, followed
by correcting the plan when a significant estimation error is found during query
execution. Several decisions need to be made in the plan correction procedure.

ž Triggering: A decision on whether a plan correction process should be initi-
ated. The primary concern in selecting the strategy is its efficiency since the
overheads of the correction mechanism are often significant. A plan correc-
tion should be triggered only when a better plan is expected, that is, the cost
reduction expected from the correction is larger than the overheads.

ž Correcting: A method for query plan correction after error occurrence and
correction triggering. A part of the query plan is chosen to be corrected if the
corrected plan is likely better than the current plan. The method is also known
as partial plan correction. The objective of the partial plan correction method
is to maximize overall performance improvement of the query plan.

ž Deferring: A strategy to defer query plan correction until some more sub-
queries in the query plan are processed. The strategy is an enhancement of
the partial plan correction method.

ž Discarding: A strategy to decide whether a subquery with estimation error
should be abandoned. The main concern in discarding is the trade-off between

9.6 Dynamic Cluster Query Optimization 277

Algorithm: Correction Algorithm

Input: a query plan (in the form of tree) Q, and
a subquery node P that is completed most recently

1. Replace the estimated result size of P by the actual
size obtained, and update the costs of affected nodes
in Q;

2. If the difference between the estimated and actual
result sizes of P is less than a pre-defined threshold
λ, terminate;

3. Determine a subplan Qc of Q which is affected by the
estimation error at node P;

4. Invoke the underlying query optimizer to formulate a
new execution plan Q0

c for the unexecuted subqueries
involved in Qc;

5. Qc is replaced by Q0
c

if it leads to a reduction in the cost,
otherwise no correction is made, and terminates.

6. If there exists at least one low load cluster,
invoke Subquery Migration process to change
the processing node allocation if further performance
gain is expected.

Figure 9.12 Correction algorithm

savings that might be achieved by avoiding large intermediate result relations
and the penalty of redoing the subquery.

The procedure for query plan correction is outlined in Figure 9.12. The cor-
rected plan is always expected to perform no worse than the original plan, but
the corrected plan may perform worse than the plan it replaces if further errors
occur in the corrected plan since the corrected plan is also based on inaccurate
estimates. A number of different approaches for partial plan correction are possi-
ble. If we wanted to ensure that no performance degradation was caused by future
errors, the subplan to be corrected should involve only the operations whose result
sizes can be computed accurately. If this approach is followed, the performance
improvement might not be drastic since any operation whose result size could not
be computed accurately would not be included in plan correction and only a small
part of the query plan is likely to be corrected. On the other hand, we might choose
to correct a large portion of the query plan hoping to obtain a much better improve-
ment but take the risk that future errors may lead to performance degradation.
Below are three different plan correction methods.

278 Chapter 9 Parallel Query Scheduling and Optimization

Optimistic Plan Correction (OPC)

In the optimistic plan correction method, the subplan Qc includes all operations
that have not been processed. The OPC method therefore takes an optimistic
approach by assuming that the estimates for all the remaining operations are
accurate and needs no information on the accuracy of the remaining estimates.
When the estimates of the remaining operations are accurate or close to accurate,
the OPC method is expected to perform well. However, when there are one or
more large errors in the estimates used in the corrected plan, the OPC method
may suffer performance degradation.

We consider an example of the OPC method using the query plan shown in
Figure 9.10. Assume that an estimation error is found after operation P1 finishes.
Let the actual result size of P1 be three times the estimated size. Figure 9.13 shows
a reformulated plan for the unexecuted operations P2; P3, and P5 using the same
cost model and plan formulation algorithm. Since P2 encounters a much larger
than expected operand relation, its execution is pushed back to the last in the new
plan. Consequently, P3 and P5 will be performed first. The execution order of
the original query plan can be expressed algebraically as ..σp1.R1/ ðp2 R2/ ðp3

σp4.R3// ðp5 R4, and the new plan is σp1.R1/ ðp2 ..R2 ðp3 σp4.R3// ðp5 R4/,
where σp stands for restriction and ðp for join operation.

P2

P1

P4

P5

P3R1

R3

R2

R4

processing
node 4

processing
node 3

processing
node 3

processing
node 2

processing
node 3

processing
node 4

processing
node 4

processing
node 1

processing
node 1

Figure 9.13 Corrected query execution plan

9.6 Dynamic Cluster Query Optimization 279

Pessimistic Plan Correction (PPC)

In contrast to the OPC method, the PPC method is based on the pessimistic
assumption that an estimation error will occur in all operations unless the
estimates are known to be accurate. Therefore, the PPC method limits plan
correction only to operations whose estimates are close to the actual values. The
cost of the corrected plan may then be guaranteed to be no higher than the cost of
the original plan.

The PPC method requires accuracy information to identify good estimates.
Assume that the size estimate of an operation P is given by a pair of values (s; d),
where s is the size estimate and d is the deviation of s. If d is equal or close to zero,
we say that s is a good estimate. The correctable condition for the PPC method can
be stated as:

An operation node in a query plan is correctable if

(a) its size estimate is good; or

(b) the actual result size of the operation is known.

For example, consider again the example query shown in Figure 9.10, where an
error is found at P1. Assuming that the operation P5 is not good in the sense of
estimate of result size, the plan correction will then include unexecuted operation
P2 and P3 but does not include P5. Therefore, whatever the estimation error at P5,
the cost of the corrected plan will be less than the cost of the statically formulated
plan.

Adaptive Plan Correction (APC)

In the adaptive plan correction method, the subplan Qc to be corrected is deter-
mined according to both the current error and the errors that are likely to occur in
the remaining query plan. Qc is proposed to include those operations that have not
yet been executed and are expected not to have large errors. An error is considered
large if it is greater than the current error. The reason for choosing this heuristic
is based on the desirability of correcting all of the plan if a very large estimation
error has been found and not correcting very much of the plan if the current error
is small.

Given a query plan Q, let P be the node of Q with the current estimation error.
Let a and s be the actual and the estimated result size of P . The absolute estima-
tion error at P therefore is ja � sj. Correctable nodes should be those where the
estimation errors are not expected to be larger than ja � sj. Assume that the error
for each operation Pi in Q is in the range of (si � di ; si C di), where si is the size
estimate and di is the deviation of si . Therefore, the APC correctable condition can
be defined as follows:

An operation node Pi in a query plan Q is correctable if

(a) di < γja � sj, where γ is a constant; or

(b) the actual result size of Pi is known.

280 Chapter 9 Parallel Query Scheduling and Optimization

The constant γ can be used as a design parameter to determine the operations
that will be corrected. When γ takes a large value, the operations with large poten-
tial estimation errors will be involved in the plan correction. A small value of γ

implies that the plan correction is limited to the operations whose result sizes can
be estimated more accurately. In fact, when γ D 0, the APC method becomes the
PPC method, while for sufficiently large γ the APC method becomes the OPC
method.

9.6.2 Migration

Subquery migration is based on up-to-date load information available at the time
when the query plan is corrected. Migration process is activated by a high load
processing node when it finds at least one low load processing node from the load
table. The process interacts with selected low load processing nodes, and if suc-
cessful, some ready-to-run subqueries are migrated. Two decisions need to be made
on which node(s) should be probed and which subquery(s) is to be reallocated.
Alternatives may be suggested from simple random selection to biased selection in
terms of certain benefit/penalty measures. A biased migration strategy is used that
attempts to minimize the additional cost of the migration.

In the migration process described in Figure 9.14, each subquery in the ready
queue is checked in turn to find a current low load processing node, migration to
which incurs the smallest cost. If the cost is greater than a constant threshold α,
the subquery is marked as nonmigratable and will not be considered further. Other
subqueries will be attempted one at a time for migration in an ascending order of
the additional costs. The process stops when either the node is no longer at high
load level or no low load node is found.

The threshold α determines which subquery is migratable in terms of additional
data transfer required along with migration. Such data transfer imposes a workload
on the original subquery cluster that initiates the migration and thus reduces or even
negates the performance gain for the cluster. Therefore, the migratable condition
for a subquery q is defined as follows: Given a original subquery processing node
Si and a probed migration node Sj , let C.q; Si / be the cost of processing q at Si

and let D.q; Si ; Sj / be the data transmission cost for Si migrating q to Sj Ð q is

said to be migratable from Si to Sj if 1Ci; j D D.q;Si ;S j /

C.q;Si /
< α.

It can be seen from the definition that whether or not a subquery is migrat-
able is determined by three main factors: the system configuration that determines
the ratio of data transmission cost to local processing cost, the subquery oper-
ation(s) that determines the total local processing cost, and the data availability
at the probed migration processing node. If the operand relation of the subquery
is available at the migration processing node, no data transfer is needed and the
additional cost 1Ci; j is zero.

The value of threshold α is insensitive to the performance of the migration algo-
rithm. This is because the algorithm always chooses the subqueries with minimum
additional cost for migration. Moreover, the subquery migration takes place only
when a query plan correction has already been made. In fact, frequent changes

9.6 Dynamic Cluster Query Optimization 281

Algorithm: Migration Algorithm

1. The process is activated by any high load processing
node when there exists a low load processing node.

2. For each subquery Qi in the ready queue, do
For each low load processing node j, do
Calculate cost increase 1Ci, j for migrating Qi to j

Find the node si, min with the minimum cost
increase 1Ci, min
If 1Ci, min < α, mark Qi as migratable,
otherwise it is non-migratable

3. Find the migratable subquery Qi with minimum cost
increased

4. Send a migration request message to processing
node si, min

5. If an accepted message is received,
Qi is migrated to node si, min

Else
Qi is marked as non-migratable

6. If processing node load level is still high
and there is a migratable subquery, go to step 3,
otherwise go to Subquery Partition.

Figure 9.14 Migration algorithm

in subquery allocation are not desirable because the processing node’s workloads
change time to time. A node that has a light load at the time of plan correction may
become heavily loaded shortly because of the arrival of new queries and reallocated
queries. The case of thrashing, that is, some subqueries are constantly reallocated
without actually being executed, must be avoided.

9.6.3 Partition

The partition process is invoked by a medium load processing node when there
is at least one low load processing node but no high load processing node. The
medium load node communicates with a set of selected low load nodes and waits
for a reply from the nodes willing to participate in parallel processing. Upon receipt
of an accept message, the processing node partitions the only subquery in its ready
queue and distributes it to the participating nodes for execution. The subquery is
performed when all nodes complete their execution.

The subquery parallelization proceeds in several steps as shown in Figure 9.15.
The first thing to note is that a limit is imposed on the number of processing nodes

282 Chapter 9 Parallel Query Scheduling and Optimization

Algorithm: Partition Algorithm

1. The process is activated by a medium load processing
node, when there are more than one low load
processing nodes (Note that a medium load node
is assumed to have only one ready subquery).
Let the subquery in ready queue be Q and initially
the parallel group GD 0.

2. Determine the maximum number of nodes to be
considered in parallel execution, i.e.,
KDnum_of_low_clusters/num_of_medium_clusters C 1;

3. For i D 0 to K do
Find a low load node with the largest relation
operand of Q and put the node into group G (if no
clusters have relation operand of Q, random
selection is made)

4. Sort the processing nodes selected in S in an
ascending order of the estimated complete time.

5. i D 1; T0 D initial execution time of Q

6. Estimate Q’s execution time Ti by using first i nodes in
G for parallel processing

7. If Ti < Ti�1, then i D i C 1; If i < K then go to step 6
8. Send parallel processing request to the first i nodes

in G
9. Distribute Q to these nodes that accept the request,

and stop

Figure 9.15 Partition algorithm

to be probed. When there is more than one medium load node, each of them may
initiate a parallelization process and therefore compete for low load nodes. To
reduce unsuccessful probing and to prevent one node obtaining all low load nodes,
the number of nodes to probe is chosen as K D num of low cluster

num of medium cluster C 1. Second,
a set of nodes called parallel group G has to be determined. Two types of nodes
are preferred for probing:

ž Nodes that have some or all operand objects of the subquery to be processed
since the data transmission required is small or not required, and

ž Nodes that are idle or have the earliest complete time for the current
subquery under execution because of a small delay to the start of parallel
execution

9.6 Dynamic Cluster Query Optimization 283

In the process, therefore, choose K low load nodes that have the largest amount
of operand data and put them in parallel group G. The processing nodes in G are
then sorted according to the estimated complete time. The execution time of the
subquery is calculated repeatedly by adding one processing node of G at a time for
processing the subquery until no further reduction in the execution time is achieved
or all clusters in G have been considered. The final set of processing nodes to be
probed is subsequently determined.

Once a subquery is assigned to more than one processing node, a parallel pro-
cessing method needs to be determined and used for execution. The selection of
the methods mainly depends on what relational operation(s) is involved in the sub-
query and where the operand data are located over the processing clusters. To
demonstrate the effect of the parallel methods, consider a single join subquery
as an example because it is one of the most time-consuming relational operations.

There are two common parallel join methods, simple join and hash join. The
hash join method involves first the hash partitioning of both join relations followed
by distribution of each pair of the corresponding fragments to a processing node.
The processing nodes then conduct join in parallel on the pair of the fragments
allocated. Assuming m nodes participate in join operation, i D 1; 2 : : : :; m, the
join execution time can then be expressed as

Tjoin D Tinit C max.T i
hash/ C δ

X
T i

data C max.T i
join/

where Tinit ; Thash; Tdata , and Tjoin are the times for initiation, hash partitioning,
data transmission, and local join execution, respectively. The parameter δ accounts
for the effect of the overlapped execution time between the data transmission and
local join processing and thus varies in the range (0,1). A simple partitioned join
first partitions one join relation into a number of equal-sized fragments, one for
a processing node (data transmission occurs only when a node does not have the
copy of the assigned fragment). The other join relation is then broadcasted to all
nodes for parallel join processing. Since the partitioning time is negligible, the
execution time of the join is given as

Tsimple join D Tinit C δ
X

T i
data C max.T i

local/

The use of the two parallel join methods depends on the data fragmentation and
replication as well as the ratio of local processing time to the communication time.
When the database relations are fragmented and the data transmission is relatively
slow, the simple partitioned join method may perform better than the hash parti-
tioned join method. Otherwise, the hash method usually outperforms the simple
method. For example, consider a join of two relations R and S using four pro-
cessing nodes. Assume that the relation R consists of four equal size fragments
and each fragment resides at a separate node, whereas S consists of two fragments
allocated at two nodes. The cardinality of both relations are assumed to be the
same, that is, jRj D jSj D k. According to the above cost model, the execution

284 Chapter 9 Parallel Query Scheduling and Optimization

times of the join with two join methods are given as

Tpart join D Tinit C jSjTdata C
� jRj

4
C jSj

�
Tjoin D Tinit C kTdata C 5

4
kTjoin

Thash join D Tinit C
� jRj

4
C jSj

2

�
Thash C 3

4
.jRj C jSj/Tdata C 1

4
.jRj C jSj/Tjoin

D Tinit C 3

4
kThash C 3

2
kTdata C 1

2
kTjoin

It can be seen that the simple partitioned join involves less data transmission
time since the relation R is already available at all processing nodes. However,
the local join processing time for the simple partitioned join is obviously larger
than the hash partitioned join. If we assume Thash D 1

4 Tjoin , the simple join will
be better than the hash join only when Tjoin < 1

2 Tdata , that is, data transmission
time is large compared with local processing time.

9.7 OTHER APPROACHES TO DYNAMIC QUERY
OPTIMIZATION

In dynamic query optimization, a query is first decomposed into a sequence of
irreducible subqueries. The subquery involving the minimum cost is then chosen to
be processed. After the subquery finishes, the costs of the remaining subqueries are
recomputed and the next subquery with the minimum cost is executed, and so forth.
Similar strategies were also used by other researchers for semijoin-based query
optimization. However, the drawback of such step-by-step plan formulation is that
the subqueries have to be processed one at a time and thus parallel processing may
not be explored. Moreover, choosing one subquery at a time often involves large
optimization overhead.

Query plan correction is another dynamic optimization technique. In this algo-
rithm, a static query execution plan is first formulated. During query execution,
comparisons are made on the actual intermediate result sizes and the estimates used
in the plan formulation. If the difference is greater than a predefined threshold, the
plan is abandoned and a dynamic algorithm is invoked. The algorithm then chooses
the remaining operations to be processed one at a time. First, when the static plan is
abandoned, a new plan for all unexecuted operations is formulated. The query exe-
cution then continues according to the new plan unless another inaccurate estimate
leads to abandonment of the current plan. Second, multiple thresholds for correc-
tion triggering are used to reduce nonbeneficial plan reformulation. There are three
important issues regarding the efficiency of midquery reoptimization: (i) the point
of query execution at which the runtime collection of dynamic parameters should
be made, (ii) the time when a query execution plan should be reoptimized, and
(iii) how resource reallocation, memory resource in particular, can be improved.

Another approach is that, instead of reformulating query execution plans, a set
of execution plans is generated at compile time. Each plan is optimal for a given set

9.8 Summary 285

of values of dynamic parameters. The decision about the plan to be used is made
at the runtime of the query.

Another approach to query scrambling applied dynamic query processing is to
tackle a new dynamic factor: unexpected delays of data arrival over the network.
Such delays may stall the operations that are read-to-execute or are already under
execution. The query scrambling strategy attempts to first reschedule the execution
order of the operations, replacing the stalled operations by the data-ready ones. If
the rescheduling is not sufficient, a new execution plan is generated. Several query
scrambling algorithms have been reported that deal with different types of data
delays, namely, initial delays, bursty arrival, and slow delivery.

Unlike query scrambling, dynamic query load balancing attempts to reschedule
query operations from heavily loaded sites to lightly loaded sites whenever per-
formance improvement can be achieved. A few early works studied dynamic load
balancing for distributed databases in the light of migrating subqueries with mini-
mum data transmission overhead. However, more works have shifted their focus to
balancing workloads for parallel query processing on shared-disk, shared-memory,
or shared-nothing architectures. Most of the algorithms were proposed in order to
handle load balancing at single operation level such as join. Since the problem of
unbalanced processor loads is usually caused by skewed data partitioning, a num-
ber of specific algorithms were also developed to handle various kinds of skew.

Another approach is a dynamic load balancing for a hierarchical parallel
database system NUMA. The system consists of shared-memory multiprocessor
nodes interconnected by a high-speed network and therefore, both intra- and
interoperator load balancing are adopted. Intraoperator load balancing within each
node is performed first, and if it is not sufficient, interoperator load balancing
across the nodes is then attempted. This approach considers only parallel hash
join operations on a combined shared-memory and shared-nothing architecture.
Query plan reoptimization is not considered.

9.8 SUMMARY

Parallel query optimization plays an important role in parallel query processing.
This chapter basically describes two important elements, (i) subquery scheduling
and (ii) dynamic query optimization.

Two execution scheduling strategies for subqueries have been considered, par-
ticularly serial and parallel scheduling. The serial scheduling is appropriate for
nonskewed subqueries, whereas the parallel scheduling with a correct processor
configuration is suitable for skewed subqueries. Nonskew subqueries are typi-
cal for a single class involving selection operation and using a round-robin data
partitioning. In contrast, skew subqueries are a manifest of most path expression
queries. This is due to the fluctuation of the fan-out degrees and the selectivity
factors.

For dynamic query optimization, a cluster architecture is used as an illustration.
The approach deals in an integrated way with three methods, query plan correc-
tion, subquery migration, and subquery partition. Query execution plan correction

286 Chapter 9 Parallel Query Scheduling and Optimization

is needed when the initial processing time estimate of the subqueries exceeds a
threshold, and this triggers a better query execution plan for the rest of the query.
Subquery migration happens when there are high load processing nodes whose
workloads are to be migrated to some low load processing nodes. Subquery par-
tition is actually used in order to take advantage of parallelization, particularly
when there are available low load processing nodes that like to share some of the
workloads of medium load processing nodes.

9.9 BIBLIOGRAPHICAL NOTES

A survey of some of the techniques for parallel query evaluation, valid at the time,
may be found in Graefe (1993). Most of the work on parallel query optimization
has concentrated on query/operation scheduling and processor/site allocation, as
well as load balancing. Chekuri et al. (PODS 1995) discussed scheduling prob-
lems in parallel query optimization. Chen et al. (ICDE 1992) presented scheduling
and processor allocation for multijoin queries, whereas Hong and Stonebraker
(SIGMOD 1992 and DAPD 1993) proposed optimization based on interoperation
and intraoperation for XPRS parallel database. Hameurlain and Morvan (ICPP
1993, DEXA 1994, CIKM 1995) also discussed interoperation and scheduling of
SQL queries. Wolf et al. (IEEE TPDS 1995) proposed a hierarchical approach to
multiquery scheduling.

Site allocation was presented by Frieder and Baru (IEEE TKDE 1994), whereas
Lu and Tan (EDBT 1992) discussed dynamic load balancing based on task-oriented
query processing. Extensible parallel query optimization was proposed by Graefe
et al. (SIGMOD 1990), which they later revised and extended in Graefe et al.
(1994). Biscondi et al. (ADBIS 1996) studied structured query optimization, and
Bültzingsloewen (SIGMOD Rec 1989) particularly studied SQL parallel optimiza-
tion.

In the area of grid query optimization, most work has focused on resource
scheduling. Gounaris et al. (ICDE 2006 and DAPD 2006) examined resource
scheduling for grid query processing considering machine load and availability. Li
et al. (DKE 2004) proposed an on-demand synchronization and load distribution
for grid databases. Zheng et al. (2005, 2006) studied dynamic query optimization
for semantic grid database.

9.10 EXERCISES

9.1. What is meant by a phase-oriented paradigm in a parallel query execution plan?

9.2. The purpose of query parallelization is to reduce the height of a parallelization tree.
Discuss the difference between left-deep/right-deep and bushy-tree parallelization,
especially in terms of their height.

9.3. Resource division or resource allocation is one of the most difficult challenges in paral-
lel execution among subqueries. Discuss the two types of resource division and outline
the issues each of them faces.

9.10 Exercises 287

9.4. Discuss what will happen if two nonskewed subqueries adopt a parallel execution
between these two subqueries, and not a serial execution of the subqueries.

9.5. Explain what dynamic query processing is in general.

9.6. How is cluster (shared-something) query optimization different from shared-nothing
query optimization?

9.7. Discuss the main difference between subquery migration and partition in dynamic
cluster query optimization.

9.8. Explore your favorite DBMS and investigate how the query tree of a given user query
can be traced.

Part IV

Grid Databases

Chapter10

Transactions in Distributed
and Grid Databases

The architecture of distributed computing has evolved rapidly during the last
three decades. At the same time, the nature of applications using computing, and
the amount of data being produced and stored, have also increased dramatically.
Applications are already producing terabytes of data each day and need to store up
to petabytes of data. The latest computing infrastructural development is moving
toward Grid computing. Grid infrastructure aims to provide widespread access to
both autonomous and heterogeneous computing and data resources.

Advanced scientific and business applications are data intensive. These applica-
tions are collaborative in nature, and data is collected at geographically distributed
sites. Databases have an important role in storing, organizing, accessing, and manip-
ulating data in numerous applications, and its importance cannot be underestimated.
The traditional distributed database management systems assume a homogeneous
and tightly synchronized (with help of global management layer) working environ-
ment. Individual sites in Grid architecture are geographically distributed and belong
to independent institutions. Design decisions of individual databases are completely
dependent on the owning institution, unlike traditional distributed database systems
where the global management system is built at the top of all participating sites.
Thus the scaling of traditional distributed databases is also a major concern because
of tight integration among participating database sites. The global behavior of Grid
databases is inherently heterogeneous, autonomous, asynchronous, and dynamic.

In data management, especially in a distributed environment, the most impor-
tant requirement is to maintain the correctness of data. In an asynchronous Grid
environment, the chances of data being corrupted are high because of the lack of
a global management system. Various relaxed consistency requirements have been

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

291

292 Chapter 10 Transactions in Distributed and Grid Databases

proposed for data management in Grids. High-precision data-centric scientific appli-
cations cannot tolerate any inconsistency. This chapter focuses on maintaining the
consistency of data in presence of write transactions in Grids.

Section 10.1 outlines the design challenges of grid databases. Section 10.2
discusses distributed and multidatabase systems and their suitability for the Grids.
Section 10.3 presents the fundamental definition of the terms related to transaction
management. Properties of transactions are also presented in Section 10.4.
Section 10.5 examines various transaction management models in different
distributed database systems. Section 10.6 summarizes the requirements for the
Grids. Section 10.7 discusses the concurrency control protocols followed by atomic
commit protocols in Section 10.8. Section 10.9 describes the replica synchronization
protocols.

10.1 GRID DATABASE CHALLENGES

In this section, a sample application is outlined to show that applications with high
data consistency are also required in a Grid environment.

EXAMPLE

Consider a group of people gathering data to study earth movement or weather forecasting.
The group is a collaboration of a number of diverse institutes and universities from all over
the globe. Data for such a project can best be collected locally, but to run an experiment, it
is necessary to access data collected by other organizations situated at globally distributed
sites. Hence, individual organizations collect data in their databases (or other data source)
locally and are connected to other organizations by the Grid infrastructure. Considering the
huge amount of data gathered, databases are replicated at participating database sites for
performance reasons. It is assumed that security and authentication requirements are taken
care of by services provided by Grid middleware, and the correctness of data is the main
focus. If any site runs an experiment and forecasts a cyclone or earthquake, then the result
must be updated in, and by, all the participants in a synchronous manner. If the result of
the forecast is not strictly serialized between sites, then other database sites may override or
may never know about the forecast, which may lead to disaster.

From the above example, it is clear that certain applications need strict synchro-
nization and a high level of data consistency within the replicated copies of the data
as well as in the individual data sites. Considering the requirements of different
applications, the following design challenges are identified from the perspective of
data consistency:

ž Transactional requirements may vary depending on the application require-
ment, for example, the applications can have read-only queries or write trans-
actions. On the one hand, read queries will not corrupt the data and thus can
be executed in any order, while on the other hand, write transactions need to
be scheduled carefully so that the distributed data is not corrupted.

10.2 Distributed Database Systems and Multidatabase Systems 293

ž Since the individual data sites are in different administrative domains and are
autonomous, the resulting sites are heterogeneous. Heterogeneity can occur
at various levels, including transaction and data models. The effect of hetero-
geneity in scheduling policies of sites and in maintaining correctness of data
is a major design challenge.

ž Traditional distributed DBS uses either centralized or decentralized
consensus-based (e.g., 2-phase commit) policies for transaction schedul-
ing. How do these scheduling schemes fit into globally distributed and
independently managed sites in the Grid infrastructure?

ž Looking at the nature of applications and the vastness of the infrastructure,
replication of data is an important feature from the performance perspective.
How does data replication affect the data consistency?

10.2 DISTRIBUTED DATABASE SYSTEMS AND
MULTIDATABASE SYSTEMS

Management of distributed data has evolved with continuously changing comput-
ing infrastructures. Many transaction models are available for different distributed
architectures. In a broad sense, distributed architecture that leads to different trans-
action models can be classified as follows:

ž Homogeneous distributed architecture: Distributed database systems
ž Heterogeneous distributed architecture: Multidatabase systems.

Although many different protocols have been proposed for each individual
architecture, the underlying architectural assumption is the same for all protocols
in one category. For example, all protocols in the homogeneous distributed
architecture assume the existence of global information such as global logs; or all
protocols in the heterogeneous distributed architecture assume the existence of a
two-level (one local and another global) system.

This section gives an overview of distributed and multidatabase systems, and
evaluates their suitability for the Grids.

10.2.1 Distributed Database Systems

Distributed database systems store data at geographically distributed sites, but the
distributed sites are typically in the same administrative domain. For example,
an organization has four branch offices located in four different cities, and they
want to generate a combined report. In the above scenario, technology and policy
decisions still lie in one administrative domain. Thus the design strategy typically
used is a bottom-up strategy. The basic idea is that the communication between
sites is done over a network instead of through shared memory. One of the major
advantages of using distributed processing of data is to effectively manage a large
volume of data by using a well-known divide-and-conquer rule. It has been shown

294 Chapter 10 Transactions in Distributed and Grid Databases

that processing bigger tasks in smaller, more manageable units has cost benefits in
software development. The concept of a distributed DBMS is best suited to indi-
vidual institutions operating at geographically distributed locations, for example,
banks, universities, etc.

Distributed Database Architectural Model

A distributed database system in general has three major dimensions: (i) autonomy,
(ii) distribution, and (iii) heterogeneity.

Autonomy. When a database is developed independently of other DBMS, it is
not aware of design decisions and control structures adopted at those sites. Thus
a top-level management system is required to manage these databases. Individual
databases still have their identity and are not affected by joining or leaving the
global structure. The autonomy dimension deals with distribution of control, not
data. Different levels of autonomy have been identified as tight integration, semi-
autonomous, and total isolation. Total isolation leads to multidatabase systems.

Distribution. The distribution dimension deals with the physical distribution of
data over multiple sites while still maintaining the conceptual integrity of the data.
Two major types of distribution have been identified: client/server distribution and
peer-to-peer distribution. In client/server distribution, data managing and process-
ing responsibility is delegated only to those servers and clients that have the user
interface. In peer-to-peer distribution strategy, each site has full database func-
tionality and can communicate with other peers for transaction execution or query
processing.

Heterogeneity. Heterogeneity may occur at the hardware as well as data/
transaction model level. Heterogeneity is one of the important factors that needs
careful consideration in a distributed environment because any transaction that
spans more than one database may need to map one data/transaction model to
another. Although theoretically the heterogeneity dimension has been identified,
a lot of research work and applications have focused only on the homogeneous
environment.

Distributed Database Working Model

The architecture shown in Figure 10.1 is the general architecture that is used in
the literature in one form or another. Transactions (T1; T2; : : : Tn) from different
sites are submitted to the global transaction monitor (GTM). The global data dic-
tionary is used to build and execute the distributed queries. Each subquery is then
transported to local transaction monitors via the communication network, checked
for local correctness, and then passed down to the local database management sys-
tem (LDBMS). The results are sent back to the GTM. Any potential problem, for
example, global deadlock, is resolved by GTM after gathering information from
all the participating sites.

10.2 Distributed Database Systems and Multidatabase Systems 295

T1 T2 Tn

LDB–Local Database
LDBMS–Local Database Management Systems

–Distributed DBMS boundary
T1, T2,… Tn–Transaction originated at different sites

Global Transaction
Monitor

Communication Interface

…

Global Data
Dictionary

LDBMS 1 LDBMS 2 LDBMS n

LDB LDB LDB

…

…

Local Transaction
Monitor 1

Local Transaction
Monitor 2

Local Transaction
Monitor n

Figure 10.1 A conceptual schema of distributed database systems

The GTM has the following components: global transaction request module,
global request semantic analyzer module, global query decomposer module, global
query object localizer module, global query optimizer module, global transaction
scheduler module, global recovery manager module, global lock manager module,
and transaction dispatcher module.

The global transaction request module is responsible for receiving the
distributed transactions from different sites and putting them in the queue for
processing. The semantic analyzer then consults the global data dictionary to
verify the semantics of the transaction. The semantically correct query is then
divided into subtransactions with the query decomposer module, according to the
fragments of the distributed database, so that they can be sent to the respective
remote sites. The query decomposer works together with the query object localizer
to build a simple relational algebra query that contains communication primitives
that will aid in moving around the intermediate table relations used to solve the
transaction. Global query optimization techniques are then applied, removing any
redundant predicates. Information from the global data dictionary is used for this
purpose.

The first five components are mostly query-based, while the last four modules
deal with transactions and maintain the consistency of the data. An optimized
query is submitted to the global transaction scheduler. The transaction scheduler
is responsible for managing the correct serialization order of multiple concurrent
transactions. The global scheduler achieves this with the help of the global
recovery manager and the global lock manager module. The global recovery

296 Chapter 10 Transactions in Distributed and Grid Databases

manager maintains the global transaction log. The global transaction log maintains
the before and after images of database objects. It also manages the commit and
abort list that helps the system to recover under failure (or transaction abort)
conditions and is very similar to a centralized log.

The global lock manager maintains the list of all the locks allocated to dif-
ferent data objects residing at multiple sites. This information is maintained in
the global lock table. The transaction scheduler and concurrency control protocols
use information stored in the global lock table. The global lock table stores the
type of operation being executed (read/write) against that transaction ID and uses
this information to schedule operations from different transactions in a serializable
manner. Lock information is also helpful in a deadlock situation to decide which
transaction to abort. This lock-based concept is equally applicable for other con-
currency control protocols, such as timestamp ordering and optimistic protocols.
The last component of the global monitor is the transaction dispatcher that trans-
ports query fragments to the distributed sites and accepts the results. Messages like
commit/abort can also be passed back and forth from the distributed sites.

Suitability of Distributed DBMS in Grids

The major advantages offered by distributed database systems are transparent data
access of physically distributed data, replicating the data at local sites for efficient
access, and fast processing of data by divide-and-conquer technique, and at times
distributed processing is computationally and economically cheaper. It is easy to
monitor the modular growth of systems rather than monitoring one big system.
Although distributed databases have numerous advantages, their design presents
many challenges to developers.

Partitioning and Replication. Data partitioning is one of the major factors that
affects the performance of distributed database systems. The database is divided
into a number of disjoint partitions, each of which is placed at a different site.
Major design issues include fragmenting the database and distributing it optimally.
Replication may be used to increase the access efficiency of the data. If all parti-
tions are stored at each site, it is known as full replication, while partial replication
is the storing of each partition at more than one site, but not at all sites.

The implementation of concepts of distributed DBMS is not practical in the Grid
environment because of the following challenges. By examining the conceptual
schema, it is noted that the distributed DBMS design has a global data dictionary
and a transaction monitor. All design requirements of the database system are avail-
able to the designer before the system is built. This encourages a bottom-up design
strategy. Under these circumstances, as the size of the database grows, it becomes
increasingly difficult to manage huge amounts of global information such as the
global lock table, global directory, etc.

Another challenge is that the distributed DBMS model assumes that the use
of uniform protocols among distributed sites, such as concurrency control proto-
cols, will require that all database sites support a locking protocol (or timestamp or

10.2 Distributed Database Systems and Multidatabase Systems 297

optimistic). This is undesirable in the Grid architecture as individual sites have
different administrators and they may choose to implement different protocols
independently. That having been said, however, distributed DBMSs will play an
important role in global Grid architecture.

10.2.2 Multidatabase Systems

In a broader sense, a multidatabase system can be defined as an interconnected
collection of autonomous databases. The fundamental concept of a multidatabase
system is autonomy. Autonomy refers to the distribution of control and indicates
the degree to which individual DBMSs can operate independently. Levels of auton-
omy are as follows:

Design Autonomy: Individual DBMSs can use the data models and transaction
management techniques without intervention of any other DBMS.

Communication Autonomy: Each DBMS can decide on the information it
wants to provide to other databases.

Execution Autonomy: Individual databases are free to execute the transactions
according to their scheduling strategy.

Multidatabase systems have a combined top-down and bottom-up design strat-
egy, as individual sites are considered to be autonomous and evolve independently
(top-down). On the other hand, a global layer of multidatabase management sys-
tem (MDMS) has to be designed (bottom-up) for a specific set of databases. The
component-based architectural model of MDMS manages full-fledged individual
DBMSs. The MDMS allows users to access various independent databases with
the help of a top-layer management system (Fig. 10.2).

Multidatabase Architecture

Figure 10.2 shows the general architecture of a multidatabase system. Each
database in a multidatabase environment has its own transaction processing com-
ponents such as a local transaction manager, local data manager, local scheduler,
etc. Transactions submitted to individual databases are executed independently,
and the local DBMS is completely responsible for their correctness. MDMS is not
aware of any local execution at the local database. A global transaction that needs
to access data from multiple sites is submitted to MDMS, which in turn forwards
the request to, and collects the result from, the local DBMS on behalf of the global
transaction. The components of MDMS are called global components and include
the global transaction manager, global scheduler, etc.

Suitability of Multidatabase in Grids

Architecturally, multidatabase systems are close to Grid databases as individual
database systems are autonomous. But the ultimate applications’ requirements sep-
arate the two database systems. Local database systems in multidatabase systems

298 Chapter 10 Transactions in Distributed and Grid Databases

Global
Subtransaction 1

Global
Subtransaction 2

Multidatabase/
Global DBMS

Global
Transaction

Manager

Global
Access
Layer

Global Data
Dictionary

Local DBMS n

Local
Transaction

Manager

Local
Access
Layer

...

Local
Database n

Local DBMS 1

Local
Transaction

Manager

Local
Access
Layer

Local
Database 1

Local
Transaction

Global
Transaction

Figure 10.2 Multidatabase architecture

are not designed for sharing the data. Hence, issues related to efficient sharing of
data between sites, for example, replication, are not addressed in multidatabase
systems.

The multidatabase system is the preferred option when individual databases
have to be combined logically for specific purposes and a short duration. If a large
volume of data has to be managed and data distribution is an important factor
in performance statistics, then a multidatabase may not be the preferred design
option.

The design strategy of a multidatabase is a combination of top-down and
bottom-up strategies. Individual database sites are designed independently, but
the development of MDMS requires an underlying working knowledge of sites.
Thus virtualization of resources is not possible in multidatabase architecture.
Furthermore, maintaining consistency for global transactions is the responsibility
of MDMS. This is undesirable in a Grid setup.

10.3 Basic Definitions on Transaction Management 299

Depending on the level of heterogeneity and the type of underlying protocols
used by individual participating sites, the top layer of MDMS can change signifi-
cantly. Although the multidatabase design supports evolution and collaboration of
autonomous databases, the MDMS layer is specific to the constituting databases.
Thus, adding and removing participants in the multidatabase is not transparent and
needs modification in the MDMS layer, a scenario not suitable for Grid architec-
ture. Furthermore, a distributed multidatabase is required to replicate the MDMS
layer at each local DBMS site that participates in the multidatabase.

10.3 BASIC DEFINITIONS ON TRANSACTION
MANAGEMENT

Transactions, interleaving of operations in different transactions (schedule or
history) and correctness criteria of schedules, such as serializability, are defined
below.

Definition 10.1 (Transaction): A transaction Ti is a set of read (ri), write (wi),
abort (ai), and commit (ci). Ti is a partial order with ordering relation �i where:

(1) Ti � fri [x]; wi [x]jx is a data itemg [fai ; ci g
(2) ai 2 Ti iff ci =2 Ti

(3) If t is ai or ci , for any other operation p 2 Ti ; p �i t

(4) If ri [x], wi [x] 2 Ti , then either ri [x] �i wi [x] or wi [x] �i ri [x]

Condition 1 states that transactions have read and write operations followed
by a termination condition (commit or abort) operation. Condition 2 says that a
transaction can have only one termination operation, namely, either commit or
abort, but not both. Condition 3 defines that the termination operation is the last
operation in the transaction. Finally, condition 4 defines that if the transaction reads
and writes the same data item, it must be strictly ordered.

A history or schedule indicates the order in which the operations of the transac-
tions were executed relative to each other. Formally, let T D fT1; T2; : : : Tng be a
set of transactions.

Definition 10.2 (Schedule or history): A complete history H over T is a partial
order with ordering relation �H where:

(1) H D [n
iD1Ti ;

(2) �H � [n
iD1 �i ; and

(3) For any two conflicting operations p; q 2 H , either p �H q or q �H p

A pair (opi , op j) is called conflicting pair iff (if and only if):

(1) Operations opi and op j belong to different transactions,

(2) Two operations access the same database entity, and

(3) At least one of them is a write operation.

300 Chapter 10 Transactions in Distributed and Grid Databases

Condition 1 of definition 10.2 states that a history H represents the execution
of all operations of the set of submitted transactions. Condition 2 emphasizes that
the execution order of the operations of an individual transaction is respected in
the schedule. Condition 3 is clear by itself.

A history represents concurrent execution of the transactions with interleaved
operations. Interleaving of operations from different transactions may lead to cor-
ruption of data. Hence, the history must follow certain rules that will ensure the
consistency of data being accessed (read or written) by different transactions. The
theory is popularly known as serializability theory. The basic idea of serializabil-
ity theory is that concurrent transactions are isolated from one another in terms
of their effect on the database. In theory, all transactions, if executed in a serial
manner, that is, one after another, will not corrupt the data.

Definition 10.3 (Serial history): A database history Hs is serial iff

.9p 2 Ti ; 9q 2 Tj such that p �Hs q/ then .8r 2 Ti ; 8s 2 Tj ; r �Hs s/

Definition 10.3 states that if any operation, p, of a transaction Ti precedes any
operation, q , of some other transaction Tj in a serial history Hs , then all operations
of Ti must precede all operations of Tj in Hs . Serial execution of transactions
is not feasible for performance reasons; hence, the transactions are interleaved.
The serializability theory ensures the correctness of data if the transactions are
interleaved. A history is serializable if it is equivalent to a serial execution of the
same set of transactions.

Definition 10.4 (Serializable history): A history H is serializable (SR) if its com-
mitted projection, C.H), is equivalent to a serial execution Hs .

Equivalence (�) of two histories H and H1 is defined as follows:

(1) Both histories should be defined over the same set of transactions and have
the same operations.

(2) Both H and H 0 order conflicting operations of nonaborted transactions in
the same way. For example, for any two conflicting operations pi 2 Ti and
q j 2 Tj , where ai ; a j =2 H , if pi �H q j then pi �H 0 q j .

A serialization graph (SG) is the most popular way to examine the serializability
of a history. A history will be serializable if, and only if (iff) the SG is acyclic.

Definition 10.5 (Serialization graph): The SG for history H over a set of transac-
tions T D fT1; T2; : : : Tng, denoted SG(H), is a directed graph whose nodes are the
transactions in T that are committed in H and whose edges are all Ti ! Tj such
that one of Ti ’s operations precedes and conflicts with one of Tj ’s operations in H .

Consider the following transactions:

T1 : r1[x]w1[x]r1[y]w1[y]c1

T2 : r2[x]w2[x]c2

10.4 Acid Properties of Transactions 301

T1 T2

Conflict r2[x] w1[x]

Conflict w1[x] w2[x] Figure 10.3 A conflict SG for history H

Consider the following history:

H D r1[x] r2[x] w1[x] r1[y] w2[x] w1[y]c1c2

The SG for the history, H , is shown in Figure 10.3.

The SG in Figure 10.3 contains a cycle; hence, the history H is not serializable.
From the above example, it is clear that the outcome of the history depends only on
the conflicting transactions. Ordering of nonconflicting operations either way has
the same computational effect. View serializability has also been proposed in addi-
tion to conflict serializability for maintaining correctness of the data. But from a
practical point of view, almost all concurrency control protocols are conflict-based.

10.4 ACID PROPERTIES OF TRANSACTIONS

The ultimate goal of a transaction is to preserve the consistent state of the database
after its execution (successful or unsuccessful). The database may be in a tem-
porarily inconsistent state during the execution of the transaction. If the transaction
executes successfully, then the effects of the transaction are made permanent in the
database and if the transaction fails, then the database regains its previous con-
sistent state. Transaction management protocols ensure that the database is in a
consistent state in the presence of concurrent accesses or failures. A generic trans-
action model is shown in Figure 10.4. Thus the transaction management protocols
should ensure consistency for successfully completed transactions, and reliability
for unsuccessful transactions.

Transaction T begins Transaction T ends

Database in
consistent state

Database in
consistent state

Possible inconsistent state of
database during transaction execution

Figure 10.4 A generic transaction model

302 Chapter 10 Transactions in Distributed and Grid Databases

The concurrent execution of transactions may encounter problems such
as dirty-read problem, lost update problem, incorrect summary problem, and
unrepeatable read problem that may corrupt the data in the database. As these are
standard database problems, only the lost update problem is presented here for the
sake of brevity.

The lost update problem occurs when two transactions access the same data
item in the database and the operations of the two transactions are interleaved in
such a way that the database is left with incorrect value. Suppose data item D1

is accessed by two simultaneously executing transactions, T1 and T2. The initial
value of D1 D 100:

Let us assume that D1 is a bank account, with a balance of 100 dollars, and
two transactions are modifying the account concurrently: One is depositing 50
dollars, and the other is withdrawing 50 dollars. Correct execution for this scenario
will leave the account balance of 100 dollars. After the execution of the schedule
with interleaving as shown in Figure 10.5, the account balance will be 150 dollars.
This is because the update done by T1 that had withdrawn 50 dollars from the
account was lost. Concurrency control algorithms are used in order to avoid such
an incorrect interleaving.

To obtain consistency and reliability, a transaction must have the following four
properties, which are known as ACID properties.

(1) Atomicity

(2) Consistency

(3) Isolation

(4) Durability

The atomicity property is also known as the all-or-nothing property. This
ensures that the transaction is executed as one unit of operations, that is, either all
of the transaction’s operations are completed or none at all. Thus if the transaction
execution is interrupted by a failure, the transaction management protocol decides

T1 T2

r1[D1]

D1 := D1 − 50

w1[D1]

D1 := D1 + 50

w1[D1]

r1[D1]

T
im

e

Figure 10.5 Lost update problem

10.5 Transaction Management in Various Database Systems 303

whether to undo all operations of the transaction executed thus far or complete the
remaining operations of the transaction.

A transaction will preserve the consistency, if complete execution of the trans-
action takes the database from one consistent state to another. A transaction is a
program or set of instructions. A database programmer coding these instructions
should ensure that if the database is in a consistent state before executing the trans-
action, it will also be in a consistent state after completion of the transaction.

The isolation property requires that all transactions see a consistent state of the
database. It ensures that concurrent transactions do not reveal their intermediate
inconsistent results to each other. Four levels of isolation include: at level 0 isola-
tion, a transaction does not overwrite dirty data of other transactions (i.e., no dirty
read problem); at level 1 isolation, transactions do not have lost update problem;
at level 2 isolation level, transactions do not have a lost update and dirty read prob-
lem. Finally, at level 3 isolation (true isolation), in addition to level 2 properties,
other transactions do not dirty any data read by a transaction before it completes
its execution (i.e., no unrepeatable read problem).

The durability property of the database is responsible for ensuring that once
the transaction commits, its effects are made permanent within the database. The
results of the committed transactions will survive any subsequent system failure.
Recovery protocols are responsible for ensuring the durability property.

The above discussion applies to both a centralized database system and a dis-
tributed database system.

10.5 TRANSACTION MANAGEMENT IN VARIOUS
DATABASE SYSTEMS

This section discusses how the ACID properties are obtained in various DBMSs.
These strategies are critically analyzed from the perspective of Grid database
systems.

10.5.1 Transaction Management in Centralized
and Homogeneous Distributed Database Systems

Transaction management in centralized DBMSs and homogeneous distributed
DBMSs are similar in the way that both database management systems operate
under a single administrative domain. This discussion is true for centralized and
distributed DBMSs, because these DBMSs use a centralized management system
and are in the same administrative domain.

Lock tables, timestamps, commit/abort decisions, hardware, software, etc. can
be easily shared in centralized and homogeneous DBMSs. A central management
system is implemented to maintain the ACID properties of the transaction. The
management system is known as the global transaction manager (GTM) in a dis-
tributed database system. The transactions are submitted to the GTM, and results
are returned to the database site via the GTM. The transaction properties are dis-
cussed below for homogeneous distributed DBMSs.

304 Chapter 10 Transactions in Distributed and Grid Databases

Atomicity

For a global transaction, the atomicity property requires that the transaction suc-
ceed at all sites or abort at all sites. All sites participate and collaborate with
the GTM to help achieve the atomicity. Sites can communicate with the GTM
or with other sites synchronously to achieve the uniform global decision. Thus
consensus-based protocols are implemented to achieve atomicity in homogeneous
distributed DBMS.

Popularly, a prepare-to-commit message is sent to the GTM to help achieve the
consensus. After sending the prepare message, the local transaction manager can-
not make a decision. The prepare-to-commit operation may force the site to hold
the resources for an unspecified period of time. 2PC is implemented to reach an
atomic decision. 2PC is a blocking protocol, which is one of the main disadvan-
tages. Various commit protocols for homogeneous distributed DBMS have been
proposed, but essentially all of these commit protocols require the existence of
GTM and are consensus-based, and not applicable in a Grid database environment.

Consistency

The local transaction managers are responsible for maintaining the consistency
of data in individual databases. Consistency of the global transaction is enforced
in the GTM. The global data dictionary, global lock table, global logs, and other
information required to maintain the global consistency are stored in the GTM.
Implementation of GTM in a homogeneous distributed DBMS is easy because all
databases are in a single administrative domain. Thus the GTM can be designed
in a bottom-up fashion to prevent any consistency anomalies being introduced by
global transactions.

The sites in a homogeneous distributed DBMS are tightly coupled and can com-
municate synchronously. This makes the implementation of the GTM easy and
feasible in homogeneous systems. Concurrency control protocols are responsible
for ensuring consistency. Concurrency control protocols such as the locking proto-
col use the global lock table stored at the GTM to ensure the consistency property.

Isolation

The isolation property requires that an executing transaction cannot reveal its inter-
mediate results to other transactions before its completion. Enforcing the isolation
property helps to prevent lost update and cascading abort anomalies. The isolation
property is directly related to the consistency of the database and is addressed by
concurrency control protocols. Serializability is the most widely accepted correct-
ness criterion for ensuring transaction isolation. Serializability requires that the
effects of concurrently executing a set of transactions are equivalent to some serial
execution over the same set of transactions. Concurrency control protocols are
broadly classified into pessimistic and optimistic categories. Mainly, two types of
concurrency control algorithms are proposed: (i) locking and (ii) timestamp order-
ing (TO). In distributed database systems, global transactions will access multiple

10.5 Transaction Management in Various Database Systems 305

database sites. Thus global serializability is used as the concurrency control
criterion.

Locking protocols may lead to deadlocks. Particularly in distributed databases,
global deadlocks can occur. Distributed deadlocks are identified and resolved with
the use of a global wait-for-graph, constructed by using information available in
the global lock table. From this perspective, all the serializability algorithms (con-
currency control protocols) are centralized in nature, as they need to access the
information stored in the GTM. Furthermore, to maintain global serializability, the
global serializability algorithm must be aware of the global as well as local trans-
actions executing at all sites. This is not feasible in a Grid environment because of
the autonomy of sites.

Durability

Durability is the property that ensures that results of the committed transactions are
made permanent in the database. The effects of the transactions will sustain any
subsequent failure. Every individual database site has a local recovery manager
(LRM). The LRM must maintain some information about the database state. This
information is used during failure recovery. Each write transaction updates a log
file, which will help the LRM during the recovery process to restore the database
state to what it was before failure. The log file maintains the before-image and
after-image of all write transactions. Recovery algorithms are based on two main
types of updating: in-place updating and out-of-place updating. In-place updating
directly changes the value of the data item in the database; as a result, the previous
database value is lost. On the other hand, out-of-place updating maintains the new
value separately. Write-ahead logging is used to store the before- and after-image
of the data item in the log. The before-image facilitates the Undo operation and
the after-image facilitates the Redo operations to restore the stable database state
before system failure.

Recovery of global transactions needs to access multiple sites and also the
information stored in the global recovery manager. Thus the recovery of global
transactions is centralized and uses global information. In a Grid environment,
global information such as the global recovery manager, global logs, etc. is absent,
thereby making failure of recovery in a Grid environment a challenging issue.

10.5.2 Transaction Management in Heterogeneous
Distributed Database Systems

The discussion in this section is especially relevant for multidatabase systems.
Heterogeneous distributed DBMSs emerge because of the collaboration of
pre-existing, autonomous database systems. They are commonly known as mul-
tidatabase systems. These DBMSs clearly distinguish between local transactions
and global transactions. Local and global transactions are used in the same
sense as those of homogeneous DBMSs, that is, a local transaction accesses the
data from a single DBMS and a global transaction accesses data from multiple

306 Chapter 10 Transactions in Distributed and Grid Databases

DBMSs. Transaction management in the heterogeneous DBMS is hierarchical.
A local transaction manager (LTM) is responsible for correct scheduling of all
local transactions and the subtransactions of the global transactions executing at
its site. The LTM ensures serializable execution at that individual database site.

The global software layer (multidatabase management system) manages global
transactions and ensures global serializability. The global serializability criterion
guarantees the correct concurrent execution of global transactions. Global serial-
izability requires that the LTMs at all database sites, where the subtransactions
of the global transactions are executing, serialize the subtransactions in the same
way. Unlike homogeneous distributed DBMS, heterogeneous DBMS is collection
of independent DBMS. Autonomy of sites is preserved in such a collection. Thus,
the information available at one local DBMS cannot be shared with other local
DBMSs or the global DBMS. Maintaining transaction properties in the heteroge-
neous environment is more complicated than for its homogeneous counterpart. The
transaction properties are discussed below for heterogeneous distributed DBMS.
The terms “heterogeneous DBMSs” and “multidatabase systems” are used inter-
changeably. The transaction properties are addressed below:

Atomicity

In the multidatabase environment, the participating sites are autonomous and the
DBMS maintains complete control over the databases. Thus the decision to com-
mit/abort the local transactions and subtransactions of the global transaction com-
pletely depend on the LTM. The GTM of multi-DBMS is unaware of existence
of any local transaction. To address such a situation, a top-level global manage-
ment layer is designed and implemented. This layer is known as a multidatabase
management system (MDBS). The MDBS consists of a GTM and a set of servers
or agents. Servers are associated with each local DBMS. A global transaction is
submitted to the MDBS, and thus it is the responsibility of the GTM to correctly
schedule the global transactions.

The prepare-to-commit operation cannot be implemented in the multidatabase
environment, because it holds the local resources for some external process, which
interferes with the local autonomy of the sites. Autonomy is one of the prime
requirements of multidatabase systems, and cannot be compromised. That having
been said, there is no standard position accepted by the research community
on whether or not to support prepare-to-commit operation. Nevertheless, all
multidatabase systems need a global management layer (like homogeneous
DBMS). The MDMS software varies with the different composition of the
multidatabases. Thus it is difficult to virtualize multidatabase systems (as required
by Grid databases).

Consistency

Each individual LTM ensures that the transactions (local and subtransactions of
global transaction) do not violate any consistency constraints. Since the sites are

10.6 Requirements in Grid Database Systems 307

autonomous, there are no integrity constraints defined on data items residing at
different sites. Thus there are no global integrity constraints in multidatabase sys-
tems. Hence, all global transactions will meet the consistency property.

Isolation

Global serializability, in addition to local serializability, is required in multi-
database systems. Any information regarding global transaction is stored at
the global layer. A ticket is maintained at each local database site to ensure
global serializability. Any global transaction is required to read the ticket value,
increment the value, and write the new value into the database. The ticket value
indicates the serialization order of the global transactions at the site. The GTM
also keeps a serialization graph for all active global transactions. It should be noted
that the concurrency control protocols in multidatabase systems need to make a
clear distinction between global and local transactions. In a Grid environment,
although local and global transactions exist, a strict distinction between the two
is not essential. Furthermore, the responsibility of scheduling for the global
transactions needs to be designated to multiple participants, in the absence of a
global management layer.

Durability

The durability property requires modification of the data values stored at databases
after the failure recovery. Global transactions access multiple local DBMSs, and
thus after the failure recovery the GTM will need to restore values at more than
one database. Because of the autonomy of sites, the durability property cannot
be directly implemented by the GTM. Although execution autonomy (three types
of autonomy are (i) design, (ii) execution, and (iii) control autonomy) could be
preserved during failure recovery, it is necessary to infringe upon the control auton-
omy of the local DBMSs to maintain the durability property. The recovery process
must ensure that the desired correctness is maintained. Thus the durability property
is closely associated with atomicity and consistency. Most recovery approaches
require that the local transactions not be allowed to access the DBMS resources
until the global (MDMS) layer has completed the recovery process. Effectively,
the recovery process is hierarchical, with local and multi-DBMS executing their
recovery processes separately. This setup is unsuitable for a Grid database, because
it needs a transparent recovery process.

10.6 REQUIREMENTS IN GRID DATABASE SYSTEMS

Considering the requirement of Grid architecture and the correctness protocols
available for distributed DBMSs, a comparison of traditional distributed DBMSs
and Grid databases for various architectural properties is shown in Table 10.1.

Table 10.1 emphasizes that, because of different architectural requirements, tra-
ditional DBMS techniques will not suffice for Grid databases. Specifically, the

308 Chapter 10 Transactions in Distributed and Grid Databases

Table 10.1 Architectural comparison matrix for distributed data management systems

Distributed

DBMS Multidatabase Grid Database

Heterogeneity Maybe Yes Yes

Autonomy No Yes Yes

Distribution Yes Yes Yes

Replication Yes No Yes

Design philosophy Bottom-up Combined
top-down/bottom-up

Top-down

Global DBMS Yes Yes No (service oriented)

Resource
transparency

No No Yes

Data transparency No No Yes

design philosophy of a Grid database is top-down, which is different from any other
distributed DBMSs because of the absence of a global management layer. Thus it
emphasizes the need for revisiting distributed database standards in order to meet
the requirements of the Grid database. The bottom-up design strategy indicates
that the global system can be analyzed before it is built. But the top-down design
strategy indicates that because of the heterogeneity, dynamic nature and autonomy
of sites, the global system cannot be analyzed as a whole. Although Grid databases
are architecturally close to multidatabase systems in the heterogeneity, autonomy,
and distribution dimensions, both are very different in the aspects of design philos-
ophy, global data management, and transparency. Thus, in such a loosely coupled
Grid infrastructure, maintaining data consistency becomes a challenging task.

Therefore, the main objectives of Grid database transaction management can be
summarized as follows:

ž To address the transaction management issues in Grid database systems
including:
Ž Atomicity
Ž Consistency
Ž Isolation
Ž Durability

ž To address the replica synchronization issues at a protocol level (not at service
level)

ž To study multiple levels of operations to take advantage of replication

Weaker consistency requirements for data management in the Grid environment
are common. However, high-precision applications such as earth simulation, astro-
nomical systems, weather forecasting, and biomedical engineering cannot work at
weaker consistency levels. Hence, absolute consistency is crucial.

10.7 Concurrency Control Protocols 309

10.7 CONCURRENCY CONTROL PROTOCOLS

Mostly, the concurrency control protocols are classified based on synchronization
criterion. The concurrency control protocols are broadly classified as (i)
pessimistic and (ii) optimistic. Pessimistic algorithms provide mutually exclusive
access-shared data and thus synchronize the process early in the execution.
Optimistic algorithms assume that there are very few conflicts during the
execution and do the synchronization toward the transaction termination. The
complete set of classification is shown in Figure 10.6.

Locking-based algorithms act as semaphores. A transaction physically or log-
ically locks a particular granule of the database (lock unit) and does not allow
access to that locked unit to any other transaction until it finishes execution. In
a distributed environment, the locking protocol typically tends to designate one
site to store global information such as lock tables, responsibility of granting and
releasing locks, etc. A basic lock compatibility matrix for granting locks is shown
in Table 10.2. Another assumption is that all sites use locking protocols. The design
strategy for distributed databases is bottom-up, and hence the basic assumption is

Concurrency Control
Algorithms

Pessimistic Optimistic

Locking
Timestamp
Ordering

Hybrid Locking
Timestamp
Ordering

Primary Copy

Locking

Distributed

Basic

Strict

Multiversion

Figure 10.6 Taxonomy of concurrency control algorithms

Table 10.2 A basic lock compatibility matrix

Lock held by a transaction

Read Write

Lock requested by another transaction Read Yes No

Write No No

310 Chapter 10 Transactions in Distributed and Grid Databases

homogeneity among participating sites (the design strategy of distributed databases
is discussed in more detail in Chapter 11). Other variants of locking protocols are
certify locks, intension locks, altruistic locks etc., but from the design perspective,
the common feature of all variants is homogeneity.

Timestamp ordering algorithms assign timestamps to transactions and data
items stored in the database to maintain consistency. A transaction can be identi-
fied uniquely with the help of the timestamp. Timestamp ordering algorithms order
the transactions based on their timestamps. The schedule generated by timestamp
ordering protocols is equivalent to the particular serial order corresponding to the
order of the timestamps. Timestamp ordering algorithms have three main variants:
(i) basic, (ii) strict, and (iii) multiversion. Timestamps are sometimes associated
with locking-based protocols to improve performance and concurrency. These
protocols are known as hybrid protocols.

These locking and timestamp-based protocols are either conservative or pes-
simistic because they perform some type of checking before the operation is per-
formed. This imposes an overhead on the concurrency control protocols. On the
other hand, optimistic protocols do not perform any validation or checking during
transaction execution and expect that there will be no conflict between transac-
tions. During the transaction execution, all updates are stored temporarily in local
copies. At the time of transaction termination, the protocol checks whether the
updates made by the transaction violate any requirement of serializability. If the
serializability requirements are not violated, then the updates in the temporary
copies may be made permanent; otherwise the transaction is aborted. Optimistic
protocols have better performance if the application does not have much conflict
between transactions.

10.8 ATOMIC COMMIT PROTOCOLS

Atomic commitment is an important requirement of transactions running in a dis-
tributed environment. All cohorts of distributed transactions should either commit
or abort in order to maintain the atomicity property of the transactions and, conse-
quently, maintain the correctness of stored data. Other approaches like workflow
and business process have been studied widely, and they need weaker consis-
tency and atomicity requirements. But, as discussed in the example above in this
chapter, the importance of conserving ACID properties in a Grid environment can-
not be denied. Distributed DBMS are broadly classified into two categories to study
ACPs: (i) homogeneous and (ii) heterogeneous.

10.8.1 Homogeneous Distributed Database Systems

A distributed transaction has subtransactions executing at more than one site. To
achieve the all-or-nothing property of the transaction, each of the subtransactions
of the distributed transaction must either commit or abort. An ACP helps the pro-
cesses/subtransactions to reach decision such that:

10.8 Atomic Commit Protocols 311

ž All subtransactions that reach a decision reach the same one.
ž A process cannot reverse its decision after it has reached one.
ž A commit decision can be reached only if all subtransactions are ready to

commit.
ž If there are no failures and all subtransactions are ready to commit, then the

decision will be to commit.

Two-Phase Commit (2PC) is the simplest and most popular ACP proposed in
the literature to achieve atomicity in homogeneous DBS.

A coordinator is typically the site where the transaction is submitted or any
other site that keeps all the global information regarding the distributed transac-
tion. Participants are all the other sites where the subtransaction of the distributed
transaction is executing. 2PC works as follows:

(1) The coordinator sends vote request to all the participating sites.

(2) After receiving the request to vote, the site responds by sending its vote,
either yes or no. If the participant voted yes, it enters into prepared or ready
state and waits for final decision from the coordinator. If the vote was no,
the participant can abort its part of the transaction.

(3) The coordinator collects all votes from the participants. If all votes includ-
ing the coordinator’s vote are yes, then the coordinator decides to commit
and sends the message accordingly to all the sites. If even one of the votes
is no, the coordinator decides to abort the distributed transaction.

(4) After receiving either a commit or an abort decision from the coordinator,
the participant commits or aborts accordingly from the prepared state.

Figure 10.7 shows the state diagram of 2PC for coordinator and the parti-
cipants.

Running

Wait

Commit Abort

Running

Prepared

Commit Abort

State Diagram of coordinator State Diagram of participant

Figure 10.7 State diagram of 2PC

312 Chapter 10 Transactions in Distributed and Grid Databases

There are two phases (hence the name 2-phase commit) in the commit proce-
dure: the voting phase (step 1 and step 2) and the decision phase (step 3 and step 4).
At step 2, the participant enters the prepared state and is waiting for the final deci-
sion from the coordinator. The participant cannot make a final decision during this
state and must wait for the final response from the coordinator. During this period
of uncertainty, the participant holds all the resources of the site despite finishing its
part of the transaction execution. This limitation, in particular, may hinder the per-
formance (and sometimes, impossible to implement) of the applications in the Grid
environment, where applications are long-running and asynchronous in nature.

In 2PC, if the coordinator fails while the participant is in the prepared state
(i.e., in the uncertainty period), the progress of the transaction is blocked. Conse-
quently, the participant cannot unilaterally decide whether to commit or to abort
and may be blocked for an unlimited period of time, holding local site resources
such as locks on data items indefinitely. Three-phase commit (3PC) was proposed
as a nonblocking protocol, but it incurs an extra round of message delays and is
not suitable for high-performance distributed systems. 3PC needs a prepared state
and a precommit state in order to reach atomic commitment decision. Figure 10.8
shows the state diagram of the coordinator and participants in the 3PC protocol.

In 2PC, after the participant sends a “yes” vote, it is in an uncertain state but in
3PC the participants expect a “pre-commit” message from the coordinator. If all the
participants’ votes were “yes,” then the coordinator sends a pre-commit message
to all participants and waits for an acknowledgment from participants. This extra
round of messages removes the uncertainty period from the participants. If the
participant is in the pre-commit state, then it can unilaterally decide to go into the
commit state; and the participant can decide to abort unilaterally from the prepared
state (unlike 2PC), thus avoiding the uncertainty period.

Some of the commit protocols are briefly analyzed in view of their applicability
to Grid infrastructure. The Implicit Yes Vote (IYV) protocol was proposed with
the intention of eliminating the voting phase and capitalizing on the early prepare

Running

Prepared

Pre-Commit Abort

Commit

Running

Wait

Commit

Abort

State Diagram of coordinator

Pre-Commit

State Diagram of participants

Figure 10.8 State diagram of 3PC

10.8 Atomic Commit Protocols 313

concept. Two basic assumptions behind the IYV protocol that make it unsuitable
for the Grid environment are: (1) each site employs a strict two-phase locking
protocol, and (2) the coordinator should have a partial image of the participant.
Assumption 1 is not practical in Grids because of the heterogeneity of participants,
and assumption 2 will violate the autonomy of participants, which is not acceptable
to many participants in the Grid environment.

The 3PC protocol discussed above is a nonblocking protocol, but it incurs an
extra cost of two rounds of messages to reach a final decision even in a failure-free
environment. Although the 3PC does not block the transaction in the case of coor-
dination failure, it still implements the prepared state for all the participants and
also holds the lock for the time of two extra rounds of messages. The 3PC protocol
is more expensive in terms of time complexity, programming, understanding, and
implementing. Most importantly, the basic assumption of 3PC is the same as for
2PC, namely, homogeneity among distributed sites and synchronous communica-
tion between sites, which are not possible in the Grid environment.

Other nonblocking optimization protocols like uniform reliable broadcast and
uniform timed reliable broadcast also assume a synchronous model, that is, the
process execution and message delays are synchronized. For the above-mentioned
reasons, they cannot be used in Grids.

More recently, the Paxos commit algorithm has been proposed. The Paxos com-
mit protocol is based on the Paxos algorithm and is consensus-based. The Paxos
commit protocol tries to eliminate a single point of failure of the coordinator in
2PC. It uses (2FC1) coordinators and makes progress if at least (FC1) of them
are working, where F is the number of failure of processes. Thus the protocol
has interdependent communications and assumes a homogeneous working envi-
ronment.

10.8.2 Heterogeneous Distributed Database
Systems

Multidatabase systems assume an autonomous environment for transaction execu-
tion. They typically execute a top layer of multidatabase management systems for
transaction management. These systems are designed for certain application spe-
cific requirements and mostly for short-running transactions. Because of the high
design and execution autonomy requirements in multidatabase systems, the ACPs
are not designed for replicated data. Considering the distributed nature of the appli-
cations, replication is a major design decision in Grid infrastructure. Strategies
used in multidatabase systems are also not suitable for virtual Grid environments
as they focus on a small set of databases and the design philosophy is a combina-
tion of top-down and bottom-up strategies. For example, an organization may want
to communicate between its two databases located at two different locations. The
two sites may have been designed and developed independently. But when the top
management decides to communicate between the two databases, they can be com-
bined with multidatabase techniques, and thus they do not need any virtualization
techniques. This scenario is different from a typical Grid application, where the

314 Chapter 10 Transactions in Distributed and Grid Databases

databases are in completely different administrative domains and virtualization of
resources is a necessity. Three major strategies are discussed for atomic commit-
ment of distributed transaction in heterogeneous database environment: (1) redo,
(2) retry, and (3) compensate.

Since all sites may not support the prepare-to-commit state, even if a global dis-
tributed transaction decides to commit, some local subtransaction may decide to
abort because of a local conflict (as sites are autonomous) while others may decide
to commit. Hence, those subtransactions that decided to abort must redo the write
operation to reach a consistent global decision. This strategy imposes a require-
ment that all local schedulers should be at least cascade-less. The redo strategy also
imposes certain restrictions on data access for transactions—for instance, global
transactions may read local data items but cannot update them. These restrictions
limit the applicability of the redo approach in the Grid environment.

Another approach for dealing with the above problem is the retry approach. In
this approach, the whole subtransaction is retried rather than redoing only the write
operations. The inherent limitation of this approach is that the subtransaction must
be retriable. For example, if a subtransaction fails because of insufficient funds
in a fund-transfer application, the failed transaction may keep on retrying forever.
Also, a subtransaction is retriable only if the top layer of the multidatabase system
has saved the execution state of the aborted subtransaction, which is not the case
in Grids. Again, these limitations make the retry approach unsuitable for a Grid
database.

If the global decision is to abort and any local subtransaction decides to commit,
then compensating transactions can be executed to semantically undo the effects
of the committed subtransaction. Since the results may have been externalized
to other transactions, the resulting state may not be the same as if the transac-
tion in question never executed, but will be semantically equivalent to it. Certain
transactions, such as firing of a missile, can be noncompensatable. This approach
is most suitable for a Grid infrastructure, as the decision of an individual site is
independent of other sites. Although compensation may lead to cascading aborts,
considering the architectural requirement of Grids this seems unavoidable.

10.9 REPLICA SYNCHRONIZATION PROTOCOLS

Grid databases store a large volume of data at geographically distributed sites.
The large amount of data and its worldwide distribution make data management
a challenging task. There is a wide range of scientific experimentations, such as
astronomical analysis, high-energy physics (HEP), weather forecasting, earth sim-
ulation, etc., that will require gathering a huge amount of data. These experiments
generate, gather, process, and store huge volume of data everyday. Particle physics
experiments, for example, Babar, may need to store up to 500 GB of data each day
and are among the world’s largest databases. Applications will soon be managing

10.9 Replica Synchronization Protocols 315

petabytes of data. The data will be accessed by institutions and scientists around the
globe. For instance, the particle physics experiment is a collaboration of 75 institu-
tions in 10 countries. For easy access to the data and for performance improvement,
the data need to be replicated at multiple sites. Having replicas of data items at var-
ious sites also improves the system’s availability. Thus the replication of data has
two major goals: (i) increasing availability and (ii) improving performance. Since
the data is available at multiple sites, it is likely that a transaction may find a copy
locally or at a site close to it.

If the replica protocols are not designed carefully, the purpose of replication
may be defeated because of the overhead of maintaining multiple copies. Another
issue concerning replicated data is maintaining the correctness of data. The
replicated data remains transparent to the user, and the database management
system should ensure the data consistency among replicas. The user has a
one-copy view of the database, and thus the correctness criterion is known as
1-copy serializability (1SR). Various replica synchronization protocols such as
write-all, write-all-available, primary copy, etc. have been proposed.

The problem of replica synchronization becomes significant especially when
the data can be modified. Recent research and prototype proposals for Grids deal
with replication of read-only files and do not address the replica synchronization
problem. Looking at the critical nature of the applications discussed above, replica
synchronization becomes a challenging task.

10.9.1 Network Partitioning

Network partitioning is a phenomenon that prevents communication between two
sets of sites in distributed architecture. Communication failures are the major
reason for network partitioning. Broadly, the network partitioning can be of two
types, depending on the communicating set of sites: (i) simple partitioning and
(ii) multiple partitioning. If the network is divided into two compartments, then
it is known as simple partitioning, and if there are more than two compartments,
then it is called multiple partitioning.

Definition 10.6 (Network Partitioning): Two set of operational sites, P1 D fA1;

A2; : : : ; Ang and P2 D fB1; B2; : : : ; Bng, are partitioned if the following two con-
ditions hold:

Condition 1: 8Ai 2 P1 can communicate with 8Ai 2 P1.

Condition 2: 9Ai 2 P1 cannot communicate with 9Bi 2 P2 because of com-
munication failure.

In read-only queries, network partitioning does not have much impact because
the data is not modified by the queries. But network partitioning has a greater
impact in the presence of write transactions because transactions can access

316 Chapter 10 Transactions in Distributed and Grid Databases

replicas in one partition and update them independently while other partitions
are not aware of the update. Thus network partitioning may lead to inconsistent
data values, and replica synchronization protocols must be equipped to address
network partitioning issues. The following section discusses some of the common
replica synchronization protocols.

10.9.2 Replica Synchronization Protocols

Replica synchronization protocols can broadly be classified as (i) pessimistic and
(ii) optimistic, also known as eager and lazy protocols, respectively. Pessimistic
protocols are eager to update all replicated copies in a synchronous way and
avoid any inconsistency in the replicated system. The pessimistic approach ensures
serializable execution (and thus is 1SR) but reduces the performance of write trans-
actions by increasing the number of updates. The availability of the system is
restricted in the pessimistic approach in case of any site failure because all repli-
cas are not available for update. The read-one-write-all (ROWA) approach is an
example of the pessimistic replica control protocol.

On the other hand, an optimistic protocol allows any transaction to be executed
in any partition. The optimistic replica control protocol increases the availability,
but has a serious limitation in that it jeopardizes the consistency of the replicated
data. Thus the replica control protocols are a trade-off between maintaining the
consistency of data and increasing availability and performance of the replicated
system. Below we discuss some of the replica control protocols.

Read-One-Write-All (ROWA)

The ROWA protocol is the simplest of all replica control protocols. The read oper-
ation may be executed at any arbitrary copy, but the write operation has to be
executed on all replicated copies of the data. In this scenario, if any data item
fails, then any transaction that writes the data item cannot be executed and must
wait for the replicated site to recover. Thus, in the presence of any site failure,
the ROWA protocol limits the availability of the replicated system, which may be
unsatisfactory for many real-time applications.

ROWA-Available (ROWA-A)

ROWA-A was proposed to provide more flexibility to the ROWA algorithm in the
presence of failures. The read operation of ROWA-A can be performed similar
to ROWA, that is, on any replicated copy. But to provide more flexibility, write
operations are performed only on the available copies, and it ignores any failed
replicas. ROWA-A solves the availability problem, but the correctness of the data
may have been compromised. After the failed site has recovered, it stores the stale
value of the data. Any transaction reading that replica reads an out-of-date copy

10.9 Replica Synchronization Protocols 317

of the replica, and thus the resulting execution is not 1SR. Deploying ROWA or
ROWA-A in a Grid infrastructure is thus an impractical proposition.

Primary Copy

This approach assigns one copy of the replicated data as a primary copy. All read
and write requests are redirected to the primary site. This approach works well
only if site failures are distinguishable from the network failure. In the case of
network partitioning, only the partition having the primary copy can execute. In
case of failure of the primary site, no request can be processed. Dependence on a
single site in a global Grid environment is not a feasible idea. Most importantly,
the primary copy protocol violates the autonomy requirement of Grid databases
since it depends on other sites to process the request.

Quorum-Based Protocols

Quorum- or voting-based protocols have been of interest to the replication commu-
nity because of their flexibility. Every copy of the replica is assigned a nonnegative
vote (quorum). Read and write thresholds are defined for each data item. The sum
of read and write thresholds as well as twice the write threshold must be greater
than the total vote assigned to the data. These two conditions ensure that there
is always a nonnull intersection between any two quorum sets. The nonnull set
between read quorum and write quorum guarantees at least one latest copy of the
data item in any set of sites. A timestamp or a version number is used to determine
the latest copy of the data item. This constraint guarantees that in case of site fail-
ure or network partitioning, a transaction will never read stale data. The nonnull
intersection between two write quorums ensures that no two writes can happen in
parallel. All transactions must collect a read (write) quorum to read (write) any
data item. A read (write) quorum of a data is any set of copies of the data with
a weight of at least read (write) threshold. Quorum-based protocols maintain the
consistency of data despite operating only on a subset of the replicated database.
For any data item it is assumed:

Q D Total number of votes (maximum quorum) D Number of sites in the

replicated system (assuming each site has equal weight)

Q R and QW D Read and write quorum, respectively

To read an item a transaction must collect a quorum of at least Q R votes, and to
write it must collect a quorum of QW votes. The overlapping of the read and write
quorums ensures that a reading transaction will get at least one up-to-date copy of
the replica. The quorums must satisfy the following two threshold constraints:

(i) Q R C QW > Q

(ii) QW C QW > Q

318 Chapter 10 Transactions in Distributed and Grid Databases

A quorum-based replicated system may continue to operate even in the case of
site or communication failure if it is successful in obtaining the quorum for the
data item. This makes quorum-based protocols promising candidates for replica
control in Grid databases. However, a challenging problem in implementing the
traditional quorum-based protocols in Grid databases is that they are designed for
homogeneous database systems, and therefore cannot be implemented in Grids as
they are. Thus these protocols need to be revisited before being implemented in
the Grid infrastructure.

In a homogeneous system, protocols depend on communication between
distributed sites. Grid databases will, most of the time, be heterogeneous and
autonomous, thereby making communication between replicated sites difficult
and sometimes even impossible. Unlike Grids, synchronization between sites is
easy to achieve in homogeneous systems. Typically, replication strategies for
homogeneous systems leverage the fact that they can use the prepared state of
the transaction at all replicated sites. Furthermore, the quorum values assigned
in homogeneous systems are static, which limits the implementation of quorum-
based protocols in Grids, especially in the presence of multiple network
partitioning.

Although various semantic approaches like log-transformations and general
quorum consensus have been proposed, they depend on the semantics of the
application and are not general-purpose protocols. Other approaches like epidemic
and independent approaches increase the availability of data, but only at the cost
of inconsistency. Only general-purpose replica synchronization protocols, which
ensure that schedules are 1SR, are discussed in this book.

10.10 SUMMARY

In this chapter, an introduction of three protocols of traditional distributed database
systems is presented, which includes (i) concurrency control protocols, (ii) atomic
commitment protocols, and (iii) replica synchronization protocols. In view of the
evolving Grid infrastructure, these protocols are discussed in detail in the following
chapters. These protocols are crucial in maintaining the correctness of the dis-
tributed data. Figure 10.9 shows the structure of the rest of Part IV of this book
focusing on the ACID properties and replication in Grid databases. The advantage
of replication in reducing aborts is also demonstrated.

10.11 BIBLIOGRAPHICAL NOTES

Two of the early works on parallel transaction management are by Weikum and
Hasse (VLDB J 1993), who introduced parallelism in multilevel transactions, and
Burger et al. (BNCOD 1994), who presented branching transactions for parallel

10.12 Exercises 319

Chapter 11:

C I

Chapter 12:

A D

Chapter 13:

Replication

Chapter 14:

Atomicity in
Replicated Environment

(to reduce aborts)

Figure 10.9 General framework of Grid transaction management

database systems. Machado and Collet (DASFAA 1997) described a parallel execu-
tion model for database transactions, and Wang et al. (Parallel Computing 1997)
focused on concurrency control in parallel transaction processing. After the turn
of the century, Brayner (DEXA 2001) presented lock downgrading for intertrans-
action parallelism, and Colohan et al. (VLDB 2005) focused on intratransaction
parallelism.

In the area of Grid transaction management, Qi et al. (Concurrency and Compu-
tation 2006) presented a membrane calculus, a formal method for grid transactions,
whereas Tang et al. (2004) used a Petri-net based coordination for grid transactions.
Leymann and Güntzel (2003) concentrated on the business process.

10.12 EXERCISES

10.1. Outline the main differences between distributed databases and parallel databases.

10.2. Outline the main differences between distributed databases and multidatabase
systems.

10.3. Discuss the suitability of parallel databases, distributed databases, and multidatabase
systems in the Grids.

10.4. Describe the following terminologies:

a. Transaction

b. Schedule or history

c. Serial history

d. Serializable history

e. Serialization graph

10.5. Give an example of a dirty read problem in transaction management.

10.6. Describe the ACID properties of a transaction in a centralized environment. Illustrate
your answer with examples.

320 Chapter 10 Transactions in Distributed and Grid Databases

10.7. Table 10.1 states that the Grid databases adopt a top-down design philosophy.
Describe this property and highlight the primary difference between a top-down
approach in Grid databases and a bottom-up approach in distributed databases.

10.8. Compare and contrast two-phase commit (2PC) and three-phase commit (3PC) in a
homogenous distributed database system.

10.9. Explain the concept of network partitioning.

10.10. Discuss why ROWA and ROWA-Available are impractical for Grid databases.

Chapter11

Grid Concurrency Control

The concurrency control protocol helps to maintain the consistency of data in a
database. It helps to achieve the “C” and “I” of ACID properties. Serializability
is the most widely accepted correctness criterion in any database management sys-
tem (DBMS). Protocols implemented to achieve serializability may depend on the
database architecture. For example, the serializability theory for a centralized DBMS
will be different from that for a distributed DBMS. The Grid database is also a dis-
tributed database, but because of architectural differences, it cannot implement the
same concurrency control protocols.

This chapter describes the concurrency control algorithm for Grid databases.
Before discussing the concurrency control protocol, it is necessary to provide the
working environment of a Grid database and the motivation behind the work.
Section 11.1 presents the general working environment of the Grid database.
Section 11.2 discusses the motivation of addressing the concurrency issue in
Grid databases, followed by the details of the Grid concurrency control protocol
in Section 11.3. Section 11.4 shows the correctness of the protocol, whereas
Section 11.5 discusses some features of the concurrency control protocol.

11.1 A GRID DATABASE ENVIRONMENT

Data is geographically distributed in Grid databases. A typical working of
databases in Grid architecture is shown in Figure 11.1. For simplicity, a system
with only three database sites is shown. Without loss of generality, originator
sites (where transactions are submitted) and participant sites (where transactions
are executed) are also distinguished. The same database site may act as an
originator for some transactions, and at the same time it may act as a participant

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

321

322 Chapter 11 Grid Concurrency Control

T2

T2

T1

ST12ST22 ST23

DB1

Grid Middleware

DB2 DB3

ST13

T1

Legend:

T1: Transaction 1
T2: Transaction 2
STij: Subtransaction of
transaction i at site j

Figure 11.1 Distributed database
systems communicating with Grid
middleware

for some other transactions. The originator is sometimes also referred to as the
coordinator.

Figure 11.1 shows three geographically distributed database sites DB1, DB2 and
DB3 connected via the Grid middleware. Assume that two transactions, T1 and T2,
are submitted to DB1. Both transactions also need to access data from the other
two databases, DB2 and DB3. Hence, DB1 is the originator or coordinator, and
both DB2 and DB3 act as participants. DB1 forwards the request of T1 and T2 to the
Grid middleware. Grid middleware, with the help of metadata service, forms sub-
transactions of each transaction and submits them to respective participants. The
transaction identifier and site identifier are suffixed to represent subtransactions;
for example, a subtransaction of transaction 1 executing at site 2 will be denoted
as ST12. Since both transactions need to access DB2 and DB3, the subtransactions
would be (ST12 and ST13) and (ST22 and ST23) for T1 and T2, respectively.

Data access must be synchronized to maintain the correctness of the data. Gen-
erally, global management of data with the help of global lock table or global logs
cannot be implemented in a Grid database, unlike traditional distributed DBMS.
Another challenge in maintaining consistency is the heterogeneity of concurrency
control protocols implemented by different participants. For example, one site
might use the locking protocol for concurrency control, while another site might
use an optimistic concurrency control protocol. This makes maintaining the con-
sistency of data in Grid databases a difficult task. Since sites in Grid databases
are autonomous and the design process is top-down, heterogeneity among sites is
unavoidable. The following example shows that, because of heterogeneity and the
absence of a global management layer, it becomes impossible to maintain consis-
tent data by using traditional concurrency control protocols.

11.2 AN EXAMPLE

Consider the sites from Figure 11.1; the following example shows how the use of
traditional concurrency control protocols in a Grid environment may potentially
corrupt the data. Say that four data objects (for simplicity sake only four items are
considered), O1; O2; O3, and O4, are stored in two databases, DB2 and DB3, with

11.2 An Example 323

following distribution:

DB2 D O1 and O2

DB3 D O3 and O4

Now, consider two transactions submitted to the database DB1, as shown below.

T1 D r1.O1/r1.O2/w1.O3/w1.O1/C1

T2 D r2.O1/r2.O3/w2.O4/w2.O1/C2

DB1 submits T1 and T2 to Grid middleware. The metadata service of the Grid
middleware locates data objects to be accessed by the transaction and thus helps in
forming subtransactions of T1 and T2. The following subtransactions are obtained
for T1:

ST12 D r12.O1/r12.O2/w12.O1/C12 (11.1)

ST13 D w13.O3/C13 (11.2)

The following subtransactions are obtained for T2:

ST22 D r22.O1/w22.O1/C22 (11.3)

ST23 D r23.O3/w23.O4/C23 (11.4)

The subtransactions can then be submitted to their respective database sites,
that is, (ST12 and ST22) are submitted to DB2 and (ST13 and ST23) are submitted
to DB3. All participants are autonomous, and no global information is available
to any participant. Thus participants have to schedule subtransactions locally and
independently. Say that DB2 produces the following history (H2):

H2 D r12.O1/r12.O2/w12.O1/C12r22.O1/w22.O1/C22 (11.5)

and DB3 produces the following history (H3):

H3 D r23.O3/w23.O4/C23w13.O3/C13 (11.6)

Assume that each individual local database site implements a serializable sched-
uler. H2 and H3 both are locally serializable with the following serialization order:

Serialization order of H2 : T1 � T2

.transaction 1 executes before transaction 2/

Serialization order of H3 : T2 � T1

.transaction 2 executes before transaction 1/

In the absence of a global management system, the execution of H2 and H3

is possible. Although H2 and H3 are serializable (serial in the above example)

324 Chapter 11 Grid Concurrency Control

at local sites, execution of both histories simultaneously is undesirable because
the combined effect of both histories produces a cycle in the serialization graph.
The serialization graph has the following execution order of transactions, which
produces a cycle: T1 ! T2 ! T1. Traditional distributed databases handle this
problem by implementing a global management system, which stores global infor-
mation, such as global lock tables and logs. If global information on transactions
is available, it is easy to avoid execution of H2 and H3 and thus avoid formation
of a cycle in the serialization graph. But, because of their service-oriented nature,
heterogeneity, autonomy, and security requirements, Grid databases cannot store
global information. Thus maintaining consistency of data in the absence of a global
management layer is a challenging job.

11.3 GRID CONCURRENCY CONTROL

The example mentioned above shows that even if an individual site produces serial
(or serializable) histories, because of the unavailability of a global management
system in the Grid database, the overall execution may produce an incorrect seri-
alization order. In this section, a grid concurrency control (GCC) protocol is used
to maintain the correct serialization order of transactions in Grid databases, that is,
in the absence of a global management layer.

11.3.1 Basic Functions Required by GCC

The following are some of the functions used by the GCC protocol to ensure the
correct interleaving of transactions. These functions are helpful in forming sub-
transactions of global transactions, finding active transactions at any database site,
and appending a unique timestamp to all subtransactions of any transaction. Some
of the functions need the assistance of the Grid middleware and some do not. These
functions are explained below:

(1) DB accessed(Ti): This function takes the global transaction as argument.
When a global transaction is submitted to any database, the transaction is
redirected to the Grid middleware. The data location service of the Grid
middleware locates other database sites to be accessed by the global trans-
action. The function returns the set of databases where the subtransactions
are submitted.

(2) split trans(Ti): This function takes the global transaction as argument and
returns the set of subtransactions. Subtransactions are formed based on data
accessed by the global transaction. Each database site where the global
transaction needs to access the data will have one subtransaction.

(3) active trans(DB): This function returns the set of global transactions hav-
ing any subtransaction running in the database. The database, where the
active global transactions have to be found, is supplied as an argument to
the function. The local database’s log file is used to collect this information.

11.3 Grid Concurrency Control 325

(4) cardinality(Any set): This function takes any set, e.g., a set of databases or
a set of subtransactions, as argument and returns the number of elements in
the set.

(5) append TS(STi j): All subtransactions of a global transaction are appended
with a unique timestamp before being submitted to their respective sites.
The subtransaction is supplied as an argument to the function, which
appends the timestamp generated by the Grid middleware. Subtransactions
belonging to the same global transaction will have the same timestamp
value.

11.3.2 Grid Serializability Theorem

The traditional serializability theory, for example, conflict serializability, is not
sufficient to ensure data consistency (the “C” of ACID properties) and transaction
isolation (the “I” of ACID properties) in Grid databases. The Grid serializability
theorem is needed to ensure correct interleaving of the concurrent transactions in
the absence of a global management layer.

Broadly, global transactions are classified in two categories: (a/ having only a
single subtransaction and (b/ having more than one subtransaction. Global trans-
actions with only one subtransaction do not pose any threat to Grid serializability
because only a local conflict may arise, which is taken care of by the local sched-
uler. Total-order is defined below, before we proceed with the Grid serializability
theorem.

Definition 11.1 (Total-order): Two global transactions Ti and Tj are in total-
order if 9p 2 Ti precedes execution of 9q 2 Tj at any database site then 8p 2 Ti

must precede execution of 8q 2 Tj at all database sites where they both appear.

The Grid serialization theorem follows the steps of traditional serializability
theorems to maintain uniformity of the proposed theorem in keeping with existing
literature. In traditional serializability theory, serial history is considered correct.
On the same grounds, Grid-serial history is considered correct in Grid architecture.

Definition 11.2 (Grid-serial history): A history in Grid architecture is considered
correct if it is Grid-serial. A history is considered Grid-serial if:

(1) Every individual database produces a serial history.

(2) Any global transaction having more than one subtransaction, i.e., accessing
more than one database, executes the transaction according to total-order.

Condition 1 of definition 11.2 does not allow interleaving of operations of the
local transactions. This is a very strict criterion. If the consistency of data is not
compromised, interleaving of the local transactions is perfectly valid. Hence, a
more practical approach for maintaining correctness of data is to use a history that
interleaves operations from different transactions.

326 Chapter 11 Grid Concurrency Control

Definition 11.3 (Grid-serializable history): A history in Grid architecture is
Grid-serializable iff it is equivalent (�/ to Grid-serial history.

Grid-serializability is analyzed by the Grid-serializability graph. If the graph is
acyclic, the history is known as a Grid-serializable history. The graph shows only
the committed projection of transactions.

Definition 11.4 (Grid-serializability graph): At any given instance, histories of
individual database sites can be represented by a directed graph defined by the
ordered three (Tl , Tg, A). The graph created is referred to as a Grid-serializability
graph. Elements of the ordered three are defined below:

(1) Tl is the set of local transactions forming the nodes of the directed graph.

(2) Tg is the set of global transactions having more than one subtransaction
forming the nodes of the directed graph.

(3) A is the set of arcs representing the ordering of two conflicting transac-
tion in any database where at least one of the two transactions is a global
transaction.

Condition 1 in definition 11.4 considers local transactions in the Grid-serializa-
bility graph. Condition 2 considers only those global transactions having more
than one subtransaction. Since transactions with one subtransaction do not pose
any threat to the concurrency control protocol, they will be ignored in any subse-
quent discussion, unless otherwise mentioned. Condition 3 shows the arc between
conflicting transactions. The local concurrency control protocol can resolve con-
flicts among local transactions, but is unable to resolve conflicts involving global
transactions. Hence, a Grid-serializability graph considers those conflicts where at
least one transaction is a global transaction.

The major difference between the Grid-serializability graph and the serializabil-
ity graphs of a traditional distributed database (and multidatabase) is the location
where the graph is stored. Traditional serializability graphs are stored in the global
management system, but because of autonomy restrictions and the absence of the
global management layer, the Grid-serializability graphs are stored in individual
database sites.

The following types of conflicts among transactions are possible in the Grid
database environment:

(1) Conflict between global transactions (global-global conflict);

(2) Conflict between global transaction and local transaction (global-local con-
flict); and

(3) Conflict between local transactions (local-local conflict).

The local scheduler resolves the conflict between local transactions and hence
does not need special attention. But local schedulers cannot resolve conflicts
involving global transactions. An acyclic Grid-serializability graph is used to

11.3 Grid Concurrency Control 327

resolve global-local conflict, and total-order is used to resolve global-global
conflict, based on the definition of Grid-serializability graph and total-order.

Theorem 11.1 (Grid-serializability theorem): A schedule in the Grid database
is Grid-serializable iff the Grid-serializability graph is acyclic at all participating
database sites and is in total-order.

Proof (if part): Suppose the committed projection (C.H/) of the history (H)
at any site has fT1; T2; : : : ; Tng transactions. Transactions can be global or local.
T1; T2; : : : ; Tn are all represented as nodes in the Grid-serializability graph. Since
Grid-serializability graph is acyclic it can be topologically sorted. A topological
sort in a graph is a sequence of (all) the nodes of the graph, such that if T1 appears
before T2 in a sequence, there is no path from T2 to T1. Let Ti1; Ti2; : : : ; Tin be a
topological sort of the Grid-serializability graph, where i1; i2; : : : ; in is permuta-
tion of 1; 2; : : : ; n. Let the corresponding Grid-serial history be Ti1; Ti2; : : : ; Tin .
We need to prove the equivalence (�) of committed projection (C.H/) and the
Grid-serial history. To prove this, let p 2 Ti and q 2 Tj , where Ti ; Tj 2 C.H/.
Suppose p and q are conflicting operations, and p �H q . Two possibilities exist
with respect to location of conflicting operations: (i/ both can reside in the same
site or (ii) different sites. If the conflicting operations are in the same site, it will be
reflected in the Grid-serializability graph, but it is difficult to represent conflicting
operations (and thus conflicting transactions) in the Grid-serializability graph if
they reside in different sites. Thus total-order is implemented to handle conflicting
operations residing in different sites.

An arc exists in the Grid-serializability graph from Ti to Tj if the conflicting
transactions are in same site. And transactions are in total-order if the conflicting
transactions are in different sites. Therefore in any topological sort of serializability
graph, at all sites, Ti must precede Tj . Thus in Grid-serial history all operations of
Ti appear before any operation of Tj at all participating sites. Hence, any two
conflicting operations are ordered in the same way, at all sites, in C.H/ as in the
Grid-serial history. Thus C.H/ � Grid � serial, and from definition 11.3 H is
Grid-serializable, as was to be proved.

Proof (only if part): Given that the history (H) is Grid-serializable, it will be
sufficient to show that Grid-serializable graph must be acyclic at all sites and must
be in total-order. Let Hs be a Grid-serial history equivalent to commit projection
of H . Consider that an arc, Ti ! Tj , exists in the Grid-serializability graph at any
site. This implies that there exist two conflicting operations p 2 Ti and q 2 Tj such
that p �H q at some database site DBi . Since C.H/ � Grid � serial history,
p � q in Grid-serial history also, which implies Ti � Tj in Grid-serial history.
Thus if Ti precedes Tj in Grid-serializable graph, then Ti precedes Tj in Grid-serial
history as well. Following are two possible cases which will be discussed
separately:

(1) Cyclic Grid-serializability graph: Suppose there is a cycle in the Grid-
serializability graph. Without loss of generality let the cycle be Ti ! : : :!

328 Chapter 11 Grid Concurrency Control

Tn ! : : :! Ti . With the above cycle, in Grid-serial history, it could be
deduced that Ti precedes and conflicts with Tn , which in turn precedes and
conflicts with Ti . This means Ti appears before itself in Grid-serial history,
which is an absurdity. This also implies that the local scheduler is generat-
ing incorrect schedules, a contradiction of the earlier assumption. Thus the
Grid-serializability graph cannot contain any cycle.

(2) Absence of Total-order: Suppose the transactions are not in total order.
Without loss of generality, let Ti ! Tj in site 1 and Tj ! Ti in site 2.
With the above precedence order of transactions at two different sites, it
could be deduced that Ti precedes itself in the Grid-serial history (from the
global perspective), which is an absurdity. Thus all participating sites in
Grid database must follow total-order.

Thus, while the Grid-serializability graph resolves the global-local conflict and
the global-global conflict for transactions (or subtransactions) executing in the
same database site, the total-order resolves the conflict between two global trans-
actions having subtransactions executing in different database sites.

EXAMPLE

In addition to global transactions in the example shown earlier in this chapter, consider
additional local transactions as follows:

Local transaction at DB2, LT12 D lr12.O1/lw12.O2/lC12 (LT12 is read as local transac-
tion 1 at database site DB2)

Local transaction at DB3, LT13 D lw13.O3/lC13

Consider the following modified histories:

H2 D lr12.O1/r12.O1/r12.O2/w12.O1/C12r22.O1/w22.O1/lw12.O2/C22lC12

H3 D r23.O3/w23.O4/lw13.O3/C23w13.O3/C13lC13

Figure 11.2 shows the Grid-serializability graph at sites DB2 and DB3. The three possible
types of conflicts are discussed below.

ST12 ST22

LT12

ST13 ST23

LT13

At site DB2 At site DB3

Figure 11.2 Grid serializability graph constructed from Grid serializability theorem

11.3 Grid Concurrency Control 329

(1) Global-global conflict: At site DB2, an arc exists from global subtransaction ST12

to ST22, i.e., the arc is from global transaction T1 to T2. In site DB3, the arc is from
global subtransaction ST23 to ST13, i.e., the arc is from global transaction T2 to T1.
Thus transactions T1 to T2 form a cycle at distributed sites. In traditional distributed
database systems, the arc can be easily detected by the use of a global management
system. But in the absence of the global layer, it is impossible to detect the cycle
being created at distributed sites. The total-order used in the Grid serializability
theorem avoids formation of cycles at distributed sites.

(2) Global-local conflict: Since global-local conflicts can only occur in single sites,
they can be resolved by the Grid-serializability graph. For example, at site DB2,
the conflict between the subtransaction of the global transaction, T2, and the local
transaction, LT1, is represented by the cycle. The cycle can be identified and resolved
by the local DBMS.

(3) Local-local conflict: Conflicts between local transactions can be resolved with the
traditional DBMS, and do not need special attention.

11.3.3 Grid Concurrency Control Protocol

The Grid concurrency control (GCC) criterion is used to maintain the correctness
of data (the “C” and “I” of ACID properties), while strictly following the autonomy
and heterogeneity limitations of Grid architecture. In this section, the GCC proto-
col is described that is used as a concurrency control protocol for Grid databases.

The GCC protocol has two phases: (i) the submission phase and (ii) the termina-
tion phase. The site where the transaction is submitted is known as the originator.
If the transaction needs to access data other than the originator site, it uses the
metadata service of the Grid middleware to form multiple subtransactions. The
split trans(Ti) function is used to generate multiple subtransactions from the global
transaction (Ti). Subtransactions are then submitted to their respective partici-
pating sites. The middleware appends a unique timestamp to each subtransaction
before submitting them to the corresponding databases. Subtransactions at the local
databases are executed in total-order. The timestamp attached to the subtransaction
is helpful in enforcing the total-order. The scheduler does not distinguish between
a local transaction and a subtransaction of a global transaction executing in the
same database site. Global transactions with only one subtransaction need not fol-
low total-order, as they cannot conflict with other global transactions at more than
one site simultaneously (unlike the example presented above in this chapter).

Submission Phase

The submission phase of the GCC protocol has the following steps:

(1) As soon as the transaction arrives at any database site, it checks whether
data from multiple sites is to be accessed. If the transaction needs to access
data only from the originator, it acts as a local transaction. But if the trans-
action needs to access data from multiple data sites, it is submitted to the
metadata service of the Grid middleware and is treated as a global transac-
tion. The split trans(Ti) function is used to form multiple subtransactions.

330 Chapter 11 Grid Concurrency Control

(2) The global transactions currently executing are added to a set, which stores
all active transactions. The set of active transactions is represented as
Active Trans.

(3) The middleware appends a timestamp to every subtransaction of the global
transaction before submitting it to the corresponding database.

(4) If there are two active global transactions that access more than one
database site simultaneously, this creates a potential threat that local
databases may schedule the subtransactions in conflicting order. The
subtransactions are therefore executed strictly according to the timestamp
attached to the subtransaction. Total-order is achieved by executing the
conflicting subtransactions according to the timestamp.

(5) When all subtransactions of any global transaction complete the execution
at all the sites, the transaction terminates and is removed from Active Trans
set (see details in Termination Phase).
Note: Active trans and Active Trans(DB) are different. The former is the
set of currently active global transactions, and the latter is a function that
takes the database site as an argument and returns the set of active transac-
tions running at that database site.

Explanation of Figure 11.3. Line 1 of Figure 11.3 checks the number of sub-
transactions of the submitted transaction. If there is only a single subtransaction,
then the global transaction can start executing immediately. The global transaction
is added in the active set (line 2) and is submitted immediately to the database
for execution (line 3). If the global transaction has more than one subtransaction,
that is, the transaction accesses more than one database site, then total-order must
be followed. Hence, the timestamp must be appended to all subtransactions of the
global transaction. The global transaction is added in the active set (line 4). Global
transactions having only one subtransaction are filtered out from the active set,
and the new set (Conflict Active trans) of the conflicting global transactions is
formed (line 5). Timestamps are then appended to all subtransactions of the global
transaction (line 6 and line 7). If the global transaction being submitted conflicts
with other active global transactions, it must be submitted to the participant site’s
queue to be executed in total-order. Conflict of a submitted global transaction (Ti)
with some other active global transaction (Tj) (having more than one active sub-
transaction) is checked in line 8. If two global transactions having more than one
active subtransaction (i.e., global-global conflict) exist, then the global transaction
is added in all participating sites’ active transaction sets (Active Trans(DBi)) (line
13) and the subtransactions are submitted to the participants’ queue (line 14), to
be strictly executed according to the total-order. If the submitted global transac-
tion does not conflict with any other active global transaction (i.e., line 8 is true),
then the global transaction is added in the active transaction set of all the partici-
pant sites (line 10), and the subtransaction is immediately submitted for scheduling
(line 11).

Global transactions are said to be conflicting if two global transactions have
more than two active subtransactions executing in different participating sites

11.3 Grid Concurrency Control 331

Algorithm: Grid Concurrency Control Algorithm for the
submission phase

input Ti: Transaction
var Active_trans: set of active transactions
var Conflict_Active_trans: set of active transactions
that conflict with global transaction being submitted
var Database_accessed [Ti]: database sites being accessed
by global transaction Ti
Generate timestamp ts: unique timestamp is generated

Split_trans(Ti)
Database_accessed [Ti] DB_accessed(Ti)

1. if Cardinality(Database_accessed [Ti]) D 1
2. Active_Trans(DBi) Active_Trans(DBi)

S
Ti

// Ti has only one subtransaction
3. submit subtransaction to DBi

else
4. Active_trans

[
Active_Trans(DBi)

5. Conflict_Active_trans {Ti jTi 2 Active_trans ^
Cardinality(DB_accessed(Tj)) > 1}

6. for each subtransaction of Ti
7. Append_TS(Subtransaction)
8. if Cardinality(Database_accessed[Ti]

T
(

[
T2Conflict�Active�trans

DB_accessed(Tj)) � 1)
9. for each DBi 2 Database_accessed [Ti]
10. Active_Trans(DBi) Active_Trans(DBi)

S
Ti

11. submit subtransaction to DBi
// Subtransaction executes immediately

else
12. for each DBi 2 Database_accessed [Ti]
13. Active_Trans(DBi) Active_Trans(DBi) [Ti
14. submit subtransaction to participant’s DB

Queue
// Signifies that subtransaction must follow
// total-order

Figure 11.3 Grid concurrency control algorithm for submission phase

simultaneously. This is different from the definition of conflicting transaction in
definition 11.2. The use of these two terms will be easily distinguished by the
context.

Termination Phase

The global transaction is considered active until a response from all subtransac-
tions is received. Because of the atomicity property of the transaction, the global

332 Chapter 11 Grid Concurrency Control

transaction cannot reach a final decision (i.e., commit or abort) until it has received
a decision from all the subtransactions. The steps of the transaction termination
phase are explained as follows:

(1) When any subtransaction finishes execution, the originator site of the global
transaction is informed.

(2) Active transactions, conflicting active transactions, and databases accessed
(by the global transaction) set are adjusted to reflect the recent changes due
to completion of the subtransaction.

(3) The site checks whether a completed subtransaction is the last subtransac-
tion of the global transaction to terminate.

(3a) If the subtransaction is not the last to terminate, then the subtransac-
tions waiting in the queue cannot be scheduled.

(3b) If the subtransaction is the last subtransaction of the global transaction
to terminate, then other conflicting subtransactions can be scheduled.
The subtransactions from the queue then follow the normal submis-
sion steps as discussed in Figure 11.3.

Explanation of Figure 11.4. The originator site of the global transaction is
informed after any subtransaction completes execution. The global transaction,

Algorithm: Grid Concurrency Control Algorithm for
termination phase

input ST: subtransaction of Ti at a site that completes
execution

1. Active_trans D (Active_trans - Ti)
// removes the global transaction from active set of the

site
2. Conflict_Active_trans D (Conflict_Active_trans - Ti)
3. Database_accessed [Ti] D (Database_accessed [Ti] - DBk)
// the database where the subtransaction committed is

removed from the set of database being accessed
by the global transaction

4. if(Database_accessed [Ti]) D φ

//subtransaction was last cohort of GT Ti
5. resubmit subtransactions from queue for execution

//from Figure 11.3
else

6. resubmit subtransactions to the queue
// same as line (14) Figure 11.3

Figure 11.4 Grid concurrency control algorithm for termination phase

11.3 Grid Concurrency Control 333

Ti , is then removed from the active transaction’s set (line 1). This follows the
earlier assumption that a global transaction can have only one subtransaction
running at any site at any particular time. The conflicting active transaction’s
set is also adjusted accordingly (line 2). The database site where the subtrans-
action is completed is removed from the database accessed set (line 3). If the
completed subtransaction is the last subtransaction of the global transaction,
that is, the database accessed set is empty (line 4), other waiting subtransactions
in the queue are submitted for execution (line 5). The normal transaction
submission procedure from Figure 11.3 is followed thereafter. If the completed
subtransaction is not the last subtransaction, then the queue is unaffected
(line 6).

11.3.4 Revisiting the Earlier Example

Taking the same scenario as the earlier example, consider that global transactions
T1 and T2 are submitted in quick succession. Since both the transactions need to
access data from more than one site, they are forwarded to the middleware to check
the metadata service and form subtransactions (eq. 11.1, 11.2, 11.3, and 11.4)
(step 1 of the GCC protocol). As data from multiple sites are to be accessed, the
transactions are added in the Active Trans set (step 2 of the GCC protocol). Since
subtransactions (eq. 11.1 and 11.2) belong to the same global transaction, T1, the
middleware appends same timestamp to both of them, say, timestamp D 1 (step 3
of the protocol). Similarly, subtransactions (eq. 11.3 and 11.4) belong to T2, hence
the same timestamp is appended to both of them, say, timestamp D 2 (step 3 of the
protocol).

By looking at equation 11.5, we note that history produced at the database site
DB2 schedules the subtransaction of the global transaction T1 before the subtrans-
action of T2 (the history in equation 11.5 is serial, but it does not matter as long as
H2 is serializable, with serialization order T1 � T2 because the timestamp attached
to T1 by the middleware is less than T2). Execution of equation 11.6 will be pro-
hibited by line 14 (or step 4) of the algorithm, because T1 and T2 are conflicting
global transactions and the serialization order is T2 � T1, which does not follow
the timestamp sequence.

Hence, schedules H2 and H3 will be corrected by the GCC protocol as
follows:

H2 D r12.O1/r12.O2/w12.O1/C12r22.O1/w22.O1/C22 .same as eq. 11:5/

H3 D w13.O3/C13r23.O3/w23.O4/C23 .corrected execution order by the

GCC protocol/

Thus in both schedules, T1 � T2. It is not required that the schedules be serial
schedules, but only that the serializability order should be the same as that of the
timestamp sequence from the middleware.

334 Chapter 11 Grid Concurrency Control

11.3.5 Comparison with Traditional Concurrency
Control Protocols

Homogeneous distributed concurrency control protocols may be lock-based,
timestamp-based, or hybrid protocols. The following discusses the lock-based
protocol only, but the arguments hold for other protocols as well.

The homogeneous distributed concurrency control protocols can be broadly
classified as (i/ centralized and (ii) distributed. The lock manager and the global
lock table are situated at a central site in a centralized protocol. The flow of con-
trol (sequence diagram) for centralized concurrency control protocols in distributed
DBMS (e.g., centralized two-phase locking) is shown in Figure 11.5. All the global
information is stored in a central site, which makes the central site a hotspot and
prone to failure. To overcome the limitations of central management, a distributed
concurrency protocol is used in distributed DBMSs. The flow of control messages
is shown in Figure 11.6 for distributed concurrency control protocols (e.g., dis-
tributed two-phase locking).

Release lock request

Operation decision

Coordinator site
(typically where the

transaction is submitted)

Central site managing
global information

(e.g. global lock table)

All participating
sites (1,2…n)

Lock request

Lock granted

Operation command

Figure 11.5 Operations of a general centralized locking protocol (e.g., centralized two-phase
locking) in homogeneous distributed DBMS

Operation command
embedded with lock request

Coordinator site
(typically where the

transaction is submitted)

All participating sites
(1,2,…n)

Participant’s
image of global

information

Operation

End of operation

Release lock request

Figure 11.6 Operations of a general distributed locking protocol (e.g., decentralized two-phase
locking) in homogeneous distributed DBMS

11.3 Grid Concurrency Control 335

MDBS Reply

Forward final decision
to the originator

Final decision

Talk to participant depending
on its local protocol

Operation request embedded
with global information

Originator site
(wherethe transaction

is submitted)

Multidatabase
management system

(global management layer)

All participants
(1,2,…n)

Check with multi-DBMS
layer if required

Figure 11.7 Operations of a general multi-DBMS protocol

Forward final decision to
the originator Final decision

Forward operation request
to participants

Operation request

Originator site
(where the transactionis

submitted)

Grid Middleware services
(metadata and time stamp
services for this purpose)

All participants
(1,2,…n)

Figure 11.8 Operations of GCC protocol

Figure 11.7 shows the sequence of operations for heterogeneous distributed
DBMS (e.g., multidatabase systems). Figure 11.8 shows the sequence of
operations for the GCC protocol and highlights that the middleware’s function
is very lightweight in a Grid environment, as it acts only as the rerouting node
for the global transaction (specifically from correctness perspective), unlike all
other architectures. All other figures (Figs. 11.5–11.7) have a global image of the
data and have more communication with the sites. It could be noted that the final
decision in Figure 11.8 runs in a straight line from the participants to the originator
via the middleware; this shows that there is no processing at the middleware
and it acts only as a forwarding node. Conversely, Figure 11.7 shows a time lag
after receiving the responses from the participants and before forwarding it to
the originator, as the multi-DBMS layer has to map the responses in a protocol
understandable to the originator.

336 Chapter 11 Grid Concurrency Control

The term “coordinator” is used in Figures 11.5 and 11.6 and “originator” in
Figures 11.7 and 11.8. In both cases, the sites are where the global transaction
is submitted. But the reason to distinguish between the two terms is that in
Figures 11.5 and 11.6 the site also acts as the coordinator of the global transaction,
while in Figures 11.7 and 11.8, because of site autonomy, the site acts only as the
originator of the global transaction. But Figure 11.7 has far more communication
compared with Figure 11.8, with the multi-DBMS layer, as it stores and processes
all the global information.

11.4 CORRECTNESS OF GCC PROTOCOL

A Grid-serializable schedule is considered correct in the Grid environment for
database systems. A concurrency control protocol conforming to theorem 11.1 is
Grid-serializable, and is thus correct. Hence, to show the correctness of the GCC
protocol, any schedule produced by the GCC protocol has the Grid-serializability
property. Proposition 11.1 states the assumption that each DBMS can correctly
schedule the transactions (local transactions and global subtransactions) submitted
to its site.

Proposition 11.1: All local transactions and global subtransactions submitted to
any local scheduler are scheduled in serializable order.

Because of the autonomy of sites, local schedulers cannot communicate with
each other, and because of architectural limitations, the global scheduler cannot
be implemented in a Grid environment. Because of the lack of communication
among the local schedulers and the absence of a global scheduler, it becomes
difficult to maintain consistency of the data. Thus the execution of global sub-
transactions at local database sites must be handled in such a way that data consis-
tency is maintained. The additional requirement for Grid-serializability is stated in
proposition 11.2.

Proposition 11.2: Any two global transactions having more than one subtransac-
tion actively executing simultaneously must follow total-order.

Based on propositions 11.1 and 11.2, the following theorem shows that all
schedules produced by GCC protocol are Grid-serializable.

Theorem 11.2: Every schedule produced by GCC protocol is Grid-serializable.

Proof: The types of possible schedules produced by the GCC are identified first,
and then it can be shown that the schedules are Grid-serializable. Global transac-
tions are broadly classified in two categories:

11.4 Correctness of GCC Protocol 337

(a) Global transactions having only one subtransaction: Global transactions
having a single subtransaction can be scheduled immediately and will
always either precede or follow any of the conflicting transactions because
they execute only on a single site. From proposition 11.1, local schedulers
can schedule the transaction in serializable order.

(b) Global transactions having more than one subtransaction: Global trans-
actions having more than one subtransaction may come under one of the
following two cases:

(i) Although the global transaction has multiple subtransactions, it con-
flicts with other active global transactions at only a single site. This
scenario is not a threat to data consistency, and thus the subtransactions
could be scheduled immediately (Fig. 11.3, line 8). Local schedulers
can correctly schedule transactions in this case.

(ii) The global transaction has multiple transactions and conflicts with
other global transactions at more than one site: Local schedulers
cannot schedule global transactions for this scenario. Hence, the
GCC protocol submits all subtransactions in the queue and these
subtransactions are executed strictly according to the timestamp
attached at the Grid middleware. This ensures that if a subtransaction
of any global transaction, GTi , precedes a subtransaction of any other
global transaction, GTj , at any site, then subtransactions of GTi will
precede subtransactions of GTj at all sites.

Thus for all cases: a, b–i and b– ii schedule conflicting global transactions in
such a way that if any global transaction, GTi , precedes any other global transac-
tion, GTj , at any site, then GTi precedes GTj at all sites. The type of schedules
produced by GCC protocol is thus identified. Next, it is shown that these schedules
are Grid-serializable.

To prove that schedules are Grid-serializable, the Grid-serializability graph
must be acyclic and global transactions must be in total-order. Conflicts of the
following types may occur:

ž Conflict between local and local transactions. The local scheduler is respon-
sible for scheduling local transactions. Total-order is required only for sched-
ules where global subtransactions are involved. From proposition 11.1, local
schedulers can schedule transactions in serializable order.

ž Conflict between global transaction and local transaction. A local transac-
tion executes only in one site. The subtransaction of the global transaction
can only conflict with the local transaction in that site. Thus the local trans-
action and the subtransaction of global transaction are scheduled by the same
scheduler. From proposition 11.1, these are scheduled in serializable order.
Total-order is also maintained, as only one local scheduler is involved in the
serialization process.

ž Conflict between global and global transactions. Assume that an arc
exists from GTi ! GTj at any site DBi . It will be shown that an arc from

338 Chapter 11 Grid Concurrency Control

GTj ! GTi cannot exist in GCC. GTj can either precede GTi at the
database site DBi or at any other database site DBn . Suppose GTj

precedes and conflicts with GTi at data site DBi . This contradicts with
proposition 11.1. Thus GTj cannot precede GTi at DBi . Suppose GTj

precedes and conflicts with GTi at any other data site DBn . If GTj precedes
GTi at any other site, then total-order is not followed and it contradicts
proposition 11.2. Figure 11.3 (line 14) of the GCC protocol prevents the
occurrence of such a scenario. Thus schedules produced by the GCC protocol
are Grid-serializable.

11.5 FEATURES OF GCC PROTOCOL

The concurrency control protocol helps to interleave operations of different trans-
actions while maintaining the consistency of data in the presence of multiple users.
The GCC protocol has the following main features:

(a) Concurrency control in a heterogeneous environment: The GCC protocol
does not need to store global information regarding participating sites; e.g.,
in traditional distributed DBMS, a global lock table stores information of all
locks being accessed by the global transaction. But in the Grid environment,
all database sites might not be using the same concurrency control strategy
(e.g., locking protocol). In the GCC protocol, individual subtransactions are
free to execute the local concurrency control protocol of participating sites.
The Grid middleware is used to monitor the execution order of the conflicting
transactions.

(b) Reducing the load from the originating site: The centralized scheduling
scheme and decentralized consensus-based policies intend to delegate the
originating site of the transaction as the coordinator. Thus the coordinator
site may become a bottleneck when a transaction has to access multiple sites
simultaneously. The GCC protocol delegates the scheduling responsibility
to the respective sites where the data resides without compromising the
correctness of the data, and thus prevents the coordinator from becoming
the bottleneck.

(c) Reducing the number of messages in the internetwork: Centralized and
consensus-based decentralized scheduling schemes need to communicate
with the coordinator to achieve correct schedules. The communication
increases the number of messages in the system. Messages are one of
the most expensive items to handle in any distributed infrastructure. The
GCC protocol has fewer messages moving across the network to achieve
concurrency.

Since the GCC protocol implements total-order on global transactions, the con-
flicting transactions will always proceed in one direction, thereby avoiding the
problem of distributed deadlocks. Local deadlock management is the policy of
the local database site. Because of autonomy restrictions, external interference in

11.8 Exercises 339

the local policy is not possible. Other concurrency control anomalies such as lost
update, dirty read, and unrepeatable read are addressed at the local DBMS level.

The above-mentioned features are due to the architectural requirement of the
Grid. But there is a serious architectural limitation of Grid architecture in con-
currency control protocols. Because of the inability to install a global scheduler,
it becomes difficult to monitor the execution of global subtransactions at differ-
ent database sites. As a result, some valid interleaving of transactions cannot take
place. Thus the resultant schedule becomes stricter than required.

11.6 SUMMARY

Grids are evolving as a new distributed computing infrastructure. Traditional
distributed databases such as distributed database management systems and
multidatabase management systems make use of globally stored information for
concurrency control protocols. Centralized or decentralized consensus-based
policies are mostly employed for these database systems. The Grid architecture
does not support the storage of global information such as global lock tables,
global schedulers, etc. Thus a new concurrency control protocol, called GCC, for
Grid databases is needed.

The GCC protocol has several advantages: It operates in a heterogeneous envi-
ronment; the load of the originator site is reduced compared with traditional dis-
tributed databases; and the number of messages in the network is reduced. But
at the same time, because of the lack of global control and autonomy restrictions
of the Grid architecture, it is difficult to optimize the scheduling process. In this
chapter, the focus was the maintenance of data consistency during scheduling of
the global transactions.

11.7 BIBLIOGRAPHICAL NOTES

Consistency and isolation are two of the ACID properties of transaction, which are
the focus of this chapter. Most of the important work on concurrency control has
been mentioned in the Bibliographical Notes section at the end of Chapter 10. This
covers the work on parallel and grid transaction management by Brayner (DEXA
2001), Burger et al. (BNCOD 1994), Colohan et al. (VLDB 2005), 1993), Machado
and Collet (DASFAA 1997), Wang et al. (Parallel Computing 1997), and Wiekum
and Hasse (VLDB J).

11.8 EXERCISES

11.1. Explain how concurrency control helps to achieve the “C” and “I” of the ACID
properties.

11.2. Explain why individual serializable schedules in each site of the Grid environment
may not produce a serializable global schedule.

340 Chapter 11 Grid Concurrency Control

11.3. Explain the following terminologies:

a. Total-order

b. Grid-serial history

c. Grid-serializable history

d. Grid-serializability graph

e. Grid-serializability theorem

11.4. Summarize the main features of the grid concurrency control (GCC) protocol, and
explain how it solves the concurrency issues in the Grid.

11.5. Compare and contrast the difference between GCC and any other concurrency control
protocols (e.g., distributed databases and multidatabase systems).

11.6. Discuss why the number of messages in the internetwork using GCC is reduced in
comparison with other concurrency control protocols.

Chapter12

Grid Transaction Atomicity
and Durability

In this chapter, the “A” and “D” (atomicity and durability) of ACID properties of
transactions running on Grid databases are explained. Atomic commitment proto-
cols (ACPs) such as two-phase commit (2PC), three-phase commit (3PC), and other
variants of these protocols are used for homogeneous and heterogeneous distributed
DBMS. ACPs designed for homogeneous distributed DBMS are synchronous and
tightly coupled between participating sites, while on the other hand, ACPs designed
for heterogenous DBMS, for example, multidatabase systems, need a global manage-
ment layer for monitoring the execution of global transactions. The former approach
is unsuitable for a Grid database because communication among sites must be asyn-
chronous, and the latter is unsuitable because sites in Grid databases are autonomous
and cannot accept any functional/architectural changes due to external factors.

The purpose of this chapter is twofold. First, an ACP for a Grid database is
described, that is, atomicity in a Grid database is addressed. Failures are unavoid-
able, and hence in the latter part of the chapter the effect of failure on transaction
execution is discussed, including details of different types of logs stored in the origi-
nator and participant sites. The chapter is organized as follows. Section 12.1 presents
the motivation for addressing atomic commitment in Grid databases. Section 12.2
describes the Grid-atomic commit protocol (Grid-ACP) and proves the correctness
of the protocol. The Grid-ACP is extended to handle site failures in Section 12.3,
including the comparison of the Grid-ACP with centralized and distributed recovery
models. Correctness of the recovery protocol is also given.

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

341

342 Chapter 12 Grid Transaction Atomicity and Durability

12.1 MOTIVATION

2PC is the most widely accepted ACP in distributed data environments. 2PC is a
consensus-based protocol, which needs to synchronize individual decisions of all
participating sites to reach a global decision. It involves two phases, the voting
phase and the decision phase. 2PC is also a blocking protocol. For n partici-
pants, 2PC needs 3n message and 3 rounds of message exchange to reach the final
decision: (1) the coordinator broadcasts a request to vote, (2) participants reply
with their vote, and (3) the coordinator broadcasts the decision. Many variations
and optimizations have been proposed to increase the performance of 2PC. But
homogeneity and synchronous communication among sites is the basic assumption
behind the original and other variants of 2PC. Grid architecture is heterogeneous
and autonomous; thus dependence on other sites and synchronous communication
between sites is not a valid assumption.

Multi/federated database systems are heterogeneous, and they have been exten-
sively studied during the last decade. Multi/federated database systems are mostly
studied, designed, and optimized for short-lived and noncollaborative transactions.
These database systems are designed in a bottom-up fashion, that is, the sys-
tem designer knows the design requirements before the system is designed and
deployed. On the other hand, a Grid database supports long-running collaborative
transactions. Design requirements of Grid databases can vary rapidly as the system
is more dynamic than the traditional distributed, multi/federated databases because
sites should be able to join and leave the Grid dynamically without modifications
to the database management systems. In addition, multidatabase systems have the
leverage of a global management layer known as a multidatabase management
system.

The transaction models developed for long-running transactions were designed
with nested transaction structures. Hence, these models are not suitable for the
collaborative environment of Grids. To summarize, the following points are noted:

(1) ACPs designed for homogeneous and synchronous distributed database sys-
tems cannot be implemented in Grid databases because of architectural lim-
itations (Grid databases are heterogeneous and asynchronous).

(2) Multidatabase systems, being heterogeneous and autonomous in nature, are
architecturally closer to the Grid environment. But they enjoy the leverage
of a multidatabase management systems layer, which is absent in Grids.
The multidatabase layer stores global information such as global lock table,
global logs, etc. Because of site autonomy, Grids cannot store global infor-
mation.

(3) A multidatabase employs redo, retry, and compensate approach for ACP.
Redo and retry cannot be implemented in a Grid environment because
both approaches make use of a global management layer. The compensate
approach assumes that no other transaction should be serialized between
the compensated-for transaction and the compensation transaction. This
is impossible to implement in Grids because of the lack of a top-layer

12.2 Grid Atomic Commit Protocol (Grid-ACP) 343

management system and autonomy restrictions of sites. Grid databases need
to operate in a loosely coupled service-oriented architecture.

Even from an architectural perspective (apart from a data consistency per-
spective), it is difficult to implement traditional ACPs in Grid environment. Grid
databases will access data from globally separated data sites via WWW. Most
of the distributed data architecture uses distributed objects for communication,
for example, CORBA. CORBA has major limitations while operating on WWW.
CORBA was not designed to work with HTTP, the standard web-based protocol.
Thus there is a need to develop protocols that can be easily integrated into web
services.

In this chapter, an ACP suitable for heterogeneous, autonomous, and asyn-
chronous Grid databases is presented.

12.2 GRID ATOMIC COMMIT PROTOCOL (GRID-ACP)

The concept of compensating transactions is used in Grid-ACP. The execution
of compensating transactions results in semantic atomicity. Semantic atomicity is
defined as follows:

Definition 12.1: Let Ti be a global transaction and CTi be a collection of local
compensating subtransactions fCT 1

i ; CT 2
i ; : : : ; CT n

i g, one for each site where Ti

executes. Ti is semantically atomic if and only if either Ti is committed at all sites
where Ti executes, or all CT j

i (where j D 1; 2 : : : n) are committed at all sites
where Ti has committed.

12.2.1 State Diagram of Grid-ACP

Figure 12.1 shows the state diagram of the proposed grid-atomic commitment pro-
tocol (Grid-ACP). A pre-abort state is introduced in the originator, and two new
states, the sleep and compensate states, are introduced in the participant’s state dia-
gram. The subtransaction will enter the “sleep” state when it has finished execution
and is ready to release all acquired resources such as locks on data items, comput-
ing resources, etc. Because of the autonomy restriction in Grids, all resources must
be released according to the participating site’s requirement and cannot wait for
the global decision. Thus the “sleep” state is an indication to transaction managers
that the local subtransaction of the global transaction at the participating site has
decided to commit. But the global decision is not yet made. At the time when
the subtransaction enters into the “sleep” state, all computing and data resources
can be released. All sites are autonomous and thus cannot hold resources for any
external process.

If any of the other participating sites decide to abort any cohort of the global
transaction, Ti , the originator site informs all the participating sites (in “sleep”

344 Chapter 12 Grid Transaction Atomicity and Durability

State diagram of participating site

Running

Sleep

Commit

Abort

Compensate

Running

Wait

Commit Pre-Abort

Abort

State diagram of transaction originator

Figure 12.1 State diagram of Grid-ACP

state) of Ti to start the compensation. While the compensating transaction is exe-
cuting, the site is in the compensate state. If the compensating transaction fails,
it is re-executed until it is completed successfully. This raises the question as to
whether the compensating transaction can keep on executing forever. The answer
is “no,” because the compensating transaction is the logical inverse of the commit-
ted subtransaction. Since the subtransaction decided to successfully commit and
was in the “sleep” state, its logical inverse must also eventually commit. Once the
compensating transaction successfully commits, the subtransaction is semantically
aborted.

If the global transaction decides to commit, it can directly enter into the com-
mit state. But if the global decision is to abort, the originator of the transaction
cannot directly enter into the abort state. The originator must be assured that all
participants have successfully compensated, that is, semantically aborted, and thus
it enters in the pre-abort state. After receiving confirmation that all sleeping sub-
transactions have been successfully aborted, the originator enters into the abort
state.

12.2.2 Grid-ACP Algorithm

The Grid-ACP algorithm is as follows:

(1) Based on the information available at the middleware, the global transaction
is divided into subtransactions and submitted to the participating database
systems.

(2) The sites are autonomous in nature; hence after executing their portion of
the subtransactions, participants go into the “sleep” state. The participants

12.2 Grid Atomic Commit Protocol (Grid-ACP) 345

then inform the originator about the outcome of the subtransactions. Neces-
sary information is logged. Details of log files are discussed in the following
sections.

(3) The originator, after collecting responses from all participants, decides
whether or not to commit or to abort the global transaction. If all
participants decide to go into the “sleep” state, the decision is to commit,
or else the decision is to abort. If the decision is to abort, the message is
sent only to those participants who are in the sleep state. If the decision is
to commit, the decision is sent to all participants.

(4) (a) If the participating site decides to commit and is in the “sleep” state and
the global decision is also to commit, the subtransaction can go directly
to the commit state because local and global decisions are the same.

(b) If the participating site decides to commit and is in the “sleep” state, but
the final decision is to abort the global transaction, then the subtrans-
action, which is in the sleep state, must be aborted. But, as mentioned
earlier, when the local site enters the sleep state it releases all locks on
data items as well as all acquired resources. This makes abortion of the
transaction impossible. Hence, a compensating transaction must be exe-
cuted to reverse all the changes, using compensation rules, to restore the
semantics of the database before executing the original subtransaction,
thereby achieving semantic autonomy. If the compensating transaction
fails, it is resubmitted until it commits. The compensating transaction
must eventually commit, as it is a logical inverse of the “sleeping” trans-
action. We are not defining the compensation rules as they are out of the
scope of this study.

Grid-ACP for the originator of the global transaction is shown in Figure 12.2.
Grid-ACP for participants of the global transaction is shown in Figure 12.3.

Algorithm: Originator’s algorithm for Grid-ACP

submit subtransactions to participants;
wait for response from all participants;

1. if all response to sleep
2. write commit record in log;
3. send global�commit to all participants;

else
4. write abort record in log;
5. send global�abort to participants, decided

to commit;
6. wait for response from these participants;

Figure 12.2 Originator’s algorithm for Grid-ACP

346 Chapter 12 Grid Transaction Atomicity and Durability

Algorithm: Participant’s algorithm for Grid-ACP

received subtransaction from originator
if participant decides to commit

write sleep in log
send commit decision to originator

1. enter sleep state wait for decision from
originator if decision is commit

write commit in participant log
else if decision is abort
start compensating transaction for
subtransaction

2. if compensating transaction aborts
restart compensating transaction until it
commits
write commit for compensating transaction
send acknowledgement to originator

else
write commit for compensating transaction

else if participant decides to abort
write abort in log
send abort decision to originator

Figure 12.3 Participant’s algorithm for Grid-ACP

12.2.3 Early-Abort Grid-ACP

Step 3 of the Grid-ACP algorithm can be modified to improve the performance.
The originator can decide to abort as soon as it receives the first abort from any
of the participants. But with this strategy, the abort message has to be sent to all
participants, not only to those who decided to commit. Thus there is a trade-off
between saving the number of messages in the network and the processing time
of those subtransactions that are still active and have not yet reached a decision.
The participants’ algorithm for early-abort Grid-ACP will be same as Figure 12.3,
and hence the discussion of the participants’ algorithm is omitted for the sake
of brevity. Figure 12.4 shows the modified algorithm of the originator for the
early-abort protocol.

The originator in the Grid-ACP algorithm waits until response from all par-
ticipating sites is received (line 1, Fig. 12.2). Those participants who decided
to abort would not be affected by the originator’s decision. Thus if the global
decision is to abort the transaction, the decision is only sent to participants that
have decided to commit their subtransactions (and are in the “sleep” state). This
strategy may sometimes become computationally expensive, for example, say a
global transaction has n subtransactions. Suppose the first subtransaction returns
an abort decision; then the final decision must be a global abort. Although the
global decision can be made from available information, the originator still has

12.2 Grid Atomic Commit Protocol (Grid-ACP) 347

Algorithm: algorithm for early-abort Grid-ACP

submit subtransactions to participants;
wait for response from participants;

1. if any response is abort
2. write abort record in log;
3. send global�abort to all participants;
4. wait for response from participants;

else if all response to sleep then begin
5. write commit record in log;
6. send global�commit to all participants;

Figure 12.4 Originator’s algorithm for early-abort Grid-ACP

to wait for other (n�1) decisions to arrive from the participants. If all other par-
ticipants decided to commit their subtransactions, effectively the computation is
wasted, first in completing the subtransactions and then in compensating the sub-
transactions.

The originator’s algorithm for the early-abort Grid-ACP can make the global
decision as soon as the first abort decision from any participant is received (line 1,
Fig. 12.4). An abort message to all participant sites can be sent immediately (line 3,
Fig. 12.4), and the computation cost of other participants can be saved. Thus the
overhead of compensation could also be reduced. If the last decision instead of
the first one that was received from the participants is “abort,” then the early-abort
Grid-ACP reduces to a normal Grid-ACP because all the participants have already
finished execution.

EXAMPLE

Let us consider a simple example to demonstrate the working of Grid-ACP. There is no
subtransaction executing at the originator site in this case. Consider the following cases:

Case 1 (atomicity of a single transaction): Considering the execution of subtransactions
of equations 11.1 and 11.2 from Chapter 11.

ST12 D r12.O1/r12.O2/w12.O1/C12

ST13 D w13.O3/C13

Subtransactions running to successful completion: Subtransactions will autonomously
execute and enter into the “sleep” state (step 2 of Grid-ACP and line 1 of Fig. 12.3). Since
ST12 and ST13 both decided to commit, the originator’s decision is to “commit,” which is
communicated to the participants (step 3 of Grid-ACP and lines 1 to 3 of Fig. 12.2). As the
global decision matches with the local ones, both subtransactions update their state from
“sleep” to “commit” (step 4a of Grid-ACP, and else part of Fig. 12.3).

Any subtransaction decides to abort: Suppose ST13 decides to abort. The originator’s
decision will now be to abort the global transaction (lines 4 to 6 of Fig. 12.2). ST13 has
unilaterally decided to abort, and the decision only needs to be sent to ST12 at site 2. Since

348 Chapter 12 Grid Transaction Atomicity and Durability

ST12 decided to commit, it starts the compensating procedure (step 4b of Grid-ACP and
else if part of Fig. 12.3). Since the compensating transaction nullifies the effect of the ST12,
it may be of the following form:

CT12 (compensating transaction for global transaction 1 at site 2)

D w12 (old value of O1/

If CT12 aborts, it is reexecuted to successful completion, so that it reflects that ST12 has
aborted. The acknowledgement is sent back to the originator.

Case 2 (atomicity in the presence of multiple transactions): Maintaining atomicity in
the presence of multiple transactions is more complicated, because of the fact that other
transactions may have read the values written by the “sleeping” transaction. If all the sub-
transactions execute to completion, then the execution is similar to case 1. Therefore, we
only discuss the case of aborting transactions. Consider global transactions, T1 and T2, from
Chapter 11.

T1 D r1.O1/r1.O2/w1.O3/w1.O1/C1

T2 D r2.O1/r2.O3/w2.O4/w2.O1/C2

Consider the following history:

H1 D r12.O1/r12.O2/w12.O1/S12r22.O1/w22.O1/

.S12 means ST12 is in sleep state)

In the above history H1, ST12 is waiting for the global decision of T2. Suppose the
global decision is to abort T2, then ST12 must also abort. Consequently, ST22 should also
abort, as it has read from ST12. This situation may lead to cascading aborts. Considering the
autonomous behavior of Grids, this may be an unavoidable situation. If any database site
implements a strict schedule, there will be no cascading aborts, but it is not in the control
of the middleware. As a preventive measure, the following two options can be considered:

(a) After a transaction enters into “sleep” state, a ceiling or cap value can be defined to
restrict the number of cascading aborts.

(b) A conflicting global transaction may not be submitted to a conflicting site until the
originator has made the final decision on the already executing global transaction,
so that cascading aborts may be avoided.

12.2.4 Discussion

The purpose of Grid-ACP and early-abort Grid-ACP is to deal with autonomy and
heterogeneity between sites. Because of autonomy, synchronous communication
between the originator and participants is not possible, and thus participants decide
to commit unilaterally. Deciding to commit the transaction unilaterally and without
consulting the originator does not come without a cost. The algorithm pays a price
for releasing locks and resources early, which is unavoidable in an autonomous
environment like the Grid. If the transaction releases the resources early, then
other transactions may read the values written by this transaction. To handle this

12.2 Grid Atomic Commit Protocol (Grid-ACP) 349

problem, traditional multidatabase systems implement a top layer of multidatabase
management system. The top-layer management system enforces a criterion that
prevents execution of any other global transaction between the compensated-for
transaction and the compensating transaction.

Implementation of a top-layer management system is not possible in Grids for
two reasons: (i/ the autonomy of sites and (ii) the criterion becomes too restric-
tive in the Grid environment (heterogeneous). The absence of a global management
layer increases the chances of cascading aborts. For example, any local transaction
LTi that reads data written by any global transaction Ts in the sleep state cannot
decide to commit. If Ts has to abort from the sleep state, then the local transaction
LTi must also abort, thus having cascading aborts or compensating transactions.
Hence, to avoid cascading aborts/compensation, any transaction that reads from
values written by a transaction that is in the sleep state must also not commit
until the “sleeping” transaction commits. But, considering the heterogeneity and
autonomy properties of the Grid architecture, cascading aborts/compensations are
unavoidable. Thus the purpose of the “sleep” state becomes twofold. First, it acts as
an intermediate step before the commit state to encounter autonomy of the archi-
tecture, and second, the “sleep” state can be used by the application to cap the
number of cascading aborts.

Implementing the “sleep” state does not need any modification to the local
transaction manager module. The “sleep” state is defined in the interface, and
hence no changes are required in any local modules. Thus the autonomy of the
individual site is maintained.

12.2.5 Message and Time Complexity Comparison
Analysis

The time and message complexity of the algorithm are described below.

Time Complexity Analysis

The Grid-ACP needs two rounds of messages under normal conditions: (1) the
participant sends its decision to commit/abort and (2) the decision of the originator
is communicated to participants. This gives an impression of 2PC, but the state
of participants after sending the decision is different. While 2PC enters in wait
state and holds all the resources, computing, and data, until the global decision
is received, Grid-ACP releases all resources after sending the local decision and
enters into a “sleep” state.

Message Complexity Analysis

Let the number of participants be n. Considering that the originator sends the final
decision to all the sites, including those sites it has decided to abort, the number of
messages in each round is n. Thus maximum number of messages required is 2n to
reach a consistent decision under normal conditions. Early-abort Grid-ACP takes

350 Chapter 12 Grid Transaction Atomicity and Durability

Table 12.1 Message and time complexity of ACPs

Protocols Messages Rounds
2PC 3n 3
3PC 5n 5

Grid-ACP 2n 2
Grid-ACP for early abort .i C n/, i th message is the abort decision 2

.i C n/ messages to reach a decision. Where 1 � i � n, the i th message received
is the abort decision from the subtransaction. The early-abort Grid-ACP behaves
like a Grid-ACP if the last message received by the originator is the abort decision.
If the global decision is to commit, then both protocols behave in a similar manner.

Table 12.1 shows the message and time complexity of Grid-ACP and compares
it with 2PC and 3PC protocols.

12.2.6 Correctness of Grid-ACP

An atomic commitment algorithm ensures that all processes reach a decision such
that:

AC1: All processes that reach a decision reach the same one.

AC2: A process cannot reverse its decision after it has reached one.

AC3: The commit decision can be reached only if all processes voted “yes”.

AC4: If there are no failures and all processes voted “yes”, then the decision
will be to commit.

Grid-ACP meets the requirements mentioned above. Since the protocol does not
use the wait state for the participants, condition AC2 is not valid for our discussion.
AC1 is the main objective of the protocol. AC3 and AC4 will be proved while AC1
is proved.

Lemma 12.1: If one subtransaction aborts, all participating subtransactions also
abort.

Proof: Referring to Step 3 of the algorithm, if even one participant decided to
abort, the originator’s decision is to abort. The decision is conveyed to all those
participants who decided to commit and are in the “sleep” state. The abort decision
is not required to send to those participants who decided to abort, because any
participant deciding to abort may abort its subtransactions unilaterally. If there is
no communication failure, all sites will eventually receive the message and are in
a consistent state, that is, “abort” in this case.

Theorem 12.1: All participating sites reach the same final decision.

12.3 Handling Failure of Sites with Grid-ACP 351

Proof: The theorem is proved in two parts: Part I for consistent commit and Part
II for consistent abort.

Part I: In this part, it is shown that when the global decision is to commit, all
participants commit. From step 2 of the algorithm, it is clear that the participants
execute autonomously. If the local decision is to commit, the information is logged
in the stable storage and the subtransaction goes into the sleep state after sending
a message to the originator. If the originator of the transaction finds a commit
decision in the response, it sends the final commit to all participants. In this case,
the participant is not required to perform any action, as all the resources were
already released when the participant entered into the “sleep” state. The participant
just has to mark the migration of the transaction’s state from “sleep” to “commit.”

Part II: The participants have to do more computation to achieve atomicity
if the global decision is to abort. In this part, it is shown that if the global deci-
sion is to abort, all participants decide to abort. From lemma 12.1, it is clear that
all participants who decide to commit now receive an abort decision from the
originator. Those participants deciding to abort have already aborted their sub-
transactions unilaterally. Those subtransactions that have decided to commit have
already released locks on data items and cannot be aborted. Hence, compensating
transactions are constructed using the event-condition-action or the compensation
rules. These compensating transactions are then executed to achieve the semantic
atomicity (step 4b of the algorithm). To achieve semantic atomicity, the compen-
sating transaction must commit. If the compensating transaction aborts for some
reason, it is re-executed until it commits. The compensating transaction must even-
tually commit, as it is a logical inverse of a committed transaction. This is shown in
the state diagram by a self-referring compensate state (Fig. 12.1), and line 2 of the
participant’s algorithm (Fig. 12.3). Although the compensating transaction com-
mits, the subtransaction semantically aborts. Thus all the participants terminate
with a consistent decision.

12.3 HANDLING FAILURE OF SITES WITH GRID-ACP

In an earlier section, ACP for Grid databases in a failure-free environment was
discussed. Failures are inevitable in real life. In this section, the earlier proposed
Grid-ACP is extended to handle failures.

12.3.1 Model for Storing Log Files at the Originator
and Participating Sites

Traditional distributed databases store global logs for failure recovery. As
discussed above, because of architectural limitations, Grid databases cannot store
global logs. In the absence of global logs, distributed data can become corrupted.
Thus the interface of the sites must contain information in local logs in order
to recover from these failures. Figure 12.5 shows the model for storing logs at
various sites.

352 Chapter 12 Grid Transaction Atomicity and Durability

Originator-site
(Generates unique

GTID for GT)

Participating-site 1

GT
Termination log

GT
Active log

GST
Ready log

GST
Active log

GST
Termination log

GST
Active log

GST
Termination log

Participating-site 2

Legend :
GT – Global Transaction
GST – Global Subtransaction
GTID – Global Transaction Identifier

Participating-site n…

GST
Active log

GST
Termination log

Figure 12.5 Model for storing log information at originator and participant sites

Any site can act as an originator or as a participant simultaneously, but for
pedagogical simplicity in Figure 12.5 the originator site is distinguished from the
participant sites. Figure 12.5 shows that the information for active global transac-
tions must be stored at participants’ sites as well as at the originator site. This log
information is in addition to what is required by the sites to maintain local logs, and
is implemented in the interface without any modifications to the local transaction
managers.

12.3.2 Logs Required at the Originator Site

The following logs are required at each originator site (Fig. 12.5):

(1) Global transaction active log: When a global transaction is submitted to the
originator, it is forwarded to the Grid middleware, which generates a glob-
ally unique identifier (GTID). The global transaction (GT) is then divided
into subtransactions depending on the different distributed databases it has
to access. Next, the global transaction active log at the originator is updated
with GTID. Subtransactions are then submitted to respective database sites,
and each database site is called a participant of the GT.

(2) Global subtransaction ready log: After the subtransaction has finished exe-
cution at the participating site, the originator is informed about the decision.
If the participant’s decision is to commit and the subtransaction is not the last

12.3 Handling Failure of Sites with Grid-ACP 353

cohort of the GT, then the global subtransaction (GST) ready log is updated
with the subtransaction’s decision.

(3) Global transaction termination log: If the last subtransaction decides to
commit along with all other subtransactions, then the originator also decides
to commit. Global transaction termination log is updated for the respective
GTID and sends the final decision to all participants. If any of the subtrans-
actions decided to abort, then the global decision is “abort” and the GT
termination log is accordingly updated.

12.3.3 Logs Required at the Participant Site

The following logs are required at each participating site (Fig. 12.5):

(1) Global subtransaction active log: As soon as the participant receives the sub-
transaction, it becomes active. The subtransaction is added in the GST active
log. If the subtransaction executes successfully, it enters into the “sleep” state
and the GST active log is updated.

(2) Global subtransaction termination log: If the subtransaction decides to
abort, it can do so unilaterally, and hence the GST termination log is updated
immediately. Otherwise, when the participant receives the global decision,
the GST termination log is updated accordingly.

A global transaction can have one or more subtransaction(s). Participants do not
need a ready log; this can be figured out from the combination of the GST active
and GST termination logs. The “sleep” state is updated in the active log, which
indicates that the local decision is to commit the subtransaction. Thus the ready
log is not required for participants.

12.3.4 Failure Recovery Algorithm for Grid-ACP

Above in this chapter, various states of executing global transactions at the orig-
inator as well as at the participants’ sites were outlined (Fig. 12.1). Sites may
fail in any state during transaction execution. There could be different combi-
nations of site failure, for example, failure of only the participants, failure of
only the originator, and simultaneous failure of both participants and originator.
In this section, recovery procedures for participants as well as for the originator
are proposed. The recovery procedure can handle failure of global transactions
executing in various states (from Fig. 12.1). Recovery algorithms for the origina-
tor and participants are discussed separately. There are two important points to
make here, before we proceed. First, without loss of generality, participants and
originators are distinguished, and second, global logs are not available for Grid
databases.

354 Chapter 12 Grid Transaction Atomicity and Durability

Participant Recovery Procedure

The participant’s recovery procedure is as follows.

Step 1: Restart the participating DBMS.

Step 2: Recover local transactions by using information stored in the log. Local
transactions access only a single database site. Hence, local transactions
can be recovered with the centralized database system’s techniques.

Step 3: The participating site then checks in the global subtransaction active
log, whether it is executing a subtransaction of any global transaction.

Step 3A: If the site does not have any cohort of global transactions,
then the site can recover independently by using local logs.

Step 3B: If the site is executing local subtransactions of any global
transactions, the originator site of the respective global trans-
action is informed. The site is then in a global recovery mode,
and normal access to the site is blocked until the recovery
process is completed.

Case I Participating site failed in running state: The subtransaction is
aborted, the GTID from the global subtransaction active log is removed,
“abort” is appended to the global subtransaction termination log, and the
originator is informed of the decision.
Case II Participating site failed during compensate state: This implies
that the participant failed after the global decision was received
but before the compensation was successfully executed. Hence, the
subtransaction must be semantically aborted. After recovery, if the GST
termination log contains abort but GTID still exists in the GST active
log, then the participant knows it failed during the compensate state. The
compensating transaction is then rerun to completion. After successful
compensation, GTID is removed from the global subtransaction active
log and acknowledgment is sent to the originator.
Case III Participating site failed during the sleep state: The participant
in this state may not proceed unless it receives the decision from the
originator. If GTID exists in the GST active log and no decision (commit
or abort) can be found in the GST termination log regarding that GTID,
then the participant knows that it failed during the sleep state.

(1) The GT termination log at the originator contains commit:
This implies that while the participant failed, all the other
participants also decided to commit (the failed participant
also decided to commit, as it is in sleep state). The originator
replies with “commit,” the participant recovers and updates
the GST termination log and removes GTID from GST active
log.

(2) The GT termination log at the originator contains abort: This
implies that although the failed participant decided to com-
mit, some other participant or the originator itself must have

12.3 Handling Failure of Sites with Grid-ACP 355

decided to abort the GT and thus the final decision was to
abort the transaction. The originator replies with “abort,” and
the participant executes the compensating transaction. Suc-
cessful completion of the compensating transaction semanti-
cally aborts the subtransaction. The GST termination log is
then appended with “abort,” and the GTID is removed from
the GST active log.

(3) The GT is active (i.e., GT termination log has no information
on transaction termination): If the GT is active, this implies
that the originator is still waiting for the decision of other par-
ticipants. The originator replies with “active,” and the partici-
pant can safely recover to the state where it failed, i.e., sleep.
No new entry in the participant’s log is required.

(4) The GT termination log at originator contains pre-abort: This
indicates that the global decision to abort has been made and
the originator is waiting for acknowledgements. If “abort” is
not found in the GST termination log at the participant, then
it appends “abort” to GST termination log. The participant
should then execute the compensation rules and acknowledge
the abortion of the subtransaction and remove the GTID from
the GST active log.

The originator makes the final decision as to when all subtransactions of the
global transaction have the ready entry in the GST ready log or any of the sub-
transactions decide to abort.

Step 4: The decision is made depending on the message that the participant
receives in step 2 or step 3 from the originator. Participants’ logs are
updated accordingly.

Step 5: The participating DBMS regains normal operations and starts accepting
external requests.

Step 6: The participant’s recovery process is terminated.

The algorithm first checks whether the site could recover locally, that is, whether
no active subtransactions could be found at the participant (line 1 of Fig. 12.6,
step 2 of the recovery procedure). If the participant had any active subtransaction
at the time of failure (line 2), it checks the state of the global subtransaction. If
the subtransactions executing at the participant is in the “running” state (line 3,
step 3B (case I)), the decision is to abort the subtransaction and the originator is
informed. If the subtransaction was in the “compensate” state during failure (line
4, step 3B (case II)), then the compensating transaction is rerun to completion. If
the subtransaction was in the “sleep” state during failure (line 5, step 3B (case III)),
then the participant checks the status of the originator before making any decision.
The originator could be in commit (line 6), abort/pre-abort (line 7), or active state
(line 8).

356 Chapter 12 Grid Transaction Atomicity and Durability

Algorithm: Recovery algorithm of Grid-ACP for
participant site

Variables used in the algorithm
TID: Transaction Identifier
GTi: Global transaction submitted at originator site i
GSTij: Subtransactions of GTi executing at participant
site j
CTi: Compensating transaction at site i.
ACK: Acknowledgement

// stores TID of active transaction
ALor: Active Log stored at originator site

// stores acknowledgement from subtransactions
// eg. ‘active’, ‘ready’ etc.
RLor: Ready Log stored at originator site

//stores final decision on TID
TLor: Termination Log stored at originator site

// stores TID of respective subtransactions
ALpa: Active Log stored at participating site

// decision of local subtransactions
TLpa: Termination Log stored at participating site

Get�TID(log�name): Function that returns set of global
transaction ID’s in log�name log.
Get�state (log�name, TID): Functions that returns
the state of TID in the respective site.
//states can be ‘active’, ‘ready’, etc.

Cardinality (X): returns number of element in set X

begin recovery procedure // recovery procedure
for GTi

1. if Get�TID(ALpa) D φ

recover locally
//a subtransactions of global transaction, GTi,
found

2. else if Get�TID(ALpa) 6D φ

3. if GSTij =2Get�TID (TLpa) // ‘running’ state
abort GSTij // subtransactions decides to abort
send abort decision to originator

4. if GSTij 2Get�TID(TLpa)^Get�state(TLpa,TID) D
‘compensate’

run CTi
send abort message to originator
remove TID from ALpa

Figure 12.6 Recovery algorithm of Grid-ACP for participant site

12.3 Handling Failure of Sites with Grid-ACP 357

5. if GSTij 2 Get�TID (TLpa) ^ Get�state(TLpa, TID) D
‘sleep’

6. if Get_state(TLor, TID) D ‘commit’
recover GSTij to values before is failed
update TLpa for GSTij to ‘commit’
remove TID from ALpa

7. if Get_state(TLor, TID) D ‘abort’ _ ‘pre-abort’
run CTi
remove TID from ALpa

8. if Get_state(TLor, TID) D ‘active’
recover GSTij to previous ‘sleep’ state

end recovery procedure

Figure 12.6 (Continued)

Originator Recovery Procedure

The originator’s recovery procedure is as follows:

Step 1: Restart the originator site and restore the values from the log.

Step 2: Determine the status of outstanding subtransactions executing in multi-
ple participants.
Case I The originator is in the running state (subtransaction running at
originator is active): If the subtransaction of the global transaction exe-
cuting at the originator is active during the failure, the originator decides
to abort, informs all participants to abort, and appends “abort” to GT
termination log.
Case II The originator is in the wait state (subtransaction executing at
the originator has successfully executed but waiting for response of other
participants), that is, GTID can be found in the GT active log and no
entry regarding the GTID in GT termination log. The number of “ready”
entries in the GST ready log is also less than the number of subtransac-
tions. The originator checks the status of participants before taking the
final decision.

(i) If all the participating subtransactions for the corresponding global
transaction are in the running state, then the originator allows it to
continue normally.

(ii) If all the participating subtransactions are in the sleep state, then the
originator decides to commit the global transaction. If some partic-
ipants are running and some are in “sleep” state, then the originator
records the information in the GST ready log for subtransactions
in “sleep” state and lets the active subtransactions complete normal
execution.

(iii) If any of the participating sites are in either the “abort” or
“compensate” state, then this signifies that the originator failed
after the global decision to abort the transaction was made but
could not update the log. The GT termination log is updated with

358 Chapter 12 Grid Transaction Atomicity and Durability

“pre-abort”. The originator then informs all participants, and it
waits for acknowledgement from the participants.

(iv) If the originator does not receive any status information from
the participant, then the originator assumes that the participating
DBMS has failed and it is not operational. The recovery process
is then blocked, and it waits for the participant to recover. For
performance reasons, the originator may be designed to wait only
for a predecided amount of time, that is, a timeout period is fixed.
The originator starts the abort procedure if the participant does not
recover during the specified timeout period.

Case III The originator is in the commit state, that is, the “commit”
entry is found in the GT termination log, but the global transaction is
still active, that is, GTID still exists in the GT active log. Since the origi-
nator decided to commit, this indicates that all subtransactions executed
to successful completion. Hence, all subtransactions can only be in the
sleep or commit state.
(i) If the participant is in the sleep state, then the originator instructs

the participant about successful completion of the global transac-
tion and updates the originator’s log. The participant then enters the
commit state.

(ii) If the participant is already in the commit state, then the originator
only has to update its log.
After the response is sent to all participants, the GTID is removed
from the GT active log. This case is also valid if the “commit” entry
is not found in the GT termination log, but the number of “ready”
entries in the GST ready log is equal to the number of executing
subtransactions.

Case IV The originator is in the pre-abort/abort state, that is, a
“pre-abort” or “abort” entry is found in the GT termination log. Since
the originator decided to abort, this indicates that any of the subtransac-
tions must have decided to abort. If the originator is in an “abort” state,
then all participants must be in an “abort” state, since the originator
enters the “abort” state only after receiving all acknowledgements.
If the originator is in the pre-abort state, then it is waiting for acknowl-
edgment from some of the participants. Thus the participants can be
either in the “sleep” or “abort” state.

(i) If the participant is in the “sleep” state, it communicates an “abort”
decision to the originator. The participant then sends an acknowl-
edgment to the originator after successful execution of the compen-
sation procedure.

(ii) If the participant is in the “abort” state, acknowledgment from the
participant is updated in the originator site. When all acknowl-
edgments have been received from the participants, the origina-
tor moves from the “pre-abort” to “abort” state and the GTID is
removed from the GT active log.

12.3 Handling Failure of Sites with Grid-ACP 359

Step 3: Depending on the above-mentioned scenario, responses from all partic-
ipants are collected. If all participants’ responses were to commit, i.e.
they are in the ‘sleep’ state, then the global decision is to commit, which
is conveyed to all participants. If any of the participants decided to abort,
then the global abort decision is conveyed to all participants. The GT
termination log is updated accordingly.

Step 4: The global recovery process terminates.

A brief explanation of Figure 12.7 is as follows. If the global transaction is
active, that is, GTID is in GT active log and no termination decision is made (line
1), then the global transaction is active and thus the abort procedure is commenced.
If the termination log has a wait entry in the originator site and the transaction is
active (line 2), then the originator must check the status of subtransactions execut-
ing at all participants. All subtransactions of the global transaction could be active
and running (line 3); some or all of the subtransactions can be in a sleep state (line
4 and line 5); any of the subtransactions can be in an abort or pre-abort state (line
6); or there can be no reply from the participants (line 7). If the GTID exists in the
originator’s termination log and the state of the global transaction was “commit”
(line 8), then the participants can be in either the “commit” or “sleep” state.

If the failure occurred during the pre-abort state of the global transaction (line
9), then participants can be in the “sleep” or “abort” state. If the transaction was
active and the termination log had an abort entry (line 10), then the site is recovered
to its earlier state. The transaction enters into an abort state only after receiving
acknowledgments from all participants. This implies that the failure occurred after
the global transaction was aborted, but before the GTID was removed from the
active log. Thus the GTID is removed from the active log after recovery (line 11).
Hence, the pre-abort state is important in Grid-ACP. The pre-abort state acts as an
intermediary state, while the global transaction receives acknowledgment from all
subtransactions.

12.3.5 Comparison of Recovery Protocols

This section compares the architecture of two centralized recovery models:
the recovery model for DBMS with global information (distributed and multi-
database), and the recovery model for DBMS without global information (Grid
database).

Figure 12.8 shows the recovery model for an individual database site. The stable
database storage may contain values written by uncommitted transactions, or might
not contain the values written by the actually committed transactions, because of
the buffering of data in the cache. After the system has recovered from the failure,
the recovery manager must be able to restore the committed state. Logs are updated
in the stable storage to help the recovery process. A typical entry in the log file
looks like [Ti ; o; v], which means that transaction Ti wrote the value v into the
data object o. The recovery manager also keeps the record of active, committed,
and aborted transactions in the log.

360 Chapter 12 Grid Transaction Atomicity and Durability

Algorithm: Recovery algorithm of Grid-ACP for
originator site

Variables used in the originator’s algorithm are same as
that of participant’s algorithm.
begin recovery procedure
// recovery process for Global Transaction GTi
// global transaction is active
1. if GTi 2Get_TID (ALor)^ GTi =2 Get_TID (TLor)

start abort procedure for GTi
remove GTID from ALor

else
2. if GTi 2Get_TID (ALor)^ Get_state (TLor, TID) D ‘wait’

send request to check participants state
3. if 8 GSTij =2Get_TID (TLpa) // All STs running

recover originator to wait state
4. if 9 GSTij 2Get_TID(TLpa)^Get_state(TLpa,TID)D‘sleep’

for each cohort update TLor to ‘sleep’
5. if (Cardinality (Get_state (TLpa, TID)) D

Cardinality (GST))
// if all participants sleep, start commit

start commit procedure
send message to all GST

6. if 9GSTij 2Get_TID(TLpa)^(Get_state(TLpa, TID)D‘abort’
_‘pre-abort’
start global abort procedure
remove 8GST from TLpa

7. if no response from participant
wait till timeout period then start abort

8. if GTi 2Get_TID (TLor)^Get_state(TLor, TID)D‘commit’
// originator in commit state

if Get_state (TLpa, TID) D ‘commit’
send ACK of commit from participant to
originator

if Get_state (TLpa, TID) D ‘sleep’
send message to participant to commit

9. if GTi 2Get_TID (TLor)^Get_state (TLor, TID)D ‘pre-abort’
if Get_state (TLpa, TID) D ‘sleep’

send message to participant to commit
run CTi

if Get_state (TLpa, TID) D ‘abort’
send ACK of abort from participant to
originator

10.if GTi 2 Get_TID (TLor)^ Get_state (TLor, TID) D ‘abort’
11. recover to state before failure. Remove GTID

from ALor

Figure 12.7 Recovery algorithm of Grid-ACP for originator site

12.3 Handling Failure of Sites with Grid-ACP 361

Transaction Manager

Recovery Manager

Cache Manager
Volatile
Cache

Stable data
base storage

Log file

Restart (recovery after
system failure)

Read /
Write

Read /
Write

Read /
Write

Fetch / Flush

Read / Write / Commit / Abort

Transactions
T1, T2, … etc.

Figure 12.8 Recovery model in centralized DBMS

In distributed DBMS recovery manager architecture (shown in Fig. 12.9), a
global log (stored in global stable storage) is also required in addition to the
local logs. The global recovery manager stores critical information required to
recover sites from failure. Similar to the centralized approach, the distributed
DBMS also requires that only the effects of committed transactions be retained
by all databases. A single global log is maintained on the global management
layer’s stable storage. The active completion and termination log of the global
transactions, along with subtransactions, is stored in the global stable storage as
shown in Figure 12.9.

The major architectural difference between the Grid database’s recovery model
(shown in Fig. 12.10) and the distributed DBMS recovery model (Fig. 12.9) is
the absence of a global log. During the recovery process, the absence of global
information may lead to an incorrect database state. Hence, additional informa-
tion must be stored at individual database sites to maintain the consistency of
data, as discussed in Figure 12.5. Also, in Figure 12.9 intermediate results can be
stored during the execution of global transactions, but because of the autonomous
sites, there is no provision for storing intermediate results in Figure 12.5 and
Figure 12.10. The algorithms in Figure 12.6 and Figure 12.7 show the recovery
process during various combinations of site failures with the help of independent
recovery managers and local log entries using the “sleep” state.

12.3.6 Correctness of Recovery Algorithm

A recovery protocol is correct if it maintains the consistency of data and resumes
the database state before failure. Assuming any of the database sites can fail, it
is necessary to show that the recovery protocol is correct. Three possible com-
binations of failure are (i/ only participant site failure (ii), only originator site

362 Chapter 12 Grid Transaction Atomicity and Durability

Transactions
GT1, GT2, … etc.

DBMS1 DBMS2 DBMSn

Other global information
such as global lock table

Global subtransaction active
log

Global transaction
termination log

Intermediate results log

Global subtransaction
completion log

Global Recovery
Manager

…

Global transaction
Manager

Global restart after
system failure

Figure 12.9 Recovery model for DBMSs with global recovery manager (distributed DBMS and
multidatabase)

DB1
(Originator /
Participant)

DB1
(Originator /
Participant)

…

Middleware services such as metadata service,
timestamp service etc.

Independent
Recovery Manager

Independent
Recovery Manager

Independent
Recovery Manager

DB1
(Originator /
Participant)

Figure 12.10 Recovery model for Grid database architecture

failure, and (iii) originator and participant failure simultaneously. These cases are
discussed separately to prove the correctness of the recovery algorithm. The trans-
action submission procedure is discussed next, before the correctness of the proto-
col is explained.

Transaction Submission Procedure

(i) The log is updated with a begin operation upon the transaction’s arrival. The
global transaction is then subdivided into multiple logical subtransactions. A

12.3 Handling Failure of Sites with Grid-ACP 363

transaction identifier along with subtransaction identifier is also recorded in
the active log.

(ii) The subtransactions are then submitted to the respective database sites. A
subtransaction active log is updated at the participating site of the global
transaction. The originator must wait if the subtransaction cannot be sub-
mitted, i.e., if the participant is not operational.

(iii) The decision to commit or abort the global transaction is made after responses
from all participants have been gathered (similar to 2PC, but the participants
do not wait for the global decision). If all participants’ responses were posi-
tive, i.e., they are all in a “sleep” state, then the originator decides to commit,
or else the decision is to abort. The decision is recorded in the global transac-
tion termination log, and all sites participating in this global transaction are
informed.

Correctness

Three possible cases of failure are discussed to prove the correctness of the algo-
rithm.

Lemma 12.2: The effect of only the committed transaction is reflected in all
databases. Uncommitted data is not reflected either in the participant(s) or in the
originator after failure recovery.

Proof: To prove the correctness of the lemma, three different possibilities of fail-
ure have to be discussed separately.

Case I: Only Participant Site Failure: A participant’s failure can leave the global
transaction running at the originator, in any of the states shown in the state diagram,
i.e., running, wait, commit, pre-abort, and abort. If the originator tries to submit
a subtransaction to the failed participant, this implies that the global transaction is
in the running state and has to wait until the participant has recovered (been taken
care of by step ii of transaction submission procedure).

If the originator is waiting for a response from the participant, the originator
is blocked until it receives a response from the participant (step 3 of participant
recovery procedure).

If the global transaction is in an “abort” state in the originator site, the partic-
ipant can be either in a “sleep” or “running” state. So, when the DBMS recovers
and contacts the originator, step 3B (3-ii) verifies the state of global transactions
from the log and replies to the originator.

Similarly, the “commit” and “pre-abort” states of the global transaction at the
originator can be verified in the log, and required messages can be communicated
to the recovered participating DBMS (discussed in step 3B-3 of the participant
recovery procedure).

The subtransaction executing at a participant can be in the running, compensate,
sleep, commit, or abort states. The first three states are handled in the participant

364 Chapter 12 Grid Transaction Atomicity and Durability

recovery procedure (step 3B-1 to 3). Subtransactions in participating sites in the
“abort” state at the time of failure will not affect the DBMS. Subtransactions move
into the “abort” state, either by unilaterally aborting or after getting instructions
from the originator. Since the participant has to acknowledge the abortion of trans-
action to the originator, it does not pose any threat to consistency of data stored
in the database. The subtransactions that were in the “commit” state will have
information stored in their log and may recover normally, similar to centralized
DBMS. Since they failed in the commit state, it implies that the participant must
have received a message to commit from the originator.

Case II: Only Originator Site Failure: The originator site failure may take place
in any of the five states of global transaction, i.e., running, wait, commit, pre-abort,
and abort. It is necessary to discuss each state of the global transaction and corre-
sponding state of subtransactions at the participating sites.

The global transaction is aborted and logs are updated accordingly if the origi-
nator fails in the running state (step 2, case I in the originator recovery procedure).
The originator then enters the pre-abort state, sends a message to all participants
to abort their respective subtransactions, and waits for the acknowledgment (at
this point we assume that the participant is operational; simultaneous failure of
participants and originator is dealt with in case III).

If the global transaction at the originator is in the “wait” state, the participants
can be in “running,” “sleep,” “abort,” or “compensate” states (step 2, case II in
originator recovery procedure). The participant cannot be in the “commit” state
while the originator is in the “wait” state. The originator needs to arrive at a con-
sensus before it can reach a final decision (step 3). The originator requests all
participants to send their responses and then decides according to step 3 of the
originator recovery procedure.

If the originator is in the “commit” state, then the participants can only be in
the “commit” or “sleep” state. This situation is dealt with in step 2, case III of the
originator recovery procedure.

While the originator is in the “abort” or “pre-abort” state, the participants can
only be in either the “abort” state or “sleep” state. This situation is dealt with in
step 2, case IV of the originator recovery procedure.

Case III: Originator and Participant Fail Simultaneously: Since all sites are
autonomous, it is possible for the originator and one or more participants to fail
simultaneously. At the same time, considering the sites are autonomous, all DBMS
sites have the capability to recover independently from failure. Thus, with this
architecture, the synchronization between recovery must be addressed. There could
be two scenarios: (i/ the participating site recovering before the originator site and
(ii) the originator site recovering before the participant.

If the participating site recovers first, then it tries to contact the originator to get
the recovery information. As discussed in participant recovery procedure (step
3B), the site is in global recovery mode and normal access to the database is
blocked. Since the originator is not operational, the participant is blocked and waits
for the originator’s recovery. After the originator has been repaired, it tries to col-
lect status information from outstanding subtransactions as explained in originator

12.4 Summary 365

recovery procedure (step 2). At this stage, the communication between originator
and participant is re-established, and normal recovery procedure continues. If more
than one participant of the global transaction failed simultaneously, the originator
waits until all participants are up and running.

If the originator recovers before the participant, then at step 2 of originator
recovery procedure, where the originator tries to collect status information from
the participants, the recovery procedure is blocked. The recovery procedure again
wakes up when the recovered participating site contacts the originator to gather
recovery information. Normal global recovery procedure is followed thereafter.

Thus the proposed recovery protocol deals with all possible combinations of
failure of sites and hence maintains the consistency of data during the recovery
procedure.

12.4 SUMMARY

In this chapter, the atomicity property of transactions in Grid databases is
addressed. It describes the Grid-atomic commit protocol for global transactions
and demonstrates the correctness of the protocol. Failure is inevitable in distributed
systems; thus the Grid-ACP is extended to handle site failures. It is assumed that if
the message is sent by a participant to the originator or vice versa, it is eventually
delivered. If the communication medium is not reliable, an additional round of
acknowledgment messages should be introduced in the protocol.

Because of the autonomy of sites, participants cannot hold the resources until
the originator makes the final decision. Hence, Grid-ACP implements the “sleep”
state where the subtransactions can release the resources but are still aware that
the global decision has not yet been received. In such an autonomous environment,
cascading aborts are unavoidable, but the “sleep” state can be used to put a cap
on cascading aborts. The traditional atomic commit protocol (2PC) can work in a
homogeneous environment, that is, all sites must use a locking protocol. But Grids
are a heterogeneous architecture, and hence 2PC cannot be implemented in the
Grid environment. The Grid-ACP can work in a heterogeneous environment as the
participants can release the resources autonomously without any dependence on
other sites. Compensating transactions are a logical inverse of the subtransaction
that has to abort from the sleep state. The execution of a compensating transaction
semantically aborts the subtransaction at the participant’s site. After execution of
the compensating transactions, the database state is reinstated to the earlier state.
For example, if booking of the hotel reservation is the subtransaction, then the
compensating transaction may be to cancel the reservation and return the deposit
after charging a processing fee for cancellation.

The summary of the chapter is as follows:

ž An atomic commit protocol is described with a “sleep” state to encounter
autonomy and heterogeneity of Grid database systems. The “sleep” state
helps the database system to continue its operations without waiting for other
external databases.

366 Chapter 12 Grid Transaction Atomicity and Durability

ž A detailed failure recovery procedure of the sites is also discussed, so that the
atomicity of the transaction is maintained.

ž Correctness of both protocols (Grid-ACP and recovery algorithm for
Grid-ACP) is discussed.

12.5 BIBLIOGRAPHICAL NOTES

Atomicity and durability are two of the ACID properties of transactions, which
are the focus of this chapter. Most important works on transaction management
normally cover these ACID properties, some of which have been mentioned in
the Bibliographical Notes section at the end of the previous two chapters on Grid
transaction management (Chapters 10 and 11).

12.6 EXERCISES

12.1. Discuss the reasons why the atomic commitment protocols in distributed databases
and multidatabase systems may not be employed by the Grid.

12.2. Compare and contrast the state diagram between the Grid-ACP and traditional
2PC/3PC.

12.3. Outline the primary difference between Grid-ACP and early-abort Grid-ACP.

12.4. Discuss why the number of messages of 2PC and 3PC are higher than that of the
Grid-ACP.

12.5. Describe how failure recovery is incorporated into the Grid-ACP, and outline the
differences between failure recovery in Grid-ACP and other systems (e.g., distributed
and multidatabase systems).

Chapter13

Replica Management in Grids

Grid databases or data Grids operate on data-intensive complex applications. A
large amount of data is stored in geographically distributed sites. Applications such
as earth simulation, weather forecasting, study of global warming, and other col-
laborative works need to access the data from different sites. Shipping of data is
computationally expensive. To avoid frequent movement of data across the net-
work, data is replicated among a few sites. Various replication strategies such as
ROWA, primary copy, quorum-based protocols, etc., are proposed for distributed
databases. As discussed in earlier chapters, the heterogeneity and autonomy of sites
in a Grid environment are the key differences between Grid databases and tradi-
tional distributed databases. Replica control protocols must manage the replicated
data properly to ensure consistency of replicated copies of the data. In this chapter,
the need to have write transactions operating in Grid databases is explained, and thus
the importance of replica synchronization is discussed.

This chapter presents a replica synchronization protocol. The replica synchro-
nization protocol is then extended to handle multiple network partitioning. In
Section 13.1, the motivation is presented along with some use-case scenarios that
emphasize the importance of one-copy serializability in the Grid environment.
Section 13.2 presents the general architecture of replica management in Grid
databases along with an example that identifies the problem of implementing the
traditional replica management protocols in Grids. Section 13.3 describes the Grid
replica access protocol (GRAP) and shows the correctness. Section 13.4 extends the
GRAP to handle multiple partitioning with the concept of contingency quorums.

13.1 MOTIVATION

Recent research in Grid databases deals with replication of read-only files, there-
fore the problem of replica synchronization has not been well addressed. The

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

367

368 Chapter 13 Replica Management in Grids

following two examples illustrate the need for a replica control protocol in the
Grids. Early work on replica control protocol compromises the data consistency
and supports only various levels of weaker consistency. It proposes a higher-level
service rather than a lower-level protocol. Certain applications in Grids will mod-
ify the data and will require one-copy serializability (1SR). The following use-case
examples show the need for 1SR.

Example 1: Consider a group of researchers gathering data to study global
warming. The group is a collaboration of a number of diverse institutes and univer-
sities from all over the globe. Data for such a project can be best collected locally,
but to run the experiment, access is required to the data collected by other organisa-
tions situated at globally distributed sites. Hence, individual organizations collect
data in their databases locally and are connected to other organizations by the Grid
infrastructure. Considering the huge amount of data gathered, databases are repli-
cated at participating sites for performance reasons. It is assumed that security and
authentication requirements are taken care of by other Grid services. If any site
runs the experiment, then the result must be updated for all the participants in a
synchronous manner. If the results of the global warming studies are not strictly
synchronized (i.e., 1SR) between sites, other database sites may read incorrect val-
ues and take the wrong input for their experiments, thus producing undesirable and
unreliable results.

Example 2: Any sort of collaborative computing (e.g., collaborative simulation
or collaborative optimization process) needs to access up-to-date data. If a dis-
tributed optimization process does not have access to the latest data, it may lead
to wastage of computing processes due to repeated iteration of the optimization
process, or in some cases may even lead to incorrect results. Thus applications
working in a collaborative computing environment need synchronous and strict
consistency between distributed database sites. Strict consistency can be achieved
by using 1SR.

Warning systems for natural disaster also need high accuracy. High-precision
warning systems for cyclones, earthquakes, tsunamis, etc, can save thousands of
lives. This chapter presents a replica synchronization protocol to maintain 1SR in
the Grid environment. Replication is transparent to the user.

13.2 REPLICA ARCHITECTURE

13.2.1 High-Level Replica Management Architecture

The Grid database is a collection of autonomously evolved distributed database
systems. Because of the autonomy of sites, protocols implemented in individual
DBMS tend to be heterogeneous in nature. Grid middleware provides various
services for communication between these heterogeneous, autonomous DBMSs.
Figure 13.1 shows the general architecture of Grid database with specific emphasis
on high-level replica management components.

Databases DB1, DB2; : : : ; DBn in Figure 13.1 are geographically distributed,
autonomously evolved, and probably heterogeneous database systems. These

13.2 Replica Architecture 369

Metadata Services

Security Services

Information Services

Authentication Services

Other Grid Services

DB1 DB2 DBn
… …

Interface Interface Interface

Grid middleware

Replica Consistency Service

Replica Manager

Replica Catalogue

Data Transfer Protocols, e.g
GridFTP

 Replication Services

Figure 13.1 Grid database architecture with high-level replication management service

databases interact with each other with the help of Grid middleware. The Grid
middleware provides various services like authentication, security, metadata,
network communication, and replication with the help of the Globus toolkit. The
focus of this chapter is maintaining the consistency of data in the presence of
multiple replicas of data. Figure 13.1 shows the expanded version of a replication
service. These services are at a higher level in the architecture.

Most of the Grid applications assume the execution of read-only queries. Hence,
only the lower three layers, data transfer protocol, replica catalog, and replica man-
ager (Fig. 13.1), would be sufficient for replica management. GridFTP is widely
accepted as a data transfer protocol in the Grid community, and it deals with effi-
cient data transfer between sites. Applications rely on replica catalogs to map
logical file names to physical data locations, an important requirement in repli-
cated databases. As the name suggests, the replica manager manages the replicas,
that is, it creates, deletes, and moves replicas between sites and updates the replica
catalog accordingly.

Only the lower three layers are incapable of maintaining consistency of
distributed databases, if the applications update the data. Some existing works
propose a consistency service on top of existing layers. This service is a
high-level replication service that uses different levels of data consistency. Replica
synchronization protocols (replica synchronization and replica control are used
interchangeably) for a Grid environment assume the use of uniform protocols
like two-phase locking (2PL) or 2PC. But as discussed earlier, because of the
heterogeneous nature of sites, this may not be a valid assumption. Hence, this
chapter focuses on a replica control protocol that deals with the heterogeneous
(and autonomous) nature of Grids.

13.2.2 Some Problems

Considering their distributed nature, quorum-based replica control protocols are
best suited for Grid databases. Hence, we use a quorum-based replica control

370 Chapter 13 Replica Management in Grids

protocol. The heterogeneity and autonomy of the Grid database limit communi-
cation between sites. Because of autonomy restrictions, a site cannot participate
in a global decision of the database system. For example, for a global write trans-
action, some of the sites may decide to commit while some other local sites may
decide to abort the subtransaction, as it is not possible to completely synchronize
autonomous databases. The following scenario shows the problem of implement-
ing the traditional replica control protocol in heterogeneous and autonomous Grid
environments.

Example: Suppose there are three sites in a distributed Grid environment. Let
the database, DB1, be replicated in all three sites. Suppose the network is parti-
tioned in two partitions, fsite 1g in one partition and fsite 2, site 3g in the other
partition (as shown in Fig. 13.2 for partition P1). The transaction Ti , which mod-
ifies an object in DB1, is submitted at site 3. The value of write quorum is 2, and
hence Ti can successfully obtain a write quorum from sites 2 and 3. Ti must write
at both sites to satisfy the requirement of write quorum. Both sites initially decide
to commit; thus the global decision to commit is made. But immediately after the
global decision is made, site 2 decides to abort Ti because of some local conflict.
In a homogeneous environment, this scenario is impossible because of the syn-
chronous communication. Because of the autonomy of sites in a Grid architecture,
it is impossible to track that site 2 has decided to abort due to local conflict after
having decided to commit.

Now let us assume that partition P1 is repaired and P2 occurs with fsite 1, site
2g in one partition and fsite 3g in the other partition (Fig. 13.2). A transaction Tj

arrives at site 1 to read the same data item. Tj can obtain the read quorum from site
1 and site 2. Unfortunately, both replicas have stale copy. The replicated systems
have no means of finding out that site 2 had earlier decided to abort after the global
decision to commit was made. Thus it can be seen that autonomy can lead to an
inconsistent database state. For simplicity, without loss of generality, the database
is chosen as the granule, and not an individual data item for discussion in this
chapter.

Ti

Read quorum (QR) = write quorum (QW) = 2
Vote of each site = 1

Partition P1

Grid Middleware

DB1 at
Site 1

DB1 at
Site 2

Site 3Site 2Site 1

DB1 at
Site 3

Tj

Partition P2

Grid Middleware

DB1 at
Site 2

Site 3Site 2Site 1

DB1 at
Site 3

DB1 at
Site 1

Figure 13.2 A replicated database at three sites in a Grid environment with traditional replica
control protocol

13.3 Grid Replica Access Protocol (GRAP) 371

13.3 GRID REPLICA ACCESS PROTOCOL (GRAP)

The scenario discussed in the previous section highlights that, because of the auton-
omy restriction, it is impossible to handle this problem at the individual site level.
Hence, it has to be handled at the Grid middleware level. Fortunately, grid middle-
ware also provides the metadata service, which is used in the protocol discussed
here. The protocol is based on quorum consensus.

The metadata service of Grid middleware stores information of physical
database sites connected to the Grid. It also stores the mapping details of
logical to physical database. To implement the protocol, a pointer in metadata
services is added that will point to the latest replica. The pointer is of the form
timestamp.site id (TS.SID). The timestamp helps in identifying the latest version
of the replica, and site id points to the site that has this copy. More than one site
can have the latest copy, with a maximum up to the quorum size. At least one site
must have the latest copy.

The Grid replica access protocol (GRAP) (Fig. 13.3) ensures consistency of
data in an autonomous and heterogeneous Grid database environment. The follow-
ing points are a reminder before proceeding with GRAP:

(1) Part of the distributed transaction (at local site) may decide to abort
autonomously.

(2) TS.SID is updated only if the write quorum could be obtained.

(3) Local DB site is able to manage timestamps via the interface to Grid.

13.3.1 Read Transaction Operation for GRAP

GRAP is based on a quorum consensus protocol. Q R is the read quorum and QW

is write quorum. Majority consensus is used in GRAP, that is both (2ð QW) and
(Q R C QW) should be greater than the total vote for the replica. The following
steps are executed for read transactions in GRAP:

(1) If read quorum, Q R , could not be collected for the read operation, the trans-
action must abort.

(2) If Q R can be collected, then the transaction chooses, from the metadata ser-
vice, the site that has the highest timestamp for the collected quorum.

(3) Corresponding site IDs for the highest timestamp in Q R are then found from
TS.SID.

(4) Data is read from the local site whose timestamp at Grid middleware matches
the local timestamp of the replica.

It is possible that none of SIDs obtained from step 3 has matching timestamps
in step 4. If the number of such SIDs is 0, then read cannot be performed imme-
diately because all sites with the latest copy of replica may be down. Step 4 is
important because some of the local replica may have decided to abort after the
global commit decision. Hence, to obtain the latest replica, the timestamp of the

372 Chapter 13 Replica Management in Grids

Algorithm: GRAP algorithm for read transaction

Qa: Actual quorum collected by the transaction
QR: Read quorum required to read the data

TS.SID(D): TS is timestamp (at Grid’s metadata
service) and SID is pointer to the site where latest
replica of data item D is stored. We will only
use TS.SID, since D is the only data item in concern.

TSi: Timestamp of data item D at local site i
Tr: Read transaction
TSG: Set of timestamps of sites in QR at Grid level
TSL: Set of timestamp at local level

Qa Collect quorum at metadata service to read data
item D //at Grid level

if (Qa � QR)
abort Tr

else
// more than one site can have same max value,
// but max value will be unique (at Grid level)
TSG {collect timestamp from TS.SID from all
sites in QR} TS max {TS j TS is maximum in TSG}
TSGmax any element of TS max//Max timestamp at
Grid level SID {SID j SID is TS.SID for each
timestamp 2 TS max} for each SID 2 SID begin

TSL { TSL [TSi} //set of timestamp at local
site

TSLmax Maximum of TSL //maximum timestamp at
local site
if (TSGmax D TSLmax) then begin

read data D from local site whose site ID D
TSLmax

else
abort Tr //sites with latest timestamp are
unreachable

Figure 13.3 GRAP algorithm for read transaction

metadata service and the local copy of the replica must match. This will be clearer
when the algorithm for write transaction of GRAP is discussed.

13.3.2 Write Transaction Operation for GRAP

The algorithm for the write transaction of GRAP (Fig. 13.4) is explained as fol-
lows:

13.3 Grid Replica Access Protocol (GRAP) 373

1. A submitted transaction tries to collect the write quorum (QW). If QW could
not be collected, the transaction aborts.

2. If QW is obtained and the site where the transaction was submitted (origina-
tor) decides to commit, then the transaction finds the maximum timestamp
from QW for that data in the metadata service (at Grid middleware).

3. The TS.SID for that replica is then updated in the metadata service, thereby
reflecting the latest update in the data. The TS is set to a new maximum
reflecting the latest replica of the data item, and SID is set to the site ID of
the originator. The originator’s local timestamp is also updated to match the
metadata service’s new timestamp.

4. Other sites (participants) in the quorum must also be monitored for their final
decisions as, because of autonomy restrictions, the commitment of the coor-
dinator does not mean participants’ commitment. The following two cases
are possible:

a. If the participant decides to commit: The TS.SID is updated in the nor-
mal way, i.e., the TS will be set to the maximum timestamp decided by
the metadata service for the originator, and the SID will be the site ID
of the corresponding participant. The timestamp is updated at both loca-
tions, at the Grid middleware’s metadata service as well as at the local
participating site’s replica.

b. If the participant decides to abort: Because of any local conflict, if the
participant decides to abort, it must be handled so that the replica is not
corrupted. In this case, the timestamp (TS of TS.SID) of the middleware’s
metadata service is still updated as usual to reflect that the update of one of
the replicas has taken place, but SID is updated to point to the originator
site instead of pointing to the participant (which decided to abort). The
local timestamp of the replica is also not updated. This helps the read
transactions to avoid reading stale data in the future (as discussed in step
4 of the reading transaction algorithm, the metadata’s timestamp and local
replica’s timestamp must match).

Step 4b helps the quorum-based system to operate correctly, even if some of the
replica decides to abort, with the help of the TS.SID pointer. The quorum at Grid
level is still valid because the timestamp at the metadata service has been updated
to reflect successful completion of the transaction at the Grid. Thus the metadata
information of the site that had to abort its local transaction points to the latest
replica at the originator of the transaction and not to the participant site itself. This
is the reason why, although the site may have participated in the quorum, it may
still not have any matching timestamps in step 4 of the read transaction. Thus, if
the participant aborts its subtransaction, the SID will point to the site having the
latest replica, typically the originator. The transaction can successfully complete
only if at least the originator commits successfully. If the originator aborts, then
one participant cannot point to the other participant, because other participants
may abort later because of local conflict.

374 Chapter 13 Replica Management in Grids

Algorithm: GRAP algorithm for write transaction

Qa: Actual quorum collected by the transaction
QW: Write quorum required to write the data
Tw: Write transaction

TS.SID(D): TS is the timestamp (at Grid’s metadata
service) and SID is pointer to the site where latest
replica of data item D is stored.
STO: Subtransaction of Tw at originator site (local
site where transaction originated)
STP: Subtransaction of Tw at participating site (all
other replicas of data item D)
TSGi: Timestamp for each replica at the metadata
service (Grid level)
TSGmax: Maximum timestamp calculated at Grid level
//similar to read transaction
TSLi: Timestamp for any participating site at local level

Qa Collect quorum to write the data item D
//at Grid level
if (Qa � QW)

abort Tw
else

if STO decides to abort then begin
abort Tw

else
TSGmax maximum of {TSGi for sites in QW}
for each SID 2 Qw begin

TSGi (TSGmax C1) //TS part of TS.ID
(Grid level)

// SID part of TS.SID
SID of replica at Grid (for originator)
SID of originator (local site)

TSLO (TSGmax C1)
//set originator timestamp to reflect Grid level
//update for participant site, if it decides

to commit
if STP decides to commit

SID of replica at Grid (for participant)
SID of participant (local site)

TSLp (TSGmax C1)
// for participant site, if it decides to abort
if STP decides to abort
//if local site aborts the global SID pointer
//points to the committed originator.
//Thus latest value can be retrieved.

SID of replica at Grid (for participant)
SID of originator (local site)

//local timestamp isn’t updated.
//avoids reading stale value
TSLp set as old value

Figure 13.4 GRAP algorithm for write transaction

13.3 Grid Replica Access Protocol (GRAP) 375

The line-by-line explanation of algorithms (Figs. 13.3 and 13.4) is similar to the
contingency GRAP algorithm discussed in the next section, and hence the descrip-
tion will become clear when Figure 13.6 is explained in detail.

13.3.3 Revisiting the Example Problem

The same scenario of Section 13.2 is discussed below, to demonstrate how GRAP
prevents the reading of stale data.

Let us assume that the timestamp for all replicas is 0 in the beginning and the
site IDs are 1,2,3 : : : etc. Say a transaction, Ti , arrives at site 3 and wants to write a
data item (Fig. 13.5). After obtaining the write quorum (step 1 of write transaction
of GRAP), site 3 decides to commit but site 2 decides to abort its respective cohorts
(same as Fig. 13.2). Since the quorum was obtained, the timestamp at Grid level,
TS, will be increased to reflect the latest replica of the data (step 2 of write trans-
action of GRAP). Since site 3 has decided to commit, the local timestamp will also
be increased to match the Grid TS and the SID is set to 3 (same as site ID). This
confirms that the cohort of the transaction at site 3 is already committed (steps 3
and 4a of write transaction of GRAP). Thus the (TS.SID, local timestamp) for site 3
is (1.3, 1). This indicates that the maximum timestamp TS at the Grid middleware
and the local timestamp are the same (i.e., 1); hence, the latest replica could be
found at the same site. But as site 2 decided to abort its part of the transaction, the
local timestamp is not changed and the SID points to the originator of the transac-
tion (step 4b of write transaction of GRAP), that is, site 3. Now, say P1 is repaired
and partitioning P2 occurs. Tj arrives during P2:Tj can obtain the read quorum
(Q R), as site 1 and site 2 are available (step 1 of read transaction of GRAP).

Grid’s and Local timestamp
does not match

Write Transaction Ti

TS.SID (at Grid level), Local Timestamp

Partition P1

0.1, 0 0.2, 0 0.3, 0

0.1, 0

0.1, 0

1.3, 0

1.3, 0

1.3, 1

1.3, 1TS.SID (at Grid level), Local Timestamp

Partition P2

Though Tj can obtain read quorum it is denied read to avoid
reading stale data due to partitioning P2 or failure of site 3.

GRAP during writing
operation with Partition P1

GRAP during read operation
with Partition P2

DB1, Site 1 DB1, Site 2 DB1, Site 3

DB1, Site 1 DB1, Site 2 DB1, Site 3

Read Transaction Tj

Figure 13.5 A replicated database using GRAP protocol

376 Chapter 13 Replica Management in Grids

Algorithm: Contingency GRAP algorithm for write
transaction operation

CQw: Contingency quorum for write operation
C-log: Log to maintain records when writes are
processed in absence of quorum

Cardinality(X)
// returns number of elements in X
Update (D)
// checks for old value and updates with latest
value of D
// Other variables used are same as write algorithm
for GRAP
1. Qa Collect quorum to write the data item D

//Grid level
2. if ((Qa � QW) ^ (network is not partitioned))

abort Tw // No quorum is available for the
data item

3. if ((Qa � QW) ^ (network is partitioned))
TSGmax maximum of {TSGi for sites in QW}
TSLmax maximum of
{TSLi for sites in the partition where Tw
initiated}

4. if TSGmax 6D TSLmaxthen begin
abort Tw // Partition doesn’t contain
latest copy

5. else
6. if STO decides to abort

abort Tw
7. else
8. for each SID 2 CQw // CQw < Qw

TSGi (TSGmax C1) //TS part of TS.ID
// for originator site

9. SID of data at Grid (for originator)
SID of originator (local site)

TSLO (TSGmax C1)
C-log C-log [SID
// SID where transaction is executing.

10. if STp decides to commit
SID of data at Grid (for participant)

SID of participant
TSLp (TSGmax C1)
C-log C-log [SID

// for participant site, if it decides to
abort

11. if STp decides to abort
SID of data at Grid (for participant)

SID of originator (local site)
TSLp set as old value of site

Figure 13.6 Contingency GRAP algorithm for write transaction operation

13.3 Grid Replica Access Protocol (GRAP) 377

The maximum timestamp at Grid level is 1, and it belongs to site 2 (step 2 of
read transaction of GRAP). But site 2 has stale data. GRAP avoids reading the stale
data at site 2 and redirects the transaction to obtain a quorum that has a site with the
latest value of data as follows. The pair (TS.SID, local timestamp) for site 2 is (1.3,
0) (as shown in Fig. 13.5). The maximum timestamp at Grid middleware is found
at site 2, which implies that site 2 had participated in the quorum for the latest
update of the data item. But since the TS at the middleware do not match with the
local timestamp, this indicates that site 2 does not contain the latest replica of the
data item. SID at site 2 points to the site that contains the latest replica, namely, site
3 (step 3 of read transaction of GRAP). Site 3 could not be reached because of the
network partitioning; hence, the transaction must either wait or abort (depending
on application semantics). Thus GRAP prevents Tj from reading stale data. Under
normal circumstances, since Tj had already obtained Q R , it would have read the
stale value of the replicated data.

13.3.4 Correctness of GRAP

The main objective of GRAP is to provide a consistent view of data. As discussed
above in examples 1 and 2, some applications cannot have a lower level of consis-
tency and must support one-copy serializability (1SR). In this section, it is shown
that the proposed protocol, GRAP, conforms to 1SR.

Lemma 13.1: Two write transactions on any replica will be strictly ordered; avoid
write-write conflict and the write quorum will always have the latest copy of the
data item.

Proof: Let two transactions Ti and Tj write any replicated object O . To write
O , both transactions need to obtain write quorum, QW . As discussed earlier, (2ð
QW) should be greater than the total votes of all replicas of O . Hence, two trans-
actions can never obtain QW simultaneously. Thus any two transactions will be
strictly ordered and will avoid write-write conflict. After one of the transactions,
say Ti , has committed, Tj obtains QW . Because of the nonempty property of two
write quorum sets, there will be at least one replica of O that overlaps with Ti ’s
quorum. Thus the write quorum will always have one latest copy of the replicated
data item or will point to a site that contains the latest data item.

Lemma 13.2: Any transaction Ti will always read the latest copy of a replica.

Proof: Every read operation has to obtain a read quorum from available sites
in the Grid middleware. From the obtained quorum, a set of sites with the largest
timestamps is created. These timestamps are collected at the Grid level, and as
discussed earlier, because of autonomy restrictions, may vary from local times-
tamps. Hence, the latest copy of the replica cannot be obtained only by collecting
timestamps at Grid level. GRAP ensures that the maximum timestamp obtained
from the Grid level matches with the local timestamp. The data can be read from

378 Chapter 13 Replica Management in Grids

any of the sites whose Grid timestamp and local timestamp are equal. It is not pos-
sible to not have any matching timestamp. This condition is prevented by step 3 of
the write operation of GRAP, as at least the coordinator will have the latest local
copy that is being reflected at Grid level. The nonempty property of the intersec-
tion between the read quorum and the write quorum ensures that the read quorum
will have at least one latest replica.

Theorem 13.1: Grid replica access protocol (GRAP) produces one-copy serializ-
able (1SR) schedules.

Proof: From lemmas 13.1 and 13.2 it could be concluded that GRAP supports
one-copy view of the replicated databases. GRAP could be combined with the con-
currency control protocol (e.g., GCC protocol discussed in the previous chapter)
to extend one-copy view to one-copy serializability.

13.4 HANDLING MULTIPLE PARTITIONING

Considering the global nature of Grids, failures are inevitable. Hence, the network
may become partitioned. Network partitioning is a phenomenon that prevents com-
munication between two sets of sites in a distributed architecture.

Network partitioning limits the execution of transactions in replicated databases
because a quorum cannot be obtained, or all sites may not be available for update.
ROWA and ROWA-A protocols cannot handle network partitioning at all. The
primary copy protocol can handle network partitioning only if the primary copy
is in the partition where the transaction originated. Quorum-based protocols can
best handle network partitioning, but only simple network partitioning (only 2
partitions). The majority of consensus quorums cannot handle multiple network
partitioning because in the case of multiple network partitioning, basic quorum
rules, Q R C QW >Q and 2ð QW >Q, cannot be satisfied.

For example, for a 7-site network, assume Q R D QW D 4. If the network is
partitioned in three partitions (1, 3, and 3 sites), then a quorum cannot be obtained
and thus transactions will be forced to either wait or abort. In this section, the
GRAP is modified to handle multiple partitioning (more than 2 partitions).

13.4.1 Contingency GRAP

To handle multiple partitioning, the concept of a contingency quorum is
introduced. If there is no partitioning, then GRAP collects a normal quorum and
operates in a normal mode, but as soon as any network partitioning is detected,
where normal quorum cannot be obtained, GRAP collects a contingency quorum
(contingency GRAP). Any partition needs to have at least one up-to-date copy of
the data to serve the transaction. Read transactions have the following steps in
Contingency GRAP in partitioned networks.

13.4 Handling Multiple Partitioning 379

Read Transaction Operation for Contingency GRAP

The steps for read operation are as follows:

1. After the read transaction arrives at the site, it checks for the normal read
quorum at Grid middleware. If the normal read quorum is obtained, normal
GRAP operation continues.

2. If the normal read quorum cannot be obtained, then the transaction chooses
the highest timestamp from the metadata service of Grid middleware (similar
to step 2 of normal GRAP).

3. If the maximum timestamp at the metadata service does not match with any
of the local replicas’ timestamp in that partition for the data item where the
transaction originated, the transaction must either wait or abort. This indi-
cates that the partition does not have the latest version of the data item.

4. If the timestamp of any of the local replicas from that partition and the times-
tamp of metadata service match, then it can be assured that the latest copy of
the replica is in the partition and that the replica is read.

The algorithm for contingency GRAP for a read transaction is very similar to
the algorithm of GRAP for the read transaction (Fig. 13.3).

Write Transaction Operation for Contingency GRAP

Contingency GRAP allows the transaction to write fewer numbers of sites than
required in the quorum and maintains a log to guarantee consistency of the data.
The write transaction of contingency GRAP in a partitioned network has the fol-
lowing steps:

1. The transaction first tries to collect the normal write quorum; if obtained,
normal GRAP continues. If a normal quorum cannot be obtained, then con-
tingency GRAP starts.

2. Contingency GRAP chooses the highest timestamp from the metadata ser-
vice and checks it against the sites in the partition. If the metadata service’s
timestamp cannot find any matching timestamp in the partition, then the
write transaction has to abort or wait until the partition is repaired (this is
an application-dependent decision). This implies that the latest copy of the
data is not in the partition, and hence the transaction cannot write the data
until the partition is fixed or the quorum is obtained.

3. If the matching timestamp between metadata service and any site’s local
timestamp in the partition is found, then the transaction can proceed with the
update at the site where the two timestamps match because it is assured that
the latest version of the replica is in the partition. If the timestamp does not
match, but the SID points to a site that is in the same partition, even then
the transaction can be assured to update the latest copy. The sites that are
written/updated during the contingency GRAP are logged in the log file.

380 Chapter 13 Replica Management in Grids

4. If the originator site decides to commit the transaction, it updates the TS.SID
(at metadata service). The TS is increased to a new maximum, and SID
points to the originator. The local timestamp of the site is also increased
to match the TS of the Grid middleware.

5. Other replica sites in the partition (participants) also follow the same proce-
dure if they decide to commit, i.e., the SID is set to the respective participant
and the local timestamp is set to match the new TS at middleware. But the
SID points to the originator and the local timestamp is not increased for any
site that decides to locally abort the write transaction.

6. The number and detail of sites participating in the contingency update pro-
cess are updated in the log. This is an important step, because the number
of sites being updated does not form a quorum. Thus, after the partitioning
has been repaired, the log is used to propagate updates to additional sites
that will form a quorum. Once the quorum has been formed, normal GRAP
operation can resume.

Figure 13.6 is explained as follows. The quorum is collected for the data item to
be written (line 1). If the network is not partitioned and the collected quorum (Qa)
is less than the required write quorum (Qw) (line 2), the transaction is aborted. But
if the collected quorum is less than the required write quorum and the network is
partitioned (line 3), then the protocol works under the contingency quorum, that
is, the actual collected quorum. The maximum local timestamp at the partition
where the transaction is submitted and the maximum timestamp at the Grid (for
the respective replica) are obtained. If both the maximum values do not match,
then the transaction is aborted (line 4). This implies that the partition does not
have the latest replica. If both timestamps match (line 5) but the originator decides
to abort (line 6), then the global transaction will abort.

If the originator decides to commit (line 7), then the transaction can continue
the execution. For each site in the originator’s partition (line 8), the middleware’s
timestamp is increased to a new maximum. The new site ID (SID) for the
originator is set to point toward itself (line 9), which reflects that the originator
decided to commit, and contains the latest replica. The local timestamp of the
originator is also increased to a new maximum to match the Grid middleware’s
timestamp. Since the site is working under a contingency quorum, the site ID is
added in the log.

If the participant site decides to commit (line 10), then the SID pointer is set
to point toward itself, because that participant will also have the latest copy of the
replica and the local timestamp of the participant is set to match with the origina-
tor’s maximum value. The site ID of the participant is also added to the log. But if
the participant decides to abort its cohort (line 11), then the SID pointer points to
the originator and the local timestamp is unchanged. This ensures that the partic-
ipant points to the latest replica of the data item. Since the participant decided to
abort, it is not necessary to add the site ID to the log file.

The contingency GRAP helps in executing transactions even in the case of mul-
tiple partitioning. The partition that has the latest copy of the replica can continue.

13.4 Handling Multiple Partitioning 381

It acts as a combination of quorum consensus protocol and primary copy protocol.
The difference is that it updates all sites in the partition, not only a single site. Grid
middleware’s metadata service helps to find the most up-to-date copy of the replica.

13.4.2 Comparison of Replica Management
Protocols

Based on the update mechanism, replication synchronization protocols can broadly
be classified into two categories: (i) synchronous, also known as eager replication,
and (ii) asynchronous, also known as lazy replication. Synchronous replication
updates all replicas of the data object as a single transaction. An asynchronous
replication protocol updates only one replica of the data, and the changes are prop-
agated to other replicas later (lazily).

Synchronous protocols ensure strict consistency among replicated data, but a
disadvantage is that they are slow and computationally expensive, as many mes-
sages are to be sent in the network. The response time of asynchronous replication
protocols is less, compared with synchronous protocols, as they update the data
only at one site. Asynchronous protocols do not guarantee strict consistency of
data at distributed replica sites.

The choice of a synchronous or an asynchronous replica protocol is a trade-off
between strict consistency and the response time of the application. On the one
hand, some applications need high precision and demand strict consistency (engi-
neering applications, earth simulator, etc.); on the other hand, some applications
can relax the consistency requirements. GRAP meets strict consistency require-
ments.

A major requirement of replica control protocols is that the transactions should
be able to execute even if some of the replicated data sites are unavailable. In
the presence of failure, synchronous protocols cannot execute the update transac-
tions. Because of the distributed nature of the Grid, the failure probability is higher
compared with centralized systems. Synchronous replication is best implemented
in small local area networks with short latencies. In synchronous replication, the
deadlock increases as the third power of the number of sites in the network and the
fifth power of the transaction size. Thus the performance of a synchronous protocol
is unacceptable in a Grid environment, and asynchronous protocols are unsuit-
able for our purpose, as they do not ensure strict consistency of data. Hence, the
quorum-based protocols are most suited for Grid database requirements. However,
the quorum-based majority consensus protocol can handle only simple network
partitioning. The contingency GRAP protocol can sustain multiple partitioning.
Table 13.1 compares the characteristics of various replica management protocols
with GRAP and contingency GRAP.

The ROWA and ROWA-A protocols cannot handle network partitioning. The
ROWA protocol cannot sustain any site failure. ROWA-A can sustain site fail-
ure by writing only on available copies, but if the sites are operational and they
cannot communicate because of network partitioning, the database may become
inconsistent. The inconsistencies may be addressed by using manual or automatic

382 Chapter 13 Replica Management in Grids

Table 13.1 Comparison of various replica control protocols

Behavior
Minimum
Number of

Simple Multiple Sites Having Site Required Site Required
Network Network latest to Read a to Write a

Protocol Partitioning Partitioning Replica Data Item Data Item
ROWA No No All replicas Any replica All replicas
ROWA-A No No Number of

available
sites

Any replica Available
replicas

Primary
Copy

Only if
primary
site is in
the
partition

Only if
primary
site is in
the
partition

1 (primary
site)

1 (primary
site)

1 (primary
site)

Majority
consensus

Only if
quorum
can be
obtained

No Size of write
quorum

Size of read
quorum

Size of write
quorum

GRAP Only if
quorum
can be
obtained

No Size of write
quorum

Size of read
quorum

Size of write
quorum

Contingency
GRAP

Operates
same as
GRAP in
simple
partition-
ing

Yes Under
normal
operation
and simple
partition-
ing: Size
of write
quorum

Under normal
operation
and simple
partition-
ing: Size of
read
quorum

Under normal
operation
and simple
partition-
ing: Size of
write
quorum

Under
multiple
partition-
ing: Less
than write
quorum

Under
multiple
partition-
ing: Less
than read
quorum, if
the partition
contains the
latest
replica

Under
multiple
partition-
ing: Less
than write
quorum

13.4 Handling Multiple Partitioning 383

reconciliation processes. Primary site protocols can handle network partitioning
only if the partition contains the primary site.

In Table 13.1, the properties of GRAP look very similar to those of the majority
consensus protocol. But the main difference between the two is that the majority
consensus protocol can lead to an inconsistent database state because of the auton-
omy of Grid database sites, while GRAP is designed to support autonomous sites.
Contingency GRAP can handle multiple network partitioning. While the network
is partitioned (multiple), contingency GRAP updates fewer sites, required by the
quorum, and keeps a record. Read operations can be performed at all partitions
having the latest replica copy of the data (verified by the middleware).

13.4.3 Correctness of Contingency GRAP

The following lemmas are used to prove the correctness of contingency GRAP, on
the same grounds as GRAP.

Lemma 13.3: Two write operations are ordered in the presence of multiple parti-
tioning.

Proof: In the presence of multiple partitioning, there will never be a majority
consensus. Consider two transactions, Ti and Tj , executing in two different parti-
tions P1 and P2, respectively. The following cases are possible:

(i) P1 and P2 do not have a copy of the latest replica: Step 2 of contingency
GRAP for write transaction takes care of this case. Ti and Tj have to either
abort their respective transactions or wait until the partitioning has been
repaired.

(ii) P1 has the latest replica: Step 2 of contingency GRAP for write transaction
will abort its transaction Tj . Step 4 will ensure that the metadata service’s
timestamp is updated to reflect the latest write transaction Ti of P1. Step
3 and step 6 ensure the updating of the log of sites where Ti ’s effects are
reflected. This is an important step since, because of multiple partitioning,
the write quorum could not be updated.

(iii) P1 and P2 both have a copy of the latest replica: Assume that both Ti and Tj

send a request to check the latest copy of the replica. Both partitions initially
may get the impression that they have the latest replica. But steps 3, 4, and
6 of the algorithm prevent the occurrence of such a situation by updating the
log. Also, the first transaction to update the data item will increase the times-
tamp at the metadata service, and thus any later transaction that reads the
timestamp from the metadata service has to abort the transaction (because it
could not find any matching local timestamp), although it had the impression
of latest copy at the first instance.

Cases ii and iii write replicas of the data item even if the quorum could not be
obtained, which can lead to inconsistency. But the metadata service’s timestamp

384 Chapter 13 Replica Management in Grids

and log entry only allows transactions to proceed in one partition, thereby prevent-
ing the inconsistency. After the partitioning has been recovered, the log file is used
to propagate values of the latest replicas to more sites to at least form the quorum
(steps 3 and (6) of contingency GRAP). Thus data consistency is maintained of
replicas in the presence of multiple partitioning.

Lemma 13.4: Any transaction will always read the latest copy of the replica.

Proof: Although because of failure of sites a read quorum cannot be obtained,
the latest copy of the replica can be located with the help of the metadata service’s
timestamp. If the latest replica is in the partition, then the transaction reads the
replica; otherwise, it has to either abort the transaction or wait until the partition
has been repaired. Thus any transaction will always read the latest replica of the
data (steps 3 and 4 of contingency GRAP for read transaction).

Theorem 13.2: Contingency GRAP produces 1SR schedules.

Proof: On similar grounds as theorem 13.1, lemma 13.3 and lemma 13.4 ensure
one-copy view of the replicated database. Contingency GRAP can be combined
(like GRAP) with GCC concurrency control protocol to ensure 1SR schedules.

13.5 SUMMARY

To increase system availability and performance, data is replicated at different
sites in physically distributed data intensive applications. Traditional distributed
databases are synchronized and tightly coupled in nature. Although various
replica synchronization protocols for distributed databases, such as ROWA,
ROWA-available, primary copy, etc., are available, because of the autonomy of the
sites, it is not possible to implement traditional replica synchronization protocols
in the Grid environment.

In this chapter, a quorum-based replica management protocol (GRAP) is intro-
duced, which can handle the autonomy of sites in the Grid environment. It makes
use of the metadata service of Grid middleware and a pointer that points to the site
containing the latest replica of the data item. Considering the distributed nature
of applications and the flexible behavior of quorums, quorum-based protocols in
GRAP are suitable. Quorum-based protocols have the drawback that they cannot
obtain the quorum in case of multiple partitioning. A contingency quorum and log
file are used to extend GRAP, in order to handle multiple network partitioning, so
that the partition containing the latest replica of the data can continue its opera-
tion. Once multiple partitioning has been repaired and normal quorum obtained,
the normal GRAP operation resumes.

Replica control protocols studied for the Grid environment either are high-level
services or are intended to relax the consistency requirement. But high-precision
applications cannot afford to relax data consistency. Thus in this chapter the main

13.7 Exercises 385

focus is on a lower level protocol that does not compromise data consistency at
replicated sites. This chapter may be summarized as follows:

ž A replica synchronization protocol for an autonomous Grid environment is
introduced. Because of the autonomy of sites, participants can reverse the
global decision due to local conflicts. GRAP protocol ensures that a transac-
tion reads the latest version of the data item.

ž Contingency GRAP protocol is used to sustain multiple network partition-
ing. When considering the global nature of Grids, it is important to address
multiple network partitioning issues.

ž The correctness of GRAP and contingency GRAP are demonstrated to ensure
that 1SR schedule is maintained.

13.6 BIBLIOGRAPHICAL NOTES

In recent years, there have been emerging conferences in the Grid areas, such
as GCC, CCGrid, etc, that publish numerous papers on data replication in the
Grid environment. In the GCC conference series, You et al. (2006) described
a utility-based replication strategy in data grid. On the other hand, Rahman et
al. (2005) introduced a multiobjective model through the use of p-median and
p-center models to address the replica placement problem, and Park et al. (2003)
proposed a dynamic replication that reduced data access time by avoiding network
congestions in a data grid network achieved through a network-level locality

In the CCGrid conference series, Liu and Wu (2006) studied replica placement
in data grid systems by proposing algorithms for selecting optimal locations for
placing the replicas. Carman et al. (2002) used an economic model for data replica-
tion. An early work on data replication using the Globus Data Grid architecture was
presented by Vazhkudai et al. (2001), who designed and implemented a high-level
replica selection services.

Other parallel/distributed and high-performance computing conferences, such
as HiPC, Euro-Par, HPDC, and ICPADS, have also attracted grid researchers to
publish data replication research. Chakrabarti et al. (HiPC 2004) presented an inte-
gration of scheduling and replication in data grids, and Tang et al. (Euro-Par 2005)
combined job scheduling heuristics with data replication in the grid. Consistency
in data replication has also been the focus of Dullman et al. (HPDC 2001), whereas
Lin et al. (ICPADS 2006) studied the minimum number of replicas to ensure the
locality requirements.

13.7 EXERCISES

13.1. Explain why data replication in the Grid is more common than in any other database
systems (e.g., parallel databases, distributed databases, and multidatabase systems).

13.2. Discuss why replication may be a problem in the Grid.

386 Chapter 13 Replica Management in Grids

13.3. Describe the main features of the Grid replica access protocol.

13.4. Illustrate how the Grid replica access protocol may solve the replication problem in
the Grid.

13.5. What is a 1SR (1-copy serializable) schedule? Discuss Theorem 13.1, which states
that GRAP produce 1SR.

13.6. What is contingency quorum?

13.7. Describe the difference between eager replication and lazy replication.

13.8. Outline the primary difference between GRAP and contigency GRAP.

Chapter14

Grid Atomic Commitment in
Replicated Data

An atomic commitment protocol and a replica management protocol were
explained in Chapters 12 and 13. Atomic commitment protocols are used to
ensure the all-or-nothing property of a transaction that is executing in a distributed
environment. A global transaction has multiple cohorts executing at different
physically distributed data sites. If one site aborts its cohort (subtransaction), then
all other sites must also abort their subtransactions to enforce the all-or-nothing
property. Thus the computing resources at all other sites where the subtransactions
decided to commit are wasted.

Multiple copies of data are stored at multiple sites in a replicated database to
increase system availability and performance. The database can operate even though
some of the sites have failed, thereby increasing the availability of the system, and
a transaction is more likely to find the data it needs close to the transaction’s home
site, thereby increasing overall performance of the system.

The number of aborts can be high in the Grid environment while maintaining
the atomicity of global transactions. In this chapter, replicas available at different
sites are used to maintain atomicity. The protocol will help to reduce the number
of aborts of global transactions and will reduce wastage of computing resources.
Section 14.1 presents the motivation for using replication in the ACPs. Section 14.2
describes a modified version of the Grid-ACP. The modified Grid-ACP uses replica-
tion at multiple levels to reduce the number of aborts in Grid databases. Section 14.3
discusses how the ACID properties of a transaction are affected in a replicated Grid
environment.

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

387

388 Chapter 14 Grid Atomic Commitment in Replicated Data

14.1 MOTIVATION

Transactions executing in the Grid architecture are long-running transactions. Thus
aborting the whole global transaction, even if a single subtransaction aborts, will
result in high computational loss. On the other hand, if the global transaction does
not abort on abortion of any subtransaction, then it violates the atomicity property
of the transaction. Therefore, the two are contradictory requirements.

As discussed in Chapter 12, any site that might have decided to commit its
cohort of the global transaction and is in “sleep” state, should execute the compen-
sating transaction if any of the subtransactions of the global transaction decides to
abort. Effectively, the computational job done by the participants is lost. Consider-
ing the large volume of work done in Grid databases, this is undesirable.

14.1.1 Architectural Reasons

The following points constitute the major motivation, from an architectural per-
spective, for using replication to reduce the number of aborts in the Grid database:

(1) The Grid database handles comparatively larger volumes of data than tradi-
tional distributed databases. The nature of the transactions is long-running,
and hence aborts are very expensive in the Grid environment. Therefore, the
number of aborts in the Grid database needs to be reduced.

(2) Replication increases the availability of data, e.g., if a site with a replica
is unavailable, then the transaction is redirected to another replica, thereby
increasing availability. Replica control protocols do not explore replicated
data once the transaction has submitted its subtransactions to local sites and
these are already executing; e.g., if a subtransaction fails during the execu-
tion, then the whole transaction aborts.

This chapter explores the possibility of using replication to reduce aborts,
after any subtransaction has aborted but while the global transaction is still
active. Thus, if a subtransaction decides to abort, it looks for another replica
of the data instead of aborting the entire global transaction.

(3) Replication of data is provided in Grid databases naturally for fast and easy
access of data, close to the transaction’s originator site. Thus it will incur
fewer overheads.

14.1.2 Motivating Example

A scenario of a normal operation of an atomic commitment protocol, which does
not make use of replicated data, is demonstrated below.

Scenario: Figure 14.1 shows the functioning of an atomic commit protocol (e.g.,
Grid-ACP). Assume a data item D is replicated at five sites DB1; DB2; : : : DB5.
To satisfy the threshold conditions, the read quorum (Q R) and write quorum (QW)

14.1 Motivation 389

GRID MIDDLEWARE

DB1 DB2 DB3 DB4 DB5

Global Transaction
(GT1)

Read Quorum QR = 3
Write Quorum QW = 3

Status of Replicated sites at
Time = 0, (transaction submission) Y X Y Y Y

Status of Replicated sites at
Time = 1, (transaction termination)

Y X Y X Y

Decision at local sites S A S

Global decision is to abort since site-4 is either down or decided to abort its cohort of GT1

Legend:

X: Site not ready to execute transaction A: Local decision is abort
Y: Site ready to execute the transaction S: Local decision was commit,

 hence site is in sleep stateY: Replica Site chosen for execution

Global decision A A A

Figure 14.1 An ACP’s operation without using replication

are equal to 3. Hence, any transaction must access three sites in order to read or
write the data item.

In Figure 14.1, X denotes that the site is unable to fulfil the request at that time
(i.e., either the site is down or the subtransaction’s decision was to abort) and Y
denotes that the database is ready to serve the request. Say that at time T D 0,
GT1 is submitted at database site DB1. GT1 intends to write data item D. Let
us assume that all sites are active and working except DB2. QW can be obtained
from any three sites; let the chosen sites be DB1, DB4 and DB5 (bold letters at
time D 0). After execution, say at time T D 1, DB1 and DB5 decide to commit
their respective subtransactions but DB4 decides to abort its part of subtransaction
because of some local dependencies (remember this is possible because of auton-
omy restriction among sites); to maintain atomicity of the global transaction, DB1

and DB5 must also abort their subtransactions. Thus the computing done at site 1
and site 5 is wasted. Furthermore, execution of the compensating transaction will
consume more computing resources.

From Figure 14.1, it is clear that at time T D 1, when DB4 decides to abort
and consequently the global transaction also decides to abort, the quorum was still
available in terms of DB1, DB3 and DB5. But the transaction did not check the
quorum at a later stage, and the global transaction was aborted. Thus the abor-
tion of transaction wastes computing resources, which could have been avoided by
exploring quorums at multiple levels.

390 Chapter 14 Grid Atomic Commitment in Replicated Data

14.2 MODIFIED GRID ATOMIC COMMITMENT
PROTOCOL

In this section, the earlier Grid-ACP (from Chapter 12) is modified to explore mul-
tiple levels of checking of the quorums, so that the number of aborts could be
reduced.

14.2.1 Modified Grid-ACP

As discussed earlier, atomic commitment protocols do not take advantage of data
replication when any subtransaction decides to abort. Thus the advantage of data
replication is only limited at the start of the transaction. Exploiting the benefits of
replication other than at the beginning of a transaction can reduce aborts in the
Grid environment.

Revisiting the Motivating Example

The same scenario explained in the previous section is discussed here, but this time
the replication at multiple levels is explored, rather than only at the beginning of
the transaction. Assume the same situation, at time T D 0, DB1, DB4 and DB5 (Y
in Fig. 14.2) being the chosen replicas for the quorum. At T D 1, DB4 decides to
abort and DB1 and DB5 decide to commit the subtransaction and hence are in the
sleep state. Unlike the normal Grid-ACP, the modified Grid-ACP does not decide
to abort the global transaction at this stage. Traditional ACPs, including Grid-ACP,
exploit only level-1 operations (of Fig. 14.2) during the commit process. The Grid
middleware is aware of other replica locations of the data item D. With the help of
the replica location service of Grid middleware, the originator site, namely, DB1,
of global transaction GT1 finds the other replica of D (site DB3 in this case) and
allocates the subtransaction to that database site.

In Figure 14.2, at T D 2, we see that DB1 and DB5 are in “sleep” state and DB4

is in “abort” state. The replica location service chooses DB3 as a new replica to
satisfy the requirement of the write quorum (denoted as Y in Figure 14.2 at level-2
operations). DB1 and DB5 are in “sleep” state while DB3 executes its subtrans-
action. If DB3 executes successfully and decides to commit, then the originator
(DB1) can decide to commit the global transaction, because the requirement of the
write quorum has been fulfilled from sites DB1, DB3, and DB5 (instead of sites
DB1, DB4, and DB5). Thus the modified Grid-ACP explores more than one level
of operation, during the commit procedure in order to reduce the number of aborts.

Modified Grid-ACP Algorithm

The procedure for modified Grid-ACP is explained as follows:

(1) Since the modified Grid-ACP uses the quorum-based replication strategy, it
must collect the read/write quorum for data item D to be read/written.

14.2 Modified Grid Atomic Commitment Protocol 391

Status of Replicated sites at
Time = 1, (transaction termination)

L
ev

el
-1

 O
pe

ra
tio

ns

GRID MIDDLEWARE

DB1 DB2 DB3 DB4 DB5

Global Transaction (GT1)

Read Quorum QR = 3
WriteQuorum QW = 3

Status of Replicated sites at
Time = 0, (transaction submission) Y X Y Y Y

Y X Y X Y

Decision at local sites S A S

Global decisionis to commit, since quorum could be obtained with database sites 1,3 and 5

Legend:

X: Site not ready toexecute transaction C: Local decision is commit
Y: Site ready toexecute the transaction A: Local decision is abort
Y: Replica Site chosen for execution S: Local decision was commit,

 hence site is in sleep state

Global decision C A C

When DB4 decides to abort, Grid middleware looks for other database site having replica
for data item D. DB3 is found with the replica and ready to execute the subtransaction.

Decision at local sites S A SY

C

Status of Replicated sites at
Time = 2, (transaction termination)

S X Y A S

L
ev

el
-2

 O
pe

ra
tio

ns

Figure 14.2 Modified Grid-ACP using replication at multiple levels

(2) If the required quorum could not be obtained, the global transaction is
aborted and resubmitted at a later stage. If the quorum is obtained, the
global transaction generates the set of subtransactions with the help of the
Grid’s metadata and replica management services. The subtransactions are
then submitted to respective participating database sites. The site where the
global transaction was submitted is known as the originator, and other sites
are known as participants of the transaction.

(3) If no subtransaction aborts (i.e., Na D 0 in Fig. 14.3), then the global deci-
sion is to commit. The decision is logged in the originator’s log before being
communicated to all participants (similar to Grid-ACP).

(4) If any subtransaction aborts (i.e., Na 6D 0 in Fig. 14.3), then the coordina-
tor checks with the Grid’s metadata and replica management service as to
whether the other replicas for data item D are available.

(i) If the number of other replicas available is more than the number of
aborts (Na), then the aborted subtransactions are resubmitted to other

392 Chapter 14 Grid Atomic Commitment in Replicated Data

Algorithm: Modified Grid-ACP algorithm for
originator site

Qa: Actual quorum collected by the transaction
QR/QW: Read/write quorum required to read/write the data
GTi: Global transaction
N: Total num subtransactions GTi executing on replicated
data Na: Num of local sites decided to abort
local subtransaction

Qa Collect quorum at replica to read/write data
item D

1. if (Qa > Q) //Q could be either QR or QW
2. create subtransactions

N total number of subtransactions
3. submit subtransactions to participants
4. wait for response from all participants
5. Na total number of abort response
6. if Na D 0 // no subtransaction decides to abort

write commit record in log
send global_commit to all participants
GTi commits

7. else //check for other available replicas
of GTi

8 send check_available_replicas message to
replica management service

9 if (Number_of_other_replicas ½ Na)
resubmit subtransaction to Na number of new

replica sites
10. N total number of resubmitted

subtransactions
11. Goto Line 4
12. else

write abort record in log // abort procedure
send global_abort to participants to commit;
wait for response from these participants
GTi aborts

13. else
abort GTi and resubmit later

Figure 14.3 Modified Grid-ACP algorithm for originator site

sites where the replica of the data is residing and waits for the response
from the newly submitted subtransaction. Importantly, the number of sub-
transactions (N) must be set to the new number of subtransactions being
submitted.

(ii) If the available replicas are less than the number of aborts, Na, the orig-
inator then starts the abort procedure. The abort decision is sent only
to those database sites that are in the “sleep” state. This procedure is

14.2 Modified Grid Atomic Commitment Protocol 393

repeated until all replica sites have been explored. Thus the modified
Grid-ACP exploits all replicas in order to reduce the number of aborts
(Fig. 14.2 shows only two levels of operations for pedagogical simplic-
ity).

The modified Grid-ACP algorithm is formally presented in Figure 14.3. A brief
description of Figure 14.3 is as follows. The quorum (read or write) is collected for
the data item being read/written. If the actual collected quorum is greater than the
required read or write quorum (line 1), then the global transaction can proceed. If
the collected quorum is less than the quorum required to read/write data, then the
global transaction cannot proceed and must be aborted (line 13), and resubmitted
later to obtain the quorum. Once the required quorum has been obtained, the Grid
middleware’s metadata service and replica management service are used to create
the subtransactions (line 2). The total number of subtransactions is stored in a
variable N . The subtransactions are then submitted to the respective participants
(line 3). The originator waits for the participants’ response (line 4).

The originator counts the number of participants whose responses were to abort
and stores it in a variable Na (line 5). If all participants decide to commit (i.e.,
Na D 0) (line 6), then the normal Grid-ACP procedure can continue and the orig-
inator can send the global commit response to all the participants. If any partic-
ipating site aborts (i.e., Na > 0) (line 7), then the originator checks the replica
management service for other available replica of the data item (line 8). If the
number of other available replicas (for a particular data item) is greater than, or
equal to, the number of aborting subtransactions (i.e., Na) (line 9), then the sub-
transactions can again be submitted to Na number of other replicas, so that the
quorum condition is maintained and the global transaction need not abort.

The number of subtransactions stored in the variable N is changed to the new
number of subtransactions submitted to other replicas. This is an important step,
because the originator will now wait only for the new value of N participants; at
this stage, the control is set back to line 4 (line 11). The algorithm thus exploits all
replicas at multiple levels in order to reduce aborts in case of site failure. If the orig-
inator cannot obtain the required number of replicas after participants responded
to abort, then the originator has to abort the global transaction (line 12).

14.2.2 Correctness of Modified Grid-ACP

ACP Properties

As mentioned earlier, ACPs must have four properties. These properties are moti-
vated from and modified to meet Grid database requirements. The properties are
mentioned below:

AC1: All subtransactions of a global transaction must reach the same decision.

AC2: A subtransaction cannot reverse its decision unilaterally after it has
reached one.

394 Chapter 14 Grid Atomic Commitment in Replicated Data

AC3: The commit decision by the originator can be reached only if all subtrans-
actions decide to commit and are in the “sleep” state.

AC4: Any subtransaction can unilaterally decide to abort.

Next, the correctness of modified Grid-ACP is presented and is demonstrated to
meet the abovementioned properties.

Correctness

AC1 is the main objective for any ACP because it ensures that all subtransactions
will reach the same decision in a distributed environment to ensure atomicity of
the global transaction. Correctness of the algorithm is proven with the help of the
following theorems.

Lemma 14.1: All participants commit if the global decision is to commit.

Proof: Participants are heterogeneous in nature and cannot support the “wait”
state; hence, if the subtransaction executes successfully, it informs the Grid inter-
face and enters “sleep” state. The algorithm takes the global decision only after it
has received response from all other participants. Step 3 of the modified Grid-ACP
algorithm ensures that if no subtransaction aborts, that is, Na D 0, then the global
decision is to commit. Meanwhile, the participants will be in a “sleep” state, after
logging their decision in the log file, since they decided to commit. The log infor-
mation will help in aborting the transaction at a later stage, if the subtransaction
has to be compensated. The global decision is made after responses from all par-
ticipants are received. If all responses are to commit, then the global decision is
also to commit. The global decision is then communicated to all participants. Par-
ticipants then enter into the “commit” state and are removed from the active log.
Acknowledgment is sent to the originator.

It is easy to move from the “sleep” state to the “commit” state rather than from
the “wait” state (traditional ACPs) to the “commit” state, because subtransactions
in the “sleep” state do not hold any resources. Thus all participants reach a uniform
decision of commit, and atomicity is maintained.

Lemma 14.2: All participants abort if global decision is to abort.

Proof: Step 4 of the algorithm checks if any of the subtransactions decide to
abort. If yes, the traditional ACP decides to abort the global transaction at this
stage, but the modified Grid-ACP does not abort the global transaction and checks
whether any replica of the data item is available at any other data site. The modi-
fied Grid-ACP does not make the global decision at this stage. Thus the modified
Grid-ACP does not decide to abort the global transaction as soon as any subtransac-
tion decides to abort, contrary to traditional ACPs. This is called level-1 operations.
After the originator has received all responses from the participants at level 1, those
participants who decided to commit are in a “sleep” state and those who decided
to abort must have aborted locally, but the global decision is not yet made.

14.3 Transaction Properties in Replicated Environment 395

The originator, with the help of Grid middleware’s metadata service and replica
control service, finds other replicas for the respective data item. If the number
of replicas found is at least equal to the number of participants who decided to
abort (for the respective data item), then the subtransactions are submitted to new
replica sites. The global decision has not yet been made; hence, those participants
who decided to commit are still in the “sleep” state. Since the subtransactions are
resubmitted, they enter level-2 operations. Consequently, the transaction can go up
to n levels, until no further replicas are found. If the number of available replicas
is less than the number of aborting participants, only then is the global decision
made and the coordinator decides to abort. Step 4b (else part of the algorithm
and line 12 of Fig. 14.3) ensures this procedure. The global decision to abort is
logged in log files, and the decision is communicated to those participants who
have decided to commit and are in “sleep” state. Those participants then execute
compensating transactions to semantically abort the sleeping transactions. Thus, if
the global decision is to abort, the effects of all subtransactions are either aborted
or compensated from participating database sites (irrespective of the level of the
operation). Atomicity, and thus atomicity property AC1, is maintained for global
abort decisions.

Theorem 14.1: All participating sites reach the same final decision.

Proof: From lemmas 14.1 and 14.2, it can be deduced that all participants either
commit or abort. Thus all sites reach the same final decision.

14.3 TRANSACTION PROPERTIES IN REPLICATED
ENVIRONMENT

On the one hand, data replication can increase the performance and availability of
the system, while on the other hand, if not designed properly, a replicated system
can produce worse performance and availability. If the update must be applied and
synchronized to all replicas, then it may lead to worse performance. And if all
replicas are to be operational in order for any of them to be used, then it may lead
to worse availability.

As discussed in earlier chapters, maintaining ACID properties in a
middleware-based transaction system (e.g., Grid database) is more complicated
than in traditional transaction systems. Traditional transaction systems (including
central and distributed databases) execute a database transaction in a single (and
central) DBMS. A middleware-based transaction system spans several sites in the
Grid database. The middleware transaction system has to satisfy some message
passing, locking, restart, and fault tolerance features.

In this section, the effect of replication on transactional properties (ACID) is
discussed.

ž Atomicity: For a nonreplicated environment, Grid-ACP is used. The atomic
behavior of a transaction is complicated because of execution autonomy and

396 Chapter 14 Grid Atomic Commitment in Replicated Data

heterogeneity of sites. Replication of data further complicates the atomic
commitment issue. The atomic behavior of the transaction depends on the
replication protocol (eager or lazy). If the replication protocol is eager and
the replicated data should be strictly synchronized, then the transaction should
be atomic. But if the replication protocol is lazy and the update can be lazily
propagated to other replicas, then the transaction can update a subset of the
replicas. The atomicity property also depends on the application requirement.
Certain applications do not need atomic transactions, for example, workflows,
business activities, etc.

ž Consistency and isolation: Concurrency control issues are to be addressed
if a replica is being modified. Different replicated sites may contain the
replicated data in heterogeneous storage systems, for example, file systems,
database systems etc. Thus in a distributed Grid environment it is very
complicated to synchronize operations. In a nonreplicated environment, the
GCC protocol relies on the timestamp provided by the middleware.

The concurrency control issue in replicated sites is further complicated if
the data is replicated and located at distributed directory systems and different
process try to access multiple replicas. Replica synchronization protocols in
Chapter 13 may be combined with concurrency control protocols in a repli-
cated Grid environment.

Similar to the atomicity property, many applications may not require the
highest level of consistency. Different applications may need different levels
of consistency. Consistency levels are used for a set of identical replicas and
can be expressed by the time delay for keeping replicas identical. The update
propagation to maintain a specified consistency level can either be automated
or manual.

ž Durability: The problem of durability in a Grid environment is quite similar
to those in traditional distributed DBMSs. The important aspect is that all of
the executing transactions must have the same view of all site failures and
recoveries. An initial value must be stored in a replica copy, which is recov-
ering from a failure. Say that a data item D1 is replicated at a database site
1 (represented as D11). On recovery, D11 must be updated with the latest
version of D1; furthermore, middleware services should be made aware of
D11’s recovery. The following example shows the problem that arises if the
recovering site is not managed properly:

Let us consider that D1 is replicated at two sites DB1 and DB2, repre-
sented as D11 and D12, respectively. DB2 also has a replica of D2, repre-
sented as D22. The following transactions are submitted in the system for
execution:

T1 D r1.D12/w1.D11/c1

T2 D w2.D12/w2.D22/c2

T3 D r3.D11/r3.D22/c3

14.5 Bibliographical Notes 397

T1 is the transaction that reads the latest copy of D1 from DB2 and updates
the recovering replica. Now consider the following history:

H D r1.D12/w1.D11/c1w2.D12/w2.D22/c2r3.D11/r3.D22/c3

The above history is not equivalent to the serial history T1T2T3, because, in
the serial history, T3 will read the values of D1 and D2 written by transaction
T2. But in H , T3 reads the value of D1 written by transaction T1 and reads the
value of D2 from T2. This undesirable situation arises because transaction T2

is not aware that the replica site at T1 has already recovered. Thus the recovery
protocols need special attention in a replicated Grid environment.

14.4 SUMMARY

Typical applications running on the Grid environment are distributed and
long-running transactions. Transactions need to access data from physically
distributed sites and thus have active subtransactions at multiple sites. Aborting
such long-running distributed transactions can be a computationally expensive
affair.

Data is naturally replicated in the Grid environment for availability and perfor-
mance reasons. ACPs abort the global transaction (to maintain atomicity) even if
one of the cohorts of the transaction decides to abort. If the global transaction has
to access data from ten sites, then it will have ten subtransactions. For instance,
if only one subtransaction out of ten decides to abort and the remaining nine sub-
transactions decide to commit, then to preserve atomicity all subtransactions must
abort.

In this chapter, the ACP is modified to take advantage of replication to reduce
the number of aborting transactions. The original ACP uses only one level of opera-
tions of the replicated database. The modified Grid-ACP checks for other available
replicas (other than present quorum) of the data item to exploit replication at more
than one level.

This chapter is summarized as follows:

ž The modified Grid-ACP protocol is discussed, which uses multiple levels of
operations in a replicated environment. Multiple levels of operations reduce
the number of aborts in the system by exploiting all the available replicas.

ž Correctness of the protocol is demonstrated to ensure that the data is not cor-
rupted.

14.5 BIBLIOGRAPHICAL NOTES

Most of the important work on grid data replication has been mentioned in the Bib-
liographical Notes section at the end of Chapter 13. This covers the work that has

398 Chapter 14 Grid Atomic Commitment in Replicated Data

been published in the Grid-related and parallel/distributed conferences, including
GCC, CCGrid, HiPC, Euro-Par, HPDC, and ICPADS.

Specific work on atomic commitment has generally been included in the work
on transaction management, including those that have been mentioned in the Bib-
liographical Notes section at the end of Chapter 10.

14.6 EXERCISES

14.1. What is a long-running transaction?

14.2. Describe why transactions in the grid are generally long-running transactions. What
is the impact of long-running transactions on the atomic commitment in the Grid?

14.3. Discuss the four properties of ACP.

14.4. Describe why the Grid atomic commitment protocol (Grid-ACP) needs to be modi-
fied to accommodate replicated data in the Grid.

14.5. Discuss why execution autonomy and site heterogeneity make atomicity of transac-
tions in the grid more complex. Describe how data replication even further compli-
cates the atomic commitment.

14.6. Discuss the effect of replication on the ACID properties in the Grid.

Part V

Other Data-Intensive
Applications

Chapter15

Parallel Online Analytic
Processing (OLAP) and
Business Intelligence

The efficient and accurate management of data is not sufficient to enhance the
performance of an organization. Data has to be to enhanced and harnessed so that
profitable knowledge can be derived from it. Business Intelligence (BI) is concerned
with transforming and enhancing data to support sound business and strategic deci-
sion making. In business intelligence applications, one is less concerned with the
detailed accuracy of individual data items than with overall trends and global pictures
of business performance. Such decision making aims to increase a company’s prof-
its, minimize risks, and improve Customer Relationship Management (CRM). One
of the powerful tools used for Business Intelligence is Online Analytic Processing
(OLAP).

Unlike Online Transaction Processing (OLTP), which is mostly concerned with
updates, OLAP focuses mainly on analysis. The amount of data involved in an OLAP
query tends to be very large, and the data level is highly aggregated. While OLTP
focuses largely on current data, OLAP often must involve a significant degree of
temporal and historical data processing. Because of its high data intensity and the
need for flexible query processing, parallelism in OLAP is particularly beneficial.

Section 15.1 examines the parallel multidimensional analysis framework, and
then we shall study how SQL queries for OLAP may be efficiently optimized and
parallelized. In Section 15.2, we examine ROLLUP queries, while CUBE queries
are examined in Section 15.3. The parallelization of Top-N and ranking queries are
covered in Section 15.4, and CUME DIST queries are covered in Section 15.5. This

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

401

402 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

is followed by the parallelization of NTILE and histogram queries in Section 15.6,
and finally, we examine windowing queries in Section 15.7.

15.1 PARALLEL MULTIDIMENSIONAL ANALYSIS

In business intelligence, it is often valuable to be able to view information from a
number of dimensions. A dimension is an attribute with which a numerical quantity
is associated. Consider the sales volume of a business over a given number of
years. Here the sales volume is the numerical quantity, while year can be regarded
as a dimension, with different sales volumes being recorded for different years.
In doing so, one would develop a conceptual representation of a multidimensional
hypercube, which can have an arbitrary number of dimensions. Sometimes the
terms data cube or simply cube are used interchangeably with hypercube, even
though “cube” tends to suggest a three-dimensional, rather than an n-dimensional
structure. Indeed, as we shall see later, the keyword CUBE is used in SQL for
its OLAP computations. Figure 15.1 shows an example of a hypercube of sales
volume. Here, the dimensions of Region, Product and Year are used, which result
in a three-dimensional cube. In general, higher dimensions are possible but not so
easily visualized.

Two common operations associated with OLAP are rollup and drill-down.
Rollup involves the aggregation of a number of cells in order to obtain a bigger
picture and a higher-level summary. Drill-down, on the other hand, is concerned
with the breaking down of a numerical figure from a higher level to a lower level.
Analysis of multidimensional data often requires the operations of slicing or
dicing the data cube. Dicing is associated with drill-down operations where in the
case of the above example, one focuses on the sales volume in a given region, for a
given product, in a given year. This amounts to fixing each of the dimensions to a
particular value so as to concentrate on the numerical figure in that cell. Similarly,
slicing is the obtaining of a slice of the cube to determine some aggregated
figure pertaining to that group of cells. Slicing involves fixing some, but not all,
of the dimensions. For example, fixing on a region in the cube will give a slice
of the sales volume by product and year for that region. A given operation may
be regarded as rollup or drill-down depending on the point of view—slicing

1060 3080

5010

2070

6020

4090

7080 8070

Year

Region

Product

Figure 15.1 A data cube

15.1 Parallel Multidimensional Analysis 403

is drill-down from the point of view of the entire cube, but it is rollup from the
point of view of a single cell. While drilling down to the cell level may simply
mean retrieving a single record with the dimension keys, other rollup or drill-down
operations often require the aggregation of sums and, in particular, subtotals.

Because of the flexibility of these operations, potentially huge numbers of
aggregations and calculations are required for analysis, which makes paralleliza-
tion highly advantageous. For example, summarizing the quantities of different
slices may be carried out in parallel.

Consider a two-dimensional slice of m ð n cells, where m < n (Fig. 15.2). Sup-
pose we wish to find the subtotal of all the cells for this slice; then we can allocate
each row to a separate processor that will be responsible for adding the values in
that row (e.g., the second and last rows in Fig. 15.2 are allocated to two separate
processors) to produce an intermediate result. After the parallel summing, all inter-
mediate results will be aggregated to form the final subtotal for the entire slice. We
call this scheme row parallelism, in which rows are parallelized. Likewise, we can
adopt column parallelism by allocating each column to a separate processor (e.g.,
the lightly shaded columns in Fig. 15.2 are allocated to two separate processors)
and perform similar processing. Let N be the number of processors, if

N ½ max.m; n/

then, adopting either row parallelism or column parallelism will make little differ-
ence to parallel processing efficiency. Assuming that row parallelism is adopted,
the processing time will be the time for processing n numbers (all m rows are
processed concurrently, each requiring the addition of n values) plus the time for
aggregating all the m partial sums. Thus the total processing time is that required
for adding together n C m values. Denoting by T .r/ the total processing time for
processing r values, this processing time may be written as T .n C m/. On the
other hand, if column parallelism is adopted, the processing time will be the time
for processing m numbers (all n columns are processed concurrently) plus the time
for aggregating all the n partial sums. Thus the total processing time is that required
for adding together m C n values, or T .m C n/.

Next, suppose m < N < n; then row parallelism should be adopted. Using the
same reasoning as in the previous paragraph, the total processing time is that
required for adding together n C m values or T .n C m/. However, in adopting

m

n Figure 15.2 Parallelizing a slice

404 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

column parallelism in this situation, the total processing time will be

T
�l n

N

m
m C n

�

since not all the columns can be processed simultaneously because of not having
enough processors. The above will reduce to the previous case of T .m C n/ when
n � N . Thus, in general, the optimal parallelization strategy for this particular sit-
uation is selecting the minimum

min
n

T
�l n

N

m
m C n

�
; T

�l m

N

m
n C m

�o

to effect parallel processing.
So far, we have been concerned with a two-dimensional slice. In general, a slice

can be k-dimensional, with m1; : : : ; mk cells for each dimension, respectively. Let
us fix on the first dimension of this slice to obtain m1 subslices of (k � 1) dimen-
sions, and we allocate a separate processor to each subslice. Thus each processor
will add up in parallel

kY
iD2

mi

values to obtain the partial sums, after which the partial sums will be aggregated
to obtain the final subtotal for the entire slice. This will result in an overall subtotal
time of

T .

kY
iD2

mi C m1/

In general, fixing the j th dimension and assuming m j � N , we have the following
for the subtotal time for the slice

T .m1m2 : : :m̂j : : : mk C m j /

where a “hat” over a symbol indicates that it is omitted. If m j > N , we have for
the overall subtotal time of the slice

T
�lm j

N

m
m1m2 : : :m̂j : : : mk C m j

�

Thus the optimal parallelization strategy is to choose a dimension j so that the
above equation is minimized, that is,

T Ł D min
1� j�k

n
T

�lm j

N

m
m1m2 : : :m̂j : : : mk C m j

�o
(15.1)

Useful bounds of the above may be obtained as follows. Let

m D min.m1; : : : ; mk/

M D max.m1; : : : ; mk/

15.2 Parallelization of ROLLUP Queries 405

Then an approximate upper bound for T Ł is

T Ł � T
�l m

N

m
Mk�1 C M

�
(15.2)

This can be seen as follows. The product of the first term in equation 15.1 is largest
when the smallest factor m is reduced by a factor of N . Moreover, the second
term in equation 15.1 is bounded above by M . Thus, combining the maximum of
each term respectively, these together establish the upper bound (equation 15.2).
Likewise, a lower bound for T Ł is

T Ł ½ T

�¾
M

N

³
mk�1 C m

�
(15.3)

This follows by similarly observing that the product of the first term in equation
15.1 is smallest when the largest factor M is reduced by a factor of N , and that the
second term in equation 15.1 is bounded below by m. Combining equations 15.2
and 15.3, we obtain

T

�¾
M

N

³
mk�1 C m

�
� T Ł � T

�l m

N

m
Mk�1 C M

�

These provide reasonably tight bounds since they are attainable when

m1 D m2 D : : : D mk

In this case m D M , and

T Ł D T
�l m

N

m
mk�1 C m

�

In the following sections, we shall consider the application of these techniques to
concrete SQL OLAP aggregations.

15.2 PARALLELIZATION OF ROLLUP QUERIES

In SQL, the ROLLUP operation causes the computation of appropriate subto-
tals across a given set of dimensions. It rolls up from the most detailed level
to an increasingly aggregated level, which makes use of a GROUP BY clause
within a SELECT statement. Let us consider the following relation called Revenue
(Table 15.1). Here, we have three dimensions: Year, District, and Product.

15.2.1 Analysis of Basic Single ROLLUP Queries

Consider the following ROLLUP query:

SELECT Year, District, Product, SUM (Earnings) AS Earnings
FROM Revenue
GROUP BY ROLLUP (Year, District, Product);

406 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

Table 15.1 Revenue

Year District Product Earnings

2011 X Book 76,000

2011 X CD 75,000

2011 Y Book 90,000

2011 Y CD 116,000

2011 Z Book 88,000

2011 Z CD 87,000

2012 X Book 83,000

2012 X CD 86,000

2012 Y Book 102,000

2012 Y CD 138,000

2012 Z Book 97,000

2012 Z CD 98,000

This computes the union of four groupings of the Revenue relation:

f(Year, District, Product) ; (Year, District), (Year), ./g:

The above notation signifies the following sets of subtotals:

ž (Year, District, Product) corresponds to tuples where all the specific data val-
ues of Year, all the specific data values of District, and all the specific data
values of Product are given explicitly, exhausting all combinations of the val-
ues of these three dimensions.

ž (Year, District) corresponds to tuples where all the specific data values of Year
and all the specific data values of District are given explicitly, exhausting all
combinations of the values of these two dimensions, but the Earnings of all
Products are summed. This is known as the first-level subtotal, as the values
of only one dimension (i.e., Product) are summed.

ž (Year) corresponds to tuples where all the specific data values of Year are
given explicitly, but the Earnings of the other two dimensions are summed.
This is known as the second-level subtotal, as the values of two dimensions
(i.e., District and Product) are summed.

ž () corresponds to a tuple where none of the specific data values of the three
dimensions is given explicitly, giving a grand total of the Earnings of all three
dimensions.

As we can see, the exact number of subtotals is determined by the cardinality
(i.e., the number of different data values) of the underlying dimensions. The higher
the cardinality, the greater is the number of subtotals that need to be computed.

15.2 Parallelization of ROLLUP Queries 407

Table 15.2 Rollup computations

Year (2) District (3) Product (2) Earnings

2011 X Book 76,000

2011 X CD 75,000

2011 X SUBTOTAL 151,000

2011 Y Book 90,000

2011 Y CD 116,000

2011 Y SUBTOTAL 206,000

2011 Z Book 88,000

2011 Z CD 87,000

2011 Z SUBTOTAL 175,000

2011 SUBTOTAL SUBTOTAL 532,000

2012 X Book 83,000

2012 X CD 86,000

2012 X SUBTOTAL 169,000

2012 Y Book 102,000

2012 Y CD 138,000

2012 Y SUBTOTAL 240,000

2012 Z Book 97,000

2012 Z CD 98,000

2012 Z SUBTOTAL 195,000

2012 SUBTOTAL SUBTOTAL 604,000

SUBTOTAL SUBTOTAL SUBTOTAL 1,136,000

The execution of the above ROLLUP query yields Table 15.2, where we have
additionally indicated the cardinality of each dimension in the column headings.

Here “SUBTOTAL” is indicated for clarity. In many SQL implementations, the
actual output will indicate a blank instead of “SUBTOTAL” for the subtotals. More
user-friendly explicit wordings may be produced by using a combination of the
GROUPING function and the DECODE function. By using the cardinality infor-
mation, we see that (Year, District, Product) produces 2 ð 3 ð 2 D 12 tuples in
the result, (Year, District) produces 2 ð 3 D 6 subtotals in the result, (Year) pro-
duces 2 subtotals in the result, and () gives a single grand total tuple in the result.
Thus we have 6 C 2 C 1 D 9 additional subtotal rows compared with the base
table.

In general, in executing ROLLUP .C1; : : : Ci ; : : : ; Ck/, with jCi j D ni , that is
each column Ci having cardinality ni , then the number of subtotals is

n1 : : : nk�1 C n1 : : : nk�2 C n1 : : : nk�3 C : : : C n1n2 C n1 C 1 (15.4)

408 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

C1

…
…

C2

…
… Ck-1

…
……

Figure 15.3 Rollup partition tree

This can be seen by counting the SUBTOTALs successively, starting from the
penultimate column of the relation (i.e., first-level subtotal). The first term in
expression 15.4 corresponds to SUBTOTALs in the penultimate column, with the
leftmost k � 1 columns having definite values (these values would range over all
possible combinations of values in these columns). The second term in expression
15.4 corresponds to having SUBTOTALs in the second and third columns from
the right, with the leftmost k � 2 columns having definite values (these values
would range over all possible combinations of values in these columns), and so
on. There are k terms in expression 15.4, each corresponding to a given level of
subtotal.

As we can see, for any appreciable cardinality for the dimensions, the amount of
computations associated with ROLLUP can be very high, and parallelization can
bring considerable time savings. We may carry out the parallelization of ROLLUP
.C1; : : : Ci ; : : : ; Ck/, from left to right. First, we partition the relation, using the
values of the leftmost column. Assuming for the moment that the number of pro-
cessors N is greater than n1, this will result in n1 partitions, and we distribute these
to n1 separate processors. Thus each processor effectively contains a slice. If there
are a large number of processors, then we may further partition the relation, using
C2. Upon the completion of this, the relation will have been partitioned into n1n2
subrelations each of which will be allocated to a separate processor for computing
the relevant subtotals. Thus the parallel processing will follow the rollup partition
tree shown in Figure 15.3.

The above rollup partition tree can be fully expanded if N ½ n1 : : : nk�1. In this
case, all first level subtotals can be computed in parallel. In the above example,
this means that all the different product earnings for each District and Year com-
bination can be allocated to a separate processor, so that subtotaling for different
combinations of District and Year values can all be carried out in parallel.

If, on the other hand, N < n1 : : : nk�1, then the above rollup partition tree can-
not be fully expanded, and the expansion will stop at column C j , where a full
partition of C j will require more processors than are available. Assuming that a
full expansion of C j requires a total of n0 processors, at such a stage of processor
allocation, we have

n0 D
jY

iD1

ni

Thus, whenever the condition N < n0 is encountered, we will then allocate multi-
ple new branches of the expansion tree to a single processor. In such a situation,
the load at each processor will not be uniform, although one should spread these

15.2 Parallelization of ROLLUP Queries 409

branches as uniformly as possible over the available processors, and in so doing,
the maximum completion time will be minimized.

15.2.2 Analysis of Multiple ROLLUP Queries

The basic ROLLUP command above admits a number of variations, which will
cause the computation of different results. Multiple ROLLUP allows several
ROLLUPs to be included in a single SELECT statement. Consider the following
SQL query.

SELECT Year, District, Product, SUM (Earnings) AS Earnings
FROM Revenue
GROUP BY ROLLUP (Year), ROLLUP (District, Product);

This will generate the following set.

fYear, ./g ð f(District, Product), (District), ./g
D f(Year, District, Product), (Year, District), (Year), (District, Product),

(District), ./g
From the cardinalities of the dimensions, we can determine that this will produce
(2 ð 3) C2C (3 ð 2) C 3 C 1 D 18 subtotals. The following gives the explicit
result shown in Table 15.3.

Here, a reasonable parallelization strategy is to examine the product expression
from which the output is generated:

f(Year, District, Product), (Year, District), (Year),

(District, Product), (District), ./g
We count the relative occurrence of a particular dimension in this expression, and
we would expect that the more frequently it occurs in the expression, the less it is
subtotaled, as a dimension’s occurrence requires the inclusion of specific data val-
ues, rather than a subtotal. In the above expression, the most frequently occurred
dimension is District, followed by Year, which in turn is followed by Product.
Indeed, from Table 15.3, we see that there are 12 subtotals under the Product
dimension, 10 subtotals under the Year dimension, and 3 subtotals under the Dis-
trict dimension. Since our aim is to have the subtotal computations performed in
parallel, we would construct the partition tree in descending frequency of occur-
rence of the dimensions.

Such a heuristic strategy may be generalized as follows. For a table with k
dimensions, if we have multiple ROLLUPs of the form:

GROUP BY ROLLUP.C1; : : : ; Ci /; ROLLUP.C 0
1; : : : ; C 0

j /

we first form the product

f.C1; : : : ; Ci /; .C1; : : : ; Ci�1/; .C1; : : : ; Ci�2/; : : : ; ./g ð
f.C 0

1; : : : ; C 0
j /; .C 0

1; : : : ; C 0
j�1/; .C 0

1; : : : ; C 0
j�2/; : : : ; ./g

410 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

Table 15.3 Multiple rollups

Year District Product Earnings

SUBTOTAL X Book 159,000

SUBTOTAL X CD 161,000

SUBTOTAL X SUBTOTAL 320,000

SUBTOTAL Y Book 192,000

SUBTOTAL Y CD 254,000

SUBTOTAL Y SUBTOTAL 446,000

SUBTOTAL Z Book 185,000

SUBTOTAL Z CD 185,000

SUBTOTAL Z SUBTOTAL 370,000

2011 X Book 76,000

2011 X CD 75,000

2011 X SUBTOTAL 151,000

2011 Y Book 90,000

2011 Y CD 116,000

2011 Y SUBTOTAL 206,000

2011 Z Book 88,000

2011 Z CD 87,000

2011 Z SUBTOTAL 175,000

2011 SUBTOTAL SUBTOTAL 532,000

2012 X Book 83,000

2012 X CD 86,000

2012 X SUBTOTAL 169,000

2012 Y Book 102,000

2012 Y CD 138,000

2012 Y SUBTOTAL 240,000

2012 Z Book 97,000

2012 Z CD 98,000

2012 Z SUBTOTAL 195,000

2012 SUBTOTAL SUBTOTAL 604,000

SUBTOTAL SUBTOTAL SUBTOTAL 1,136,000

Next, we count the occurrence of each dimension in the resultant product and
then arrange these in descending order of occurrence. Let these be ordered as
D1; : : : ; Dk . Finally, we construct the partition tree as shown in Figure 15.4.

From this tree, we carry out processor allocation and parallelization as before.

15.2 Parallelization of ROLLUP Queries 411

D1

…
… D2

…
… Dk-1

…
……

Figure 15.4 Multiple rollup partition tree

15.2.3 Analysis of Partial ROLLUP Queries

In addition to multiple rollup, partial ROLLUP is also commonly used in OLAP,
where only selected subtotals will be calculated. Consider the following SQL
query.

SELECT Year, District, Product, SUM (Earnings) AS Earnings
FROM Revenue
GROUP BY Year, Product, ROLLUP (District);

The result of this query is shown in Table 15.4. Here, only the District dimension
is allowed to have “SUBTOTAL” under it, with Year and Product varying over all
their possible values.

Table 15.4 Partial rollup

Year District Product Earnings

2011 X Book 76,000

2011 Y Book 90,000

2011 Z Book 88,000

2011 SUBTOTAL Book 254,000

2011 X CD 75,000

2011 Y CD 116,000

2011 Z CD 87,000

2011 SUBTOTAL CD 278,000

2012 X Book 83,000

2012 Y Book 102,000

2012 Z Book 97,000

2012 SUBTOTAL Book 282,000

2012 X CD 86,000

2012 Y CD 138,000

2012 Z CD 98,000

2012 SUBTOTAL CD 322,000

412 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

The parallelization strategy for partial rollup can be carried out as in the situa-
tion for the single rollup, proceeding from left to right of the statement, partitioning
in this case Year first, then Product, and then finally District to enable the parallel
computation of the subtotals. Similarly, for a partial ROLLUP of the form:

GROUP BYC1; : : : ; Ci ; ROLLUP.CiC1; : : : ; Ck/

we may carry out the partition in accordance with the partition tree in Figure 15.3.

15.2.4 Parallelization Without Using ROLLUP

ROLLUP is a powerful SQL operation in OLAP, as without ROLLUP, we need to
compute the subtotals in separate SQL queries and then finally form a Union of
the different results table, necessitating multiple passes of the table to perform the
calculations. In general, for a k-column ROLLUP, we need to Union the results of
(k C 1) SELECT statements if we do not use ROLLUP, and the number of table
accesses will increase from 1 to (k C 1). Thus, in terms of table accesses, using
ROLLUP gives a saving of [.k C 1/�1/]=.k C 1/ D k=.k C 1/, which for large k
will be very close to 100%.

The same observation, however, also suggests a method for computing the
ROLLUP subtotals without using ROLLUP queries, such as in certain database
management systems where the SQL dialect does not support ROLLUP. Here,
we replicate the relation over (k C 1) processors and carry out the SELECT in
parallel. After this, we then Union all the SELECT outputs together to form the
final results.

15.3 PARALLELIZATION OF CUBE QUERIES

The ROLLUP operation for multidimensional analysis in the previous section can
be regarded as a selective form of rollup in OLAP, as it does not offer all possible
combination of dimensions. The basic single ROLLUP, the multiple ROLLUP, and
the partial ROLLUP only enable certain subtotals to be computed. Consider the
operation

ROLLUP.C1; C2; : : : ; Ck/

The summing of numerical quantities associated with all values of Ci for a given
value of C j is not computed for i < j . Unlike ROLLUP, the CUBE operation
allows subtotals to be computed for every dimension value combination plus an
overall total where all dimensions are allowed to take on “SUBTOTAL” simul-
taneously. Thus the amount of computations involved in a CUBE query forms a
superset of those in a ROLLUP query.

15.3 Parallelization of CUBE Queries 413

15.3.1 Analysis of Basic CUBE Queries

Consider the following SQL query.

SELECT Year, District, Product, SUM (Earnings) AS Earnings
FROM Revenue
GROUP BY CUBE (Year, District, Product);

This computes the union of eight different groupings of the Revenue relation:

f.Year, District, Product/;

.Year, District/; .Year, Product/; .District, Product/;

.Year/; .District/; .Product/;

./g
From the cardinalities of the dimensions, we can determine that this will produce
(2 ð 3) C (2 ð 2) C (3 ð 2) C 2 C 3 C 2 C 1 D 24 subtotals. Figure 15.5
compares the computations carried out by CUBE with those carried out by
ROLLUP (the ones omitted by ROLLUP are shaded). Table 15.5 shows the actual
output of the CUBE operation (again, the ones omitted by ROLLUP are shaded).
A hypercube representation of this table is given in Figures 15.6 and 15.7. The
hypercube is made up of two Year slices 2011 and 2012. A particular column of
the slice results in subtotal by District, and a particular row of the slice results in
subtotal by Product.

In the above example, we have k D 3 columns. In general, for k columns
.C1; : : : Ci ; : : : ; Ck/, with jCi j D ni , the number of subtotals is

S D
kX

jD1

n1n2 : : :n̂j : : : nk C
kX

i; jD1

n1n2 : : :n̂i : : :n̂j : : : nk C : : : C
kX

iD1

ni C 1

where a “hat” over a symbol indicates that it has been omitted. There are
�

k
1

�

terms in the first summation and �
k
2

�

terms in the second summation, and so on. The total number of terms in calculating
S is �

k
1

�
C : : : C

�
k
k

�
D 2k � 1

Now, assuming that the minimum number of values among all the columns is n,
that is,

n D min.n1; : : : ; nk/

414 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

SELECT Year, District, SELECT Year, District,
Product, Product,
SUM (Earnings) AS Earnings SUM (Earnings) AS Earnings
FROM Revenue FROM Revenue
GROUP BY CUBE (Year, GROUP BY ROLLUP (Year,
District, Product); District, Product);

f (Year, District, Product), f (Year, District, Product),

(Year, District), (Year, Product), (Year, District),

(District, Product), (Year),

(Year), (District), (Product), () g
() g

Figure 15.5 Comparison of cube and rollup

then

S � 1 ½
�

k
1

�
nk�1 C : : : C

�
k
k � 1

�
n ½ .2k � 2/n

Thus

S ½ .2k � 2/n C 1

and for reasonably large value of k; 2kii1, and so we have, approximately

S ½ n ð 2k

For example, if k D n D 10, we have S ½ 10; 000. If k D n D 5, we have S ½ 160.
Thus we see that in executing the CUBE statement, even modest numbers of
dimensions and cardinalities are highly computation intensive. This makes par-
allelization all the more beneficial.

In the ROLLUP operation, where only selected subtotals are computed, we can
preferentially choose dimensions for allocation to processors to optimize subto-
tal computations. Here, all the dimensions are symmetrical in the sense that they
all participate equally in the subtotal computations. In this situation, we will need
to exploit the cardinality characteristics of the dimensions instead of the dimen-
sions themselves. Thus the optimal parallelization strategy given in Section 15.1
can be used, where a useful heuristic method is to partition the dimensions with
the smallest cardinalities first. Arranging the dimensions in ascending order of
their cardinalities as CŁ

1 ; : : : ; CŁ
k , we carry out processor allocation based on the

partition tree shown in Figure 15.8.

15.3 Parallelization of CUBE Queries 415

Table 15.5 Cube computations

Year District Product Earnings

2011 X Book 76,000

2011 X CD 75,000

2011 X SUBTOTAL 151,000

2011 Y Book 90,000

2011 Y CD 116,000

2011 Y SUBTOTAL 206,000

2011 Z Book 88,000

2011 Z CD 87,000

2011 Z SUBTOTAL 175,000

2011 SUBTOTAL Book 254,000

2011 SUBTOTAL CD 278,000

2011 SUBTOTAL SUBTOTAL 532,000

2012 X Book 83,000

2012 X CD 86,000

2012 X SUBTOTAL 169,000

2012 Y Book 102,000

2012 Y CD 138,000

2012 Y SUBTOTAL 240,000

2012 Z Book 97,000

2012 Z CD 98,000

2012 Z SUBTOTAL 195,000

2012 SUBTOTAL Book 282,000

2012 SUBTOTAL CD 322,000

2012 SUBTOTAL SUBTOTAL 604,000

SUBTOTAL X Book 159,000

SUBTOTAL X CD 161,000

SUBTOTAL X SUBTOTAL 320,000

SUBTOTAL Y Book 192,000

SUBTOTAL Y CD 254,000

SUBTOTAL Y SUBTOTAL 446,000

SUBTOTAL Z Book 185,000

SUBTOTAL Z CD 185,000

SUBTOTAL Z SUBTOTAL 370,000

SUBTOTAL SUBTOTAL Book 536,000

SUBTOTAL SUBTOTAL CD 600,000

SUBTOTAL SUBTOTAL SUBTOTAL 1,136,000

416 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

2011 Year Slice

X Y Z

Book 76,000 90,000 88,000 Subtotal in
Row 10
(254,000)

CD 75,000 116,000 87,000 Subtotal in
Row 11
(278,000)

Subtotal in
Row 3
(151,000)

Subtotal in
Row 6
(206,000)

Subtotal in
Row 9
(175,000)

Subtotal in
Row 12
(532,000)

Figure 15.6 Hypercube representations (2011 Year slice)

15.3.2 Analysis of Partial CUBE Queries

In addition to the basic CUBE operation, partial CUBE may be used, which limits
the number of subtotals produced. Consider the following SQL query.

SELECT Year, District, Product,
SUM (Earnings) AS Earnings FROM sales
GROUP BY Year, CUBE (District, Product);

2012 Year Slice

X Y Z

Book 83,000 102,000 97,000 Subtotal in
Row 22
(282,000)

CD 86,000 138,000 98,000 Subtotal in
Row 23
(322,000)

Subtotal in
Row 15
(169,000)

Subtotal in
Row 18
(240,000)

Subtotal in
Row 21
(195,000)

Subtotal in
Row 24
(604,000)

Figure 15.7 Hypercube representation (2012 Year slice)

15.3 Parallelization of CUBE Queries 417

C1*

…
… C2*

…
… Ck*

…
……

Figure 15.8 Cube partition tree

Here, the dimension Year is not allowed to have “SUBTOTAL” under it in the
result, while CUBE (District, Product) follows the usual CUBE operations. This
will generate the following set:

fYear g ð f(District, Product), (District), (Product), ./g
D f(Year, District, Product), (Year, District), (Year, Product), (Year) g

Here, we may apply the heuristics of Section 15.2.2 and carry out partition in
descending order of dimension occurrence. We will therefore partition Year first,
as it occurs most often. Thus, in general, for a statement of the form

GROUP BYC1; : : : ; Ci ; CUBE.CiC1; : : : ; Ck/

we first carry out the partition for dimensions that fall outside the CUBE brack-
ets, before partitioning those that are within the CUBE brackets (since the former
dimensions tend to occur more frequently in the product expression), and in both
cases, we follow the rule of ascending cardinality.

15.3.3 Parallelization Without Using CUBE

CUBE is a more powerful SQL operation than ROLLUP, and without it or
ROLLUP, we need to compute a large number of subtotals in separate SQL
queries and then form a Union of the different results table, necessitating
multiple passes of the table to perform the computations. More precisely, for
a k-dimensional cube, 2k SELECT statements are needed. Each SELECT
statement requires a separate pass of the table, compared with a single pass from
using CUBE. Thus, in terms of table accesses, using CUBE gives a saving of
.2k � 1/=2k D 1 � 1=2k , which even for moderate values of k will be close to
100%.

As in the case of ROLLUP, this also suggests a method of computing the CUBE
subtotals without using CUBE queries, in database systems where CUBE is not
directly supported. We replicate the relation over 2k processors, and carry out the
SELECT in parallel. If there are fewer than 2k processors, then we will need to
have two or more SELECTs performed by a single processor.

418 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

15.4 PARALLELIZATION OF TOP-N AND RANKING
QUERIES

Top-N query is a common OLAP operation and is a query requesting the N largest
or smallest values of a numerical column. While the SQL aggregation functions
MAX and MIN simply determine the largest value and smallest value, respectively,
within a numerical column, top-N queries require more complete ranking of these
columns. The class of Top-N queries also includes bottom-N queries, as one can
simply reverse the ordering of the numerical magnitude in the ranking process.
Examples of top-N queries include “Who are the top five highest-paid executives
in the company?” and “Who are the ten worst students in the class?”

SQL makes use of two ranking functions to effect the ranking of values

ž RANK ()

ž DENSE RANK ()

Both functions use the integers 1; 2; 3; : : : in allocating the rank. While
DENSE RANK () admits no gaps in these ranking integers, RANK () allows
gaps to exist when there is a tie. For example, when there are two equal top
salespersons, then the next one will be assigned a rank of 3 when using RANK
() but will be assigned a rank of 2 when using DENSE RANK (). Consider
Table 15.6, concerning the performance of salespersons in the company.

From the following SQL query

SELECT EmployeeNo, Sales,
RANK () OVER (ORDER BY Sales DESC) AS Position
FROM Performance;

we obtain result shown in Table 15.7.
To produce a ranking of a table based on a column, the table will need to be

sorted based on that column. The parallelization of these queries may be carried
out by using the techniques developed for parallel sorting in Chapter 4.

As a result of ranking, we can easily produce the answers to top-N queries
through nesting. For example, we can issue the nested query

Table 15.6 Performance

EmployeeNo Sales

E123 18,000

E234 19,000

E345 17,600

E456 11,000

E789 15,000

15.5 PARALLELIZATION OF CUME DIST QUERIES 419

Table 15.7 Ranked performance

EmployeeNo Sales Position

E234 19,000 1

E123 18,000 2

E345 17,600 3

E789 15,000 4

E456 11,000 5

SELECT EmployeeNo FROM
(SELECT EmployeeNo, Sales,
RANK () OVER (ORDER BY Sales DESC) AS Position
FROM Performance)

WHERE Position < D 3;

to obtain the EmployeeNo of the top three salespersons.

15.5 PARALLELIZATION OF CUME DIST QUERIES

The cumulative distribution function (CUME DIST) orders a particular (often
non-negative integral) numerical column, and determines the fraction of tuples,
either within the relation or within a particular group of the relation, that have
a numerical value not exceeding that of a tuple. Cumulative distribution is a
construct from probability theory, where for a given numerical value x , the
cumulative distribution function of x is given by

F.x/ D 1

jRj
xX

kD0

rk

where rk is the number of tuples having the value k, and jRj is the total number of
tuples in the relation or appropriate group.

Using the data of Table 15.6, the cumulative distribution of sales can be obtained
from the query:

SELECT EmployeeNo, Sales,
CUME_DIST () OVER (ORDER BY Sales DESC) AS Cdf
FROM Performance;

which will result in Table 15.8. To compute the cumulative distribution function,
we need to sort the tuples first based on the numerical column of interest, and
then determine a tuple’s position by counting the number of tuples either above or
below it. Thus the parallel execution of CUME DIST queries may be effected by
exploiting the parallel sorting techniques given in Chapter 4.

420 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

Table 15.8 Cumulative distribution function

EmployeeNo Sales Cdf

E234 19,000 1

E123 18,000 0.8

E345 17,600 0.6

E789 15,000 0.4

E456 11,000 0.2

15.6 PARALLELIZATION OF NTILE AND HISTOGRAM
QUERIES

The function NTILE(k) allocates a set of numerical values into k bins according
to their magnitude. It places the tuples into k bins with (close to) an equal number
of tuples in each bin. Using the data of Table 15.6, and supposing we set k D 4
(quartile), the SQL query

SELECT EmployeeNo, Sales,
NTILE(4) OVER (ORDER BY Sales DESC) AS Quartile
FROM Performance;

will give the result in Table 15.9.
Again, the execution of this query will require sorting, and thus the paralleliza-

tion of NTILE queries can make use of the parallel sorting techniques in Chapter 4.
Note, however, that it is not feasible to perform the NTILE allocations in parallel in
different processors and then merge the results, since a value belonging to the top
NTILE in one data set may belong to a different NTILE in another. This is because
the values defining the bin boundaries are relative to the tuple values rather than
fixed absolutely. In addition, the correct execution of the NTILE function depends
on the global range, which cannot be determined locally at an individual proces-
sor. Thus a global sort needs to be performed first before bin boundaries are defined
(Fig. 15.9).

On the other hand, histogram queries will benefit from concurrent processing by
separate processors carried out on data fragments without needing to do a global
sort first. Consider the set of marks in Table 15.10. A histogram may be constructed
by using the SQL query

SELECT
SUM(CASE WHEN Mark BETWEEN 80 AND100 THEN 1 ELSE 0 END) as A,
SUM(CASE WHEN Mark BETWEEN 70 AND 80 THEN 1 ELSE 0 END) as B,
SUM(CASE WHEN Mark BETWEEN 60 AND 70 THEN 1 ELSE 0 END) as C,
SUM(CASE WHEN Mark BETWEEN 50 AND 60 THEN 1 ELSE 0 END) as D,
SUM(CASE WHEN Mark BETWEEN 40 AND 50 THEN 1 ELSE 0 END) as E,
FROM Students;

which will give the histogram in Table 15.11: Unlike for NTILE queries, the
boundary values of bins here are not relative but are fixed beforehand by the

15.6 Parallelization of NTILE and Histogram Queries 421

Table 15.9 The NTILE function

EmployeeNo Sales Quartile

E234 19,000 1

E123 18,000 2

E345 17,600 2

E789 15,000 3

E456 11,000 4

…

Final merge
Bin boundaries

defined

NTILE
allocations

Local Sort Performed
in Parallel

Figure 15.9 Parallelization of NTILE query

…

Local histogram construction
in parallel using predefined
boundaries (local sort/merge)

Global histogram
construction

Figure 15.10 Parallelization of histogram query

query so that the parallel processing of data fragments for allocating values to
bins can be performed by individual processors concurrently. This is illustrated in
Figure 15.10.

After building the local histogram with the data in a given processor, the global
histogram may be obtained by adding all the results from individual processors.

422 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

Table 15.10 Marks

Mark

93

61

47

88

73

65

58

68

51

79

Table 15.11 Histogram query

A B C D E

2 2 3 2 1

15.7 PARALLELIZATION OF MOVING AVERAGE AND
WINDOWING QUERIES

Very often in dealing with time information in a data warehouse, data is presented
in the form of a time series. A common operation to smooth out the fluctuations in
a time series is to average out a set of consecutive values. Consider the time series
in Table 15.12, which gives the estimated sale of a particular product.

If we wish to compute the moving average using three consecutive sales figures,
we can use the SQL query:

SELECT Month, Sales,
AVG(Sales) OVER (ORDER BY Month ROWS 2 PRECEDING)
AS Moving_Avg
FROM Forecast;

which will average the current sales together with the two preceding sales figures,
giving Table 15.13.

Note that the first two moving averages are computed on the basis of less than
three values. In general, a moving average may involve averaging k values, and the
first (k � 1) average values are computed using less than k values because of the
absence of certain preceding values.

In parallelizing the moving average or other windowing computations, one can
divide the set of data among the available processors. The processors will then

15.7 Parallelization of Moving Average and Windowing Queries 423

Table 15.12 Forecast

Month Sales

January 2018 100

February 2018 200

March 2018 300

April 2018 400

May 2018 500

June 2018 600

July 2018 700

August 2018 800

September 2018 900

October 2018 1000

November 2018 1100

December 2018 1200

Table 15.13 Moving average query

Month Sales Moving Avg

January 2018 100 100

February 2018 200 150

March 2018 300 200

April 2018 400 300

May 2018 500 400

June 2018 600 500

July 2018 700 600

August 2018 800 700

September 2018 900 800

October 2018 1000 900

November 2018 1100 1000

December 2018 1200 1100

compute the corresponding moving average values in parallel. However, as we
have noted above, the boundary values will require special attention. Since the first
few moving averages are not the true moving average required from averaging k
values, some tuples will need to be replicated on two processors. This is illustrated
in Figure 15.11 for the case of three processors.

424 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

(k–1) tuples

(k–1) tuples

Processor A

Processor B

Processor C
Figure 15.11 Data allocation for windowing
queries

More precisely, if the computation is allocated to N processors, and if a win-
dowing function involves k values, then .k � 1/ ð .N � 1/ tuples will need to be
replicated on two processors. This can be seen by suitably extending the number
of processors in Figure 15.11.

15.8 SUMMARY

This chapter studies the parallelization of OLAP queries. We have looked at the
multidimensional analysis framework and introduced heuristics for parallelizing
slicing and dicing operations. Formulae and bounds for performance estimation
have also been derived.

As OLAP operations are carried out by concrete queries, we have considered
how different kinds of OLAP queries may be efficiently parallelized. These
include:

ž ROLLUP queries
ž CUBE queries
ž Top-N and Ranking queries
ž CUME DIST queries
ž NTILE and Histogram queries
ž Windowing queries

These analysis queries tend to be computation intensive, and their paralleliza-
tion with the heuristics and techniques covered in this chapter is especially benefi-
cial when huge volumes of data are being processed.

15.9 BIBLIOGRAPHICAL NOTES

Having laid down the criteria for evaluating truly relational database systems
(Codd 1986), Codd proceeded to lay down 12 rules for OLAP (Codd 1993). In

15.10 Exercises 425

particular, to meet the requirements of rules 9 and 12, the deployment of parallel
technology is essential. Most of the work in parallel data warehouses focuses
on ROLAP, data cubes (constructions and queries), and query scheduling. The
group led by Dehne (http://www.dehne.net) has published numerous papers in
parallelization of ROLAP and data cubes. Dehne et al. (DAPD 2006) reported their
cgmCube project, which designed and implemented a multiprocessor platform for
data cube generation that targets the relational database model (ROLAP). Their
earlier work published in DAPD proposed parallelization of data cube construction
on a shared-disk architecture (Dehne et al. DAPD 2002) and on a shared-nothing
architecture (Chen and Dehne et al. DAPD 2004). Two data partitioning strategies,
one for top-down and the other for bottom-up cube algorithms, were reported in
Dehne et al. (ICDT 2001).

Jin et al. in IEEE TPDS (2005) and ICPP (2003 and 2004) reported their work
on parallel data cube construction. In IEEE TPDS (2005), Jin et al. presented an
aggregation tree for parallel data cube construction, which focused on interproces-
sor communication. This was an extension of their previous work reported in ICPP
(2003). Their other work presented in ICPP (2004) combined the use of tiling the
input and output arrays on each processor and interprocessor communication in a
data cube construction process.

In the area of OLAP queries, Li and Gao (DEXA 2004) presented a hierarchical
data cube for range-sum queries. A more complete work on range-sum queries and
dynamic updates was reported in 2005 (Gao and Li 2005). Datta et al. (IEEE TKDE
2002) proposed a storage structure, called DataIndexes, to vertically partition star
schema. They also proposed a declustering strategy that incorporates both task and
data partitioning for parallel star join.

In the area of query scheduling, Märtens et al. (2002 and 2003) proposed a
dynamic query scheduling in parallel data warehouses, where they proposed
a scheduling that considers both processors and disks for load balancing in a
shared-disk architecture.

15.10 EXERCISES

15.1. Discuss the differences between row parallelism and column parallelism in
two-dimensional data.

15.2. Outline the differences between rollup and drill-down. Use an example to highlight
their differences.

15.3. Indicate the main difference between the following two GROUP BY ROLLUP
clauses in SQL:

GROUP BY ROLLUP (Product, Branch);

and

GROUP BY ROLLUP (Branch, Product);

426 Chapter 15 Parallel Online Analytic Processing (OLAP) and Business Intelligence

15.4. Multiple rollup uses multiple ROLLUP clauses in the GROUP BY. Describe the
difference between the following single ROLLUP and multiple ROLLUP:

GROUP BY ROLLUP (Branch, Product, Season);

and

GROUP BY ROLLUP (Branch, Product), ROLLUP (Season);

15.5. What is a partial ROLLUP? Outline the main differences between partial ROLLUP
and the other two ROLLUPs (i.e., single and multiple ROLLUPs).

15.6. Highlight the differences between ROLLUP and CUBE. What is the difference
between:

GROUP BY ROLLUP (Branch, Product, Season);

and

GROUP BY CUBE (Branch, Product, Season);?

15.7. What is partial CUBE? Give an example.

15.8. Explain the main difference between the Rank() and Dense Rank() functions in
SQL. Illustrate your answer with an example.

15.9. What parallelization methods can be applied to CUME DIST queries?

15.10. Describe the main differences between two NTile queries, one where the boundary
values of bins are fixed and the other where the boundary values of bins are already
predetermined.

15.11. To what degree is parallelization of moving average queries different from the par-
allelization of other queries?

Chapter16

Parallel Data
Mining—Association Rules
and Sequential Patterns

This chapter focuses on data mining, another data-intensive application whereby
parallelism can be used in order to achieve high performance. Data mining analyzes
a large amount of data stored in databases to discover interesting knowledge in the
form of patterns, association, changes, anomalies, significant structures, etc. Data
mining is also known as knowledge discovery, or more precisely, knowledge discov-
ery of data. Both terms are basically interchangeable. In this book, the term “data
mining” is used throughout.

Data mining is considered a multidisciplinary area, covering machine learning,
statistics, as well as databases. From a machine learning viewpoint, data mining
uses learning techniques that generally exist in the machine learning domain, such
as knowledge representation, classification, and structure. From a statistical point
of view, it is obvious that data analysis requires some statistical techniques, such
as correlation, clustering, outliers, etc. However, this book focuses on database and
database processing and considers data mining processes from a database processing
perspective. It covers commonly used data mining techniques, such as association
rules, sequential patterns, clustering, and classification. This chapter focuses on asso-
ciation rules and sequential patterns, whereas Chapter 17 focuses on the other two
data mining techniques: clustering and classification.

As discussed throughout the book, processing a large volume of data requires
parallelism techniques in order to achieve high performance. Subsequently, it is also
desirable to apply parallelism techniques to data mining processes. Therefore, the
focus of the two chapters on parallel data mining (Chapters 16 and 17) is twofold:

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

427

428 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

first, to introduce data mining techniques, covering association rules, sequential pat-
terns, clustering, and classification, and second, to describe parallelism opportunities
in these data mining techniques.

This chapter will start with a road map that shows the historical evolution of
data mining from databases (Section 16.1). The section reflects on what has been
discussed in the previous chapters and examines how it can further evolve in the
future. To become familiar with data mining, especially in the context of databases
and data analysis, it is essential to understand the evolution of data mining, through
databases and data warehousing, all of which have a common denominator called
data or databases.

An overview of data mining is described in more detail in Section 16.2, cover-
ing basic data mining tasks, differences between data mining and database querying,
and parallelism techniques for data mining algorithms. Following this, Sections 16.3
and 16.4 describe parallel association rules and parallel sequential patterns, respec-
tively.

16.1 FROM DATABASES TO DATA WAREHOUSING
TO DATA MINING: A JOURNEY

All three, databases, data warehouses, and data mining, deal with data. There-
fore, it is necessary to understand the evolution of these data-intensive applications.
Figure 16.1 illustrates this evolution.

Databases are commonly deployed in almost every organization. In a simple
form, databases are referred to as data repositories. Although there are several
database models, they serve a common purpose, that is, data repository. As already
discussed, database processing can be divided into two main categories: (i/ queries
and (ii) transactions. Queries are basically retrievals. Or, in other words, database
users need to ask the database to retrieve the required information. There is no
point in storing something in a data repository if we do not need to retrieve it.
So, querying has been one of the main purposes of databases. Earlier in this book,

Data cleaning
Data integration
etc

DB

Databases

Data
Warehouse

Data Mining

Knowledge
or Patterns

Figure 16.1 Evolution of data-intensive applications

16.1 From Databases To Data Warehousing To Data Mining: A Journey 429

especially in Parts II and III, parallelism is applied to queries in order to speed up
the process. These queries are often known as read-only queries, since the queries
retrieve (or read) only the requested data and do not change the data.

Transactions, on the other hand, are required by users because of the need
to keep updating the data in the database as well as storing new information in
the database. Since a database is shared by many users, effective management
of transactions is critical; otherwise, it will end up with inconsistent data, which
is undesirable. Therefore, transaction management and concurrency control are
two other important elements of database processing. Parallelism of transaction
management, particularly in a grid environment, is studied in Part IV, where grid
concurrency control, focusing on the four main properties of transactions, namely
atomicity, concurrency, isolation, and durability, is discussed in the context of grid
databases. Replication has also been discussed, which is particularly important in
a grid infrastructure. Since the main aim of a transaction is to update data, transac-
tions are often known as write queries, which may include some updates, deletions,
and insertions.

The bottom line of databases is that the data be active. The data contained in a
database is normally operational data. The data is required for day-to-day operation
of the organization. For example, in a banking scenario, users make withdrawals
and deposits, management produces financial statements and reports, etc. To sup-
port all of these activities, the data, including bank account details, has to be active,
and hence the data is called operational data.

Over time, the data piles up. Some of the data is no longer operational, but
historical. For example, sales data from 5 years ago may be considered as historical
data, since it might not affect the current operations, meaning that users no longer
update this old data. Although this data is old and not currently used, obviously it
cannot be discarded. Management may want to produce reports involving this data
for decision support and for historical analysis. Business reports may often need to
include old data.

Therefore, it is common sense to segregate this old data in a data warehouse.
A data warehouse provides information from a historical perspective, whereas an
operational database keeps data of current value. Figure 16.2 shows the transfor-
mation of data from operational data in a database into data warehousing data. The
process involves data extraction, filtering, transforming, integrating from various
sources, classifying the data, aggregating, and summarizing the data. The result
is a data warehouse where the data is integrated, time-variant, nonvolatile, and
commonly subject-oriented.

Since the data in the databases is operational, some of it needs to be filtered,
extracted, and transformed into a suitable structure for a data warehouse. As
already discussed in Chapter 15 on data warehousing and OLAP (online analytical
processing), the data in a data warehouse is commonly aggregated or summarized,
since for historical purposes only summarized data is needed, not the entire
details. The full details of the data are in the operational database anyway.

430 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

DB

Operational
Data

Extract
Filter
Transform
Integrate
Classify
Aggregate
Summarize

Data
Extraction

Data
Warehouse

Integrated
Non-Volatile
Time-Variant
Subject-Oriented

Figure 16.2 Building a data warehouse

A data warehouse is integrated and subject-oriented, since the data is already
integrated from various sources through the cleaning process, and each data ware-
house is developed for a certain domain of subject area in an organization, such as
sales, and therefore is subject-oriented. The data is obviously nonvolatile, meaning
that the data in a data warehouse is not update-oriented, unlike operational data.
The data is also historical and normally grouped to reflect a certain period of time,
and hence it is time-variant.

Once a data warehouse has been developed, management is able to perform
some operation on the data warehouse, such as drill-down and rollup. Drill-down
is performed in order to obtain a more detailed breakdown of a certain dimension,
whereas rollup, which is exactly the opposite, is performed in order to obtain more
general information about a certain dimension. Business reporting often makes
use of data warehouses in order to produce historical analysis for decision support.
Parallelism of OLAP has already been presented in Chapter 15.

As can be seen from the above, the main difference between a database and a
data warehouse lies in the data itself: operational versus historical. However, any
decision to support the use of a data warehouse has its own limitations. The query
for historical reporting needs to be formulated similarly to the operational data.
If the management does not know what information or pattern or knowledge to
expect, data warehousing is not able to satisfy this requirement. A typical anec-
dote is that a manager gives a pile of data to subordinates and asks them to find
something useful in it. The manager does not know what to expect but is sure that
something useful and surprising may be extracted from this pile of data. This is not
a typical database query or data warehouse processing. This raises the need for a
data mining process.

Data mining, defined as a process to mine knowledge from a collection of data,
generally involves three components: the data, the mining process, and the knowl-
edge resulting from the mining process (see Fig. 16.1). The data itself needs to go
through several processes before it is ready for the mining process. This prelimi-
nary process is often referred to as data preparation. Although Figure 16.1 shows
that the data for data mining is coming from a data warehouse, in practice this

16.2 Data Mining: A Brief Overview 431

may or may not be the case. It is likely that the data may be coming from any
data repositories. Therefore, the data needs to be somehow transformed so that it
becomes ready for the mining process.

Data preparation steps generally cover:

ž Data selection: Only relevant data to be analyzed is selected from the
database.

ž Data cleaning: Data is cleaned of noise and errors. Missing and irrelevant data
is also excluded.

ž Data integration: Data from multiple, heterogeneous sources may be inte-
grated into one simple flat table format.

ž Data transformation: Data is transformed and consolidated into forms appro-
priate for mining by performing summary or aggregate operations.

Once the data is ready for the mining process, the mining process can start.
The mining process employs an intelligent method applied to the data in order
to extract data patterns. There are various mining techniques, including but not
limited to association rules, sequential patterns, classification, and clustering. The
results of this mining process are knowledge or patterns.

16.2 DATA MINING: A BRIEF OVERVIEW

As mentioned earlier, data mining is a process for discovering useful, interesting,
and sometimes surprising knowledge from a large collection of data. Therefore,
we need to understand various kinds of data mining tasks and techniques. Also
required is a deeper understanding of the main difference between querying and the
data mining process. Accepting the difference between querying and data mining
can be considered as one of the main foundations of the study of data mining
techniques. Furthermore, it is also necessary to recognize the need for parallelism
of the data mining technique. All of the above will be discussed separately in the
following subsections.

16.2.1 Data Mining Tasks

Data mining tasks can be classified into two categories:

ž Descriptive data mining and
ž Predictive data mining

Descriptive data mining describes the data set in a concise manner and presents
interesting general properties of the data. This somehow summarizes the data in
terms of its properties and correlation with others. For example, within a set of
data, some data have common similarities among the members in that group, and
hence the data is grouped into one cluster. Another example would be that when
certain data exists in a transaction, another type of data would follow.

432 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Predictive data mining builds a prediction model whereby it makes inferences
from the available set of data and attempts to predict the behavior of new data
sets. For example, for a class or category, a set of rules has been inferred from
the available data set, and when new data arrives the rules can be applied to this
new data to determine to which class or category it should belong. Prediction is
made possible because the model consisting of a set of rules is able to predict the
behavior of new information.

Either descriptive or predictive, there are various data mining techniques. Some
of the common data mining techniques include class description or characteri-
zation, association, classification, prediction, clustering, and time-series analysis.
Each of these techniques has many approaches and algorithms.

Class description or characterization summarizes a set of data in a concise way
that distinguishes this class from others. Class characterization provides the char-
acteristics of a collection of data by summarizing the properties of the data. Once
a class of data has been characterized, it may be compared with other collections
in order to determine the differences between classes.

Association rules discover association relationships or correlation among a set
of items. Association analysis is widely used in transaction data analysis, such
as a market basket. A typical example of an association rule in a market basket
analysis is the finding of rule (magazine ! sweet), indicating that if a magazine
is bought in a purchase transaction, there is a likely chance that a sweet will also
appear in the same transaction. Association rule mining is one of the most widely
used data mining techniques. Since its introduction in the early 1990s through the
Apriori algorithm, association rule mining has received huge attention across var-
ious research communities. The association rule mining methods aim to discover
rules based on the correlation between different attributes/items found in the data
set. To discover such rules, association rule mining algorithms at first capture a
set of significant correlations present in a given data set and then deduce mean-
ingful relationships from these correlations. Since the discovery of such rules is
a computationally intensive task, many association rule mining algorithms have
been proposed.

Classification analyzes a set of training data and constructs a model for each
class based on the features in the data. There are many different kinds of classi-
fications. One of the most common is the decision tree. A decision tree is a tree
consisting of a set of classification rules, which is generated by such a classifica-
tion process. These rules can be used to gain a better understanding of each class
in the database and for classification of new incoming data. An example of clas-
sification using a decision tree is that a “fraud” class has been labeled and it has
been identified with the characteristics of fraudulent credit card transactions. These
characteristics are in the form of a set of rules. When a new credit card transaction
takes place, this incoming transaction is checked against a set of rules to identify
whether or not this incoming transaction is classified as a fraudulent transaction.
In constructing a decision tree, the primary task is to form a set of rules in the form
of a decision tree that correctly reflects the rules for a certain class.

16.2 Data Mining: A Brief Overview 433

Prediction predicts the possible values of some missing data or the value dis-
tribution of certain attributes in a set of objects. It involves the finding of the set
of attributes relevant to the attribute of interest and predicting the value distribu-
tion based on the set of data similar to the selected objects. For example, in a
time-series data analysis, a column in the database indicates a value over a period
of time. Some values for a certain period of time might be missing. Since the
presence of these values might affect the accuracy of the mining algorithm, a pre-
diction algorithm may be applied to predict the missing values, before the main
mining algorithm may proceed.

Clustering is a process to divide the data into clusters, whereby a cluster con-
tains a collection of data objects that are similar to one another. The similarity is
expressed by a similarity function, which is a metric to measure how similar two
data objects are. The opposite of a similarity function is a distance function, which
is used to measure the distance between two data objects. The further the distance,
the greater is the difference between the two data objects. Therefore, the distance
function is exactly the opposite of the similarity function, although both of them
may be used for the same purpose, to measure two data objects in terms of their
suitability for a cluster. Data objects within one cluster should be as similar as pos-
sible, compared with data objects from a different cluster. Therefore, the aim of
a clustering algorithm is to ensure that the intracluster similarity is high and the
intercluster similarity is low.

Time-series analysis analyzes a large set of time series data to find certain reg-
ularities and interesting characteristics. This may include finding sequences or
sequential patterns, periodic patterns, trends, and deviations. A stock market value
prediction and analysis is a typical example of a time-series analysis.

16.2.2 Querying vs. Mining

Although it has been stated that the purpose of mining (or data mining) is to dis-
cover knowledge, it should be differentiated from querying (or database querying),
which simply retrieves data. In some cases, this is easier said than done. Conse-
quently, highlighting the differences is critical in studying both database querying
and data mining. The differences can generally be categorized into unsupervised
and supervised learning.

Unsupervised Learning

The previous section gave the example of a pile of data from which some knowl-
edge can be extracted. The difference in attitude between a data miner and a data
warehouse reporter was outlined, albeit in an exaggerated manner. In this example,
no direction is given about where the knowledge may reside. There is no guideline
of where to start and what to expect. In a machine learning term, this is called
unsupervised learning, in which the learning process is not guided, or even dic-
tated, by the expected results. To put it in another way, unsupervised learning does

434 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

not require a hypothesis. Exploring the entire possible space in the jungle of data
might be overstating, but can be analogous that way.

Using the example of a supermarket transaction list, a data mining process is
used to analyze all transaction records. As a result, perhaps, a pattern, such as the
majority of people who bought milk will also buy cereal in the same transaction, is
found. Whether this is interesting or not is a different matter. Nevertheless, this is
data mining, and the result is an association rule. On the contrary, a query such as
“What do people buy together with milk?” is a database query, not a data mining
process.

If the pattern milk ! cereal is generalized into X ! Y , where X and Y are
items in the supermarket, X and Y are not predefined in data mining. On the other
hand, database querying requires X as an input to the query, in order to find Y ,
or vice versa. Both are important in their own context. Database querying requires
some selection predicates, whereas data mining does not.

Definition 16.1 (association rule mining vs. database querying): Given
a database D, association rule mining produces an association rule
Ar.D/ D X ! Y , where X; Y 2 D. A query Q.D; X/ D Y produces records Y
matching the predicate specified by X .

The pattern X ! Y may be based on certain criteria, such as:

ž Majority

ž Minority

ž Absence

ž Exception

The majority indicates that the rule X ! Y is formed because the majority of
records follow this rule. The rule X ! Y indicates that if a person buys X , it is
99% likely that the person will also buy Y at the same time, and both items X
and Y must be bought frequently by all customers, meaning that items X and Y
(separately or together) must appear frequently in the transactions.

Some interesting rules or patterns might not include items that frequently appear
in the transactions. Therefore, some patterns may be based on the minority. This
type of rules indicates that the items occur very rarely or sporadically, but the pat-
tern is important. Using X and Y above, it might be that although both X and
Y occur rarely in the transactions, when they both appear together it becomes
interesting.

Some rules may also involve the absence of items, which is sometimes called
negative association. For example, if it is true that for a purchase transaction that
includes coffee it is very likely that it will NOT include tea, then the items tea and
coffee are negatively associated. Therefore, rule X !¾ Y , where the ¾ symbol in
front of Y indicates the absence of Y , shows that when X appears in a transaction,
it is very unlikely that Y will appear in the same transaction.

16.2 Data Mining: A Brief Overview 435

Other rules may indicate an exception, referring to a pattern that contradicts
the common belief or practice. Therefore, pattern X ! Y is an exception if it is
uncommon to see that X and Y appear together. In other words, it is common to
see that X or Y occurs just by itself without the other one.

Regardless of the criteria that are used to produce the patterns, the patterns can
be produced only after analyzing the data globally. This approach has the greatest
potential, since it provides information that is not accessible in any other way. On
the contrary, database querying relies on some directions or inputs given by the
user in order to retrieve suitable records from the database.

Definition 16.2 (sequential patterns vs. database querying): Given a database
D, a sequential pattern Sp.D/ D O : X ! Y , where O indicates the owner of a
transaction and X; Y 2 D. A query Q.D; X; Y / D O , or Q.D; aggr/ D O , where
aggr indicates some aggregate functions.

Given a set of database transactions, where each transaction involves one cus-
tomer and possibly many items, an example of a sequential pattern is one in which
a customer who bought item X previously will later come back after some allow-
able period of time to buy item Y . Hence, O : X ! Y , where O refers to the
customer sets.

If this were a query, the query could possibly request “Retrieve customers who
have bought a minimum of two different items at different times.” The results
will not show any patterns, but merely a collection of records. Even if the query
were rewritten as “Retrieve customers who have bought items X and Y at different
times,” it would work only if items X and Y are known a priori. The sequential
pattern O : X ! Y obviously requires a number of steps of processes in order to
produce such a rule, in which each step might involve several queries including the
query mentioned above.

Definition 16.3 (clustering vs. database querying): Given database D, a clus-

tering Cl.D/ D
nP

iD1
fXi1; Xi2; : : :g, where it produces n clusters each of which

consists of a number of items X . A query Q.D; X1/ D fX2; X3; X4; : : :g, where
it produces a list of items fX2; X3; X4; : : :g having the same cluster as the given
item X1.

Given a movement database consisting of mobile users and their locations at a
specific time, a cluster containing a list of mobile users fm1; m2; m3; : : :g might
indicate that they are moving together or being at a place together for a period of
time. This shows that there is a cluster of users with the same characteristics, which
in this case is the location.

On the contrary, a query is able to retrieve only those mobile users who are
moving together or being at a place at the same time for a period of time with
the given mobile user, say m1. So the query can be expressed to something like:
“Who are mobile users usually going with m1?” There are two issues here. One is
whether or not the query can be answered directly, which depends on the data itself
and whether there is explicit information about the question in the query. Second,
the records to be retrieved are dependent on the given input.

436 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Supervised Learning

Supervised learning is naturally the opposite of unsupervised learning, since super-
vised learning starts with a direction pointing to the target. For example, given a
list of top salesmen, a data miner would like to find the other properties that they
have in common. In this example, it starts with something, namely, a list of top
salesmen. This is different from unsupervised learning, which does not start with
any particular instances.

In data warehousing and OLAP, as explained in Chapter 15, we can use
drill-down and rollup to find further detailed (or higher level) information about
a given record. However, it is still unable to formulate the desired properties or
rules of the given input data. The process is complex enough and looks not only
at a particular category (e.g., top salesmen), but all other categories. Database
querying is not designed for this.

Definition 16.4 (decision tree classification vs. database querying): Given
database D, a decision tree Dt.D; C/ D P , where C is the given category and P
is the result properties. A query Q.D; P/ D R is where the property is known in
order to retrieve records R.

Continuing the above example, when mining all properties of a given category,
we can also find other instances or members who also possess the same proper-
ties. For example, find the properties of a good salesman and find who the good
salesman are. In database querying, the properties have to be given so that we can
retrieve the names of the salesmen. But in data mining, and in particular decision
tree classification, the task is to formulate such properties in the first place.

16.2.3 Parallelism in Data Mining

Like any other data-intensive applications, parallelism is used purely because of the
large size of data involved in the processing, with an expectation that parallelism
will speed up the process and therefore the elapsed time will be much reduced.
This is certainly still applicable to data mining. Additionally, the data in the data
mining often has a high dimension (large number of attributes), not only a large
volume of data (large number of records). Depending on how the data is structured,
high-dimension data in data mining is very common. Processing high-dimension
data produces some degree of complexity, not previously found or applicable to
databases or even data warehousing. In general, more common in data mining is
the fact that even a simple data mining technique requires a number of iterations of
the process, and each of the iterations refines the results until the ultimate results
are generated.

Data mining is often needed to process complex data such as images, geograph-
ical data, scientific data, unstructured or semistructured documents, etc. Basically,
the data can be anything. This phenomenon is rather different from databases and
data warehouses, whose data follows a particular structure and model, such as
relational structure in relational databases or star schema or data cube in data

16.2 Data Mining: A Brief Overview 437

warehouses. The data in data mining is more flexible in terms of the structures,
as it is not confined to a relational structure only. As a result, the processing of
complex data also requires parallelism to speed up the process.

The other motivation is due to the widely available multiple processors or par-
allel computers. This makes the use of such a machine inevitable, not only for
data-intensive applications, but basically for any application.

The objectives of parallelism in data mining are not uniquely different from
those of parallel query processing in databases and data warehouses. Reducing
data mining time, in terms of speed up and scale up, is still the main objective.
However, since data mining processes and techniques might be considered much
more complex than query processing, parallelism of data mining is expected to
simplify the mining tasks as well. Furthermore, it is sometimes expected to produce
better mining results.

There are several forms of parallelism that are available for data mining. Chapter
1 described various forms of parallelism, including: interquery parallelism (paral-
lelism among queries), intraquery parallelism (parallelism within a query), intra-
operation parallelism (partitioned parallelism or data parallelism), interoperation
parallelism (pipelined parallelism and independent parallelism), and mixed paral-
lelism. In data mining, for simplicity purposes, parallelism exists in either

ž Data parallelism or
ž Result parallelism

If we look at the data mining process at a high level as a process that takes data
input and produces knowledge or patterns or models, data parallelism is where
parallelism is created due to the fragmentation of the input data, whereas result
parallelism focuses on the fragmentation of the results, not necessarily the input
data. More details about these two data mining parallelisms are given below.

Data Parallelism

In data parallelism, as the name states, parallelism is basically created because the
data is partitioned into a number of processors and each processor focuses on its
partition of the data set. After each processor completes its local processing and
produces the local results, the final results are formed basically by combining all
local results.

Since data mining processes normally exist in several iterations, data parallelism
raises some complexities. In every stage of the process, it requires an input and pro-
duces an output. On the first iteration, the input of the process in each processor
is its local data partitions, and after the first iteration, completes each processor
will produce the local results. The question is: What will the input be for the sub-
sequent iterations? In many cases, the next iteration requires the global picture
of the results from the immediate previous iteration. Therefore, the local results
from each processor need to be reassembled globally. In other words, at the end of
each iteration, a global reassembling stage to compile all local results is necessary
before the subsequent iteration starts.

438 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Proc 1

DB

Proc 2 Proc 3 Proc n

Result
1

Result
2

Result
3

Result
n

1st iteration

Global results after first iteration

Global re-assembling
the results

Result
1’

Result
2’

Result
3’

Result
4’

2nd iteration

Global results after second iteration

Global re-assembling
the results

Global re-assembling
the results

Result
1”

Result
2”

Result
3”

Result
4”

kth iteration

Final results

Data partitioning

Data
partition

n

Data
partition

3

Data
partition

2

Data
partition

1

Figure 16.3 Data parallelism for data mining

This situation is not that common in database query processing, because for a
primitive database operation, even if there exist several stages of processing each
processor may not need to see other processors’ results until the final results are
ultimately generated.

Figure 16.3 illustrates how data parallelism is achieved in data mining. Note
that the global temporary result reassembling stage occurs between iterations. It is
clear that parallelism is driven by the database partitions.

Result Parallelism

Result parallelism focuses on how the target results, which are the output of
the processing, can be parallelized during the processing stage without having

16.2 Data Mining: A Brief Overview 439

produced any results or temporary results. This is exactly the opposite of data
parallelism, where parallelism is created because of the input data partitioning.
Data parallelism might be easier to grasp because the partitioning is done up
front, and then parallelism occurs. Result parallelism, on the other hand, works
by partitioning the target results, and each processor focuses on its target result
partition.

The way result parallelism works can be explained as follows. The target result
space is normally known in advance. The target result of an association rule min-
ing is frequent itemsets in a lexical order. Although we do not know the actual
instances of frequent itemsets before they are created, nevertheless, we should
know the range of the items, as they are confined by the itemsets of the input data.
Therefore, result parallelism partitions the frequent itemset space into a number of
partitions, such as frequent itemset starting with item A to I will be processed by
processor 1, frequent itemset starting with item H to N by the next processor, and
so on. In a classification mining, since the target categories are known, each target
category can be assigned a processor.

Once the target result space has been partitioned, each processor will do what-
ever it takes to produce the result within the given range. Each processor will take
any input data necessary to produce the desired result space. Suppose that the ini-
tial data partition 1 is assigned to processor 1, and if this processor needs data
partitions from other processors in order to produce the desired target result space,
it will gather data partitions from other processors. The worst case would be one
where each processor needs the entire database to work with.

Because the target result space is already partitioned, there is no global tem-
porary result reassembling stage at the end of each iteration. The temporary local
results will be refined only in the next iteration, until ultimately the final results are
generated. Figure 16.4 illustrates result parallelism for data mining processes.

Contrasting with the parallelism that is normally adopted by database queries,
query parallelism to some degree follows both data and result parallelism. Data
parallelism is quite an obvious choice for parallelizing query processing. However,
result parallelism is inherently used as well. For example, in a disjoint partition-
ing parallel join, each processor receives a disjoint partition based on a certain
partitioning function. The join results of a processor will follow the assigned par-
titioning function. In other words, result parallelism is used. However, because
disjoint partitioning parallel join is already achieved by correctly partitioning the
input data, it is also said that data parallelism is utilized. Consequently, it has never
been necessary to distinguish between data and result parallelism.

The difference between these two parallelism models is highlighted in the data
mining processing because of the complexity of the mining process itself, where
there are multiple iterations of the entire process and the local results may need
to be refined in each iteration. Therefore, adopting a specific parallelism model
becomes necessary, thereby emphasizing the difference between the two paral-
lelism models.

440 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Target result
space

Final results

Proc 1 Proc 2 Proc n

1st iteration

2nd iteration

Local
partition

Remote
partitions

Result 1 Result 2 Result n. . .

Result 1’ Result 2’ Result n’. . .

k th iteration

Result 1” Result 2” Result n”. . .

Local
partition

Remote
partitions

Local
partition

Remote
partitions

Figure 16.4 Result parallelism for data mining

16.3 PARALLEL ASSOCIATION RULES

Association rule mining is one of the most widely used data mining techniques.
The association rule mining methods aim to discover rules based on the correlation
between different attributes/items found in the data set. To discover such rules,
association rule mining algorithms at first capture a set of significant correlations
present in a given data set and then deduce meaningful relationships from these
correlations. Since discovering such rules is a computationally intensive task, it is
desirable to employ a parallelism technique.

Association rule mining algorithms generate association rules in two phases:
(i/ phase one: discover frequent itemsets from a given data set and (ii) phase two:
generate a rule from these frequent itemsets. The first phase is widely recognized as
being the most critical, computationally intensive task. Upon enumerating support
of all frequent itemsets, in the second phase association rule methods association
rules are generated. The rule generation task is straightforward and relatively easy.

Since the frequent itemset generation phase is computationally expensive, most
work on association rules, including parallel association rules, have been focusing
on this phase only. Improving the performance of this phase is critical to the overall
performance.

This section, focusing on parallel association rules, starts by describing the
concept of association rules, followed by the process, and finally two parallel algo-
rithms commonly used by association rule algorithms.

16.3 Parallel Association Rules 441

16.3.1 Association Rules: Concepts

Association rule mining can be defined formally as follows: let I D fI1; I2; : : : ;

Img be a set of attributes, known as literals. Let D be the databases of transactions,
where each transaction t 2 T has a set of items and a unique transaction identifier
(tid) such that t D .tid; I /. The set of items X is also known as an itemset, which
is a subset of I such that X � I . The number of items in X is called the length of
that itemset and an itemset with k items is known as a k-itemset. The support of
X in D, denoted as sup(X), is the number of transactions that have itemset X as
subset.

sup.X/ D jfI : X 2 .tid; I /gj=jDj (16.1)

where jSj indicates the cardinality of a set S.
Frequent Itemset: An itemset X in a dataset D is considered as frequent if

its support is equal to, or greater than, the minimum support threshold minsup
specified by the user.

Candidate Itemset: Given a database D and a minimum support threshold
minsup and an algorithm that computes F(D, minsup), an itemset I is called a
candidate for the algorithm to evaluate whether or not itemset I is frequent.

An association rule is an implication of the form X ! Y , where X � I; Y � I
are itemset, and X \ Y D φ and its support is equal to X [Y . Here, X is called
antecedent, and Y consequent.

Each association rule has two measures of qualities such as support and confi-
dence as defined as:

The support of association rule X ! Y is the ratio of a transaction in D that
contains itemset X [Y .

sup.X [Y / D jfX [Y 2 .tid; I /jX [Y � I gj=jDj (16.2)

The confidence of a rule X ! Y is the conditional probability that a transaction
contains Y given that it also contains X .

conf.X ! Y / D fX [Y 2 .tid; I /jX [Y � I g=fX 2 .tid; I /jX � I g (16.3)

We note that while sup(X [Y) is symmetrical (i.e., swapping the positions of X
and Y will not change the support value) conf (X ! Y) is not symmetrical, which
is evident from the definition of confidence.

Association rules mining methods often use these two measures to find all asso-
ciation rules from a given data set. At first, these methods find frequent itemsets,
then use these frequent itemsets to generate all association rules. Thus, the task of
mining association rules can be divided into two subproblems as follows:

Itemset Mining: At a given user-defined support threshold minsup, find all
itemset I from data set D that have support greater than or equal to minsup. This
generates all frequent itemsets from a data set.

Association Rules: At a given user-specified minimum confidence threshold
minconf , find all association rules R from a set of frequent itemset F such that
each of the rules has confidence equal to or greater than minconf .

442 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Although most of the frequent itemset mining algorithms generate candidate
itemsets, it is always desirable to generate as few candidate itemsets as possible.
To minimize candidate itemset size, most of the frequent itemset mining methods
utilize the anti-monotonicity property.

Anti-monotonicity: Given data set D, if an itemset X is frequent, then all the
subsets are such that x1; x2; x3 : : : xn � X have higher or equal support than X .

Proof: Without loss of generality, let us consider x1. Now, x1 � X so that jX 2
.tid; I /j � jx1 2 (tid, I) j, thus, sup.x1/ ½ sup.X/. The same argument will apply
to all the other subsets.

Since support of a subset itemset of a frequent itemset is also frequent, if any
itemset is infrequent, subsequently this implies that the support of its superset item-
set will also be infrequent. This property is sometimes called anti-monotonicity.
Thus the candidate itemset of the current iteration is always generated from the
frequent itemset of the previous iteration. Despite the above downward closure
property, the size of a candidate itemset often cannot be kept small. For example,
suppose there are 500 frequent 1-itemsets; then the total number of candidate item-
sets in the next iteration is equal to .500/ ð .500�1/=2 D 124;750 and not all of
these candidate 2-itemsets are frequent.

Since the number of frequent itemsets is often very large, the cost involved
in enumerating the corresponding support of all frequent itemsets from a
high-dimensional dataset is also high. This is one of the reasons that parallelism is
desirable.

To show how the support confidence-based frameworks discover association
rules, consider the example below:

EXAMPLE

Consider a data set as shown in Figure 16.5. Let item I D fbread, cereal, cheese, coffee;

milk, sugar, teag and transaction ID TID D f100; 200; 300; 400 and 500g.

Each row of the table in Figure 16.5 can be taken as a transaction, starting
with the transaction ID and followed by the items bought by customers. Let us

Transaction ID Items Purchased

100 bread, cereal, milk

200 bread, cheese, coffee, milk

300 cereal, cheese, coffee, milk

400 cheese, coffee, milk

500 bread, sugar, tea

Figure 16.5 Example dataset

16.3 Parallel Association Rules 443

Frequent Itemset Support

bread 60%

Cereal 40%

Cheese 60%

Coffee 60%

Milk 80%

bread, milk 40%

cereal, milk 40%

cheese, coffee 60%

cheese, milk 60%

coffee, milk 60%

cheese, coffee, milk 60%

Figure 16.6 Frequent itemset

now discover association rules from these transactions at 40% support and 60%
confidence thresholds.

As mentioned earlier, the support-based and confidence-based association rule
mining frameworks have two distinct phases: First, they generate those itemsets
that appeared 2 (i.e., 40%) or more times as shown. For example, item “bread”
appeared in 3 transactions: transaction IDs 100, 200 and 500; thus it satisfies the
minimum support threshold. In contrast, item “sugar” appeared only in one trans-
action, that is transaction ID 500; thus the support of this item is less than the
minimum support threshold and subsequently is not included in the frequent item-
sets as shown in Figure 16.6. Similarly, it verifies all other itemsets of that data set
and finds support of each itemset to verify whether or not that itemset is frequent.

In the second phase, all association rules that satisfy the user-defined confidence
are generated using the frequent itemset of the first phase. To generate association
rule X ! Y , it first takes a frequent itemset XY , finds two subset itemsets X and
Y such that X \ Y D φ . If the confidence of X ! Y rule is higher than or equal
to the minimum confidence, then it includes that rule in the resultant rule set. To
generate confidence of an association rule, consider the frequent itemset shown in
Figure 16.6. For example, “bread, milk” is a frequent itemset and bread ! milk is
an association rule. To find confidence of this rule, use equation 16.2, which will
return 100% confidence (higher than the minimum confidence threshold of 60%).
Thus the rule bread ! milk is considered as a valid rule as shown in Figure 16.7.

On the contrary, although ‘bread, milk’ is a frequent itemset, the rule milk !
bread is not valid because its confidence is below the minimum confidence thresh-
old and thus is not included in the resultant rule set. Similarly, one can generate all
other valid association rules as illustrated in Figure 16.7.

444 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Association Rules Confidence

bread!milk 67%

cereal!milk 100%

cheese!coffee 100%

cheese!milk 100%

coffee!milk 100%

coffee!cheese 100%

milk!cheese 75%

milk!coffee 75%

cheese, coffee!milk 100%

cheese, milk!coffee 100%

coffee, milk!cheese 100%

cheese!coffee, milk 100%

coffee!cheese, milk 100%

milk!cheese, coffee 75%

Figure 16.7 Association rules

16.3.2 Association Rules: Processes

The details of the two phases of association rules, frequent itemset generation and
association rules generation, will be explained in the following sections.

Frequent Itemset Generation

The most common frequent itemset generation searches through the dataset and
generates the support of frequent itemset levelwise. It means that the frequent item-
set generation algorithm generates frequent itemsets of length 1 first, then length
2, and so on, until there are no more frequent itemsets. The Apriori algorithm for
frequent itemset generation is shown in Figure 16.8.

At first, the algorithm scans all transactions of the data set and finds all frequent
1-itemsets. Next, a set of potential frequent 2-itemsets (also known as candidate
2-itemsets) is generated from these frequent 1-itemsets with the apriori gen() func-
tion (where it takes the frequent itemset of the previous iteration and returns the
candidate itemset for the next iteration). Then, to enumerate the exact support of
frequent 2-itemsets, it again scans the data set. The process continues until all fre-
quent itemset are enumerated. To generate frequent itemsets, the Apriori involves
three tasks: (1) generating candidate itemset of length k using the frequent itemset
of k � 1 length by a self-join of Fk�1; (2) pruning the number of candidate item-
sets by employing the anti-monotonicity property, that is, the subset of all frequent

16.3 Parallel Association Rules 445

Algorithm: Apriori

1. F1 D {frequent 1-itemset}
2. k D 2
3. While Fk�1 6D { } do

//Generate candidate itemset
4. Ck D apriori_gen(Fk�1)
5. For transaction t 2 T
6. Ct D subset(Ck, t)
7. For candidate itemset X2 Ct
8. X.support++

//Extract frequent itemset
9. Fk D {X2 Ck j X.support ½ minsup }
10. kCC
11.Return

[

k

Fk

Figure 16.8 The Apriori algorithm for frequent itemset generation

itemsets is also frequent; and (3) extracting the exact support of all candidate item-
sets of any level by scanning the data set again for that iteration.

EXAMPLE

Using the data set in Figure 16.5, assume that the minimum support is set to 40%. In this
example, the entire frequent itemset generation takes three iterations (see Fig. 16.9).

Ž In the first iteration, it scans the data set and finds all frequent 1-itemsets.

Ž In the second iteration, it joins each frequent 1-itemset and generates candidate
2-itemset. Then it scans the data set again, enumerates the exact support of each of
these candidate itemsets, and prunes all infrequent candidate 2-itemsets.

Ž In the third iteration, it again joins each of the frequent 2-itemsets and generates the
following potential candidate 3-itemsets fbread coffee milk, bread cheese milk, and
cheese coffee milkg. Then it prunes those candidate 3-itemsets that do not have a sub-
set itemset in F2. For example, itemsets “bread coffee” and “bread cheese” are not
frequent and are pruned. After pruning, it has a single candidate 3-itemset fcheese
coffee milkg. It scans the data set and finds the exact support of that candidate itemset.
It finds that this candidate 3-itemset is frequent. In the joining phase, the apriori gen()
function is unable to produce any candidate itemset for the next iteration, indicating
that there are no more frequent itemsets at the next iteration.

Association Rules Generation

Once a frequent itemset has been generated, the generation of association rules
begins. As mentioned earlier, rule generation is less computationally expensive

446 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Dataset

Transaction ID Items Purchased
100
200 bread, cheese, coffee, milk
300 cereal, cheese, coffee, milk
400 cheese, coffee, milk
500 bread, sugar, tea

C1 F1

C2 F2

C3

Candidate
Itemset

Support
Count

bread
cereal
cheese
coffee
milk
sugar 1
tea 1

Frequent
Itemset

Support
Count

bread
cereal
cheese
coffee
milk

Candidate
Itemset

Support
Count

bread, cereal 1
bread, cheese 1
bread, coffee 1
bread, milk 2
cereal, cheese 1

3
2
3
3
4

3

Candidate
Itemset

Support
Count

cheese, coffee, milk 3

F3

Candidate
Itemset

Support
Count

cheese, coffee, milk 3

2
3
3
4

cereal, coffee 1
cereal, milk 2
cheese, coffee 3
cheese, milk 3
coffee, milk 3

Frequent
Itemset

Support
Count

bread, milk 2
cereal, milk 2
cheese, coffee 3
cheese, milk 3
coffee, milk 3

scan d1

scan d2

scan d3

bread, cereal, milk

Figure 16.9 Example of the Apriori algorithm

compared with frequent itemset generation. It is also simpler in terms of its com-
plexity.

The rule generation algorithm takes every frequent itemset F that has more
than one item as an input. Given that F is a frequent itemset, at first the rule gen-
eration algorithm generates all rules from that itemset, which has a single item
in the consequent. Then, it uses the consequent items of these rules and employs
the apriori gen() function as mentioned above to generate all possible consequent

16.3 Parallel Association Rules 447

Algorithm: Association rule generation

1. For all I2 Fk such that k½2
2. C1 D { {i } j i2 I }
3. k D 1
4. While Ck 6D { } do

//confidence of each rule
5. Hk D {X 2 Ck j σ (I)/σ(X) ½ minconf }
6. CkC1 D apriori_gen(Hk)
7. kCC
8. R D R [{(I� X) ! (X)/X 2 H1 [H2 [Ð Ð Ð [Hk }

Figure 16.10 Association rule generation algorithm

2-itemsets. And finally, it uses these consequent 2-itemsets to construct rules from
that frequent itemset F . It then checks the confidence of each of these rules. The
process continues, and with each iteration the length of the candidate itemset
increases until it is no longer possible to generate more candidates for the con-
sequent itemset. The rule generation algorithm is shown in Figure 16.10.

EXAMPLE

Suppose “ABCDE” is a frequent itemset and ACDE ! B and ABCE ! D are two rules
that, having one item in the consequent, satisfy minimum confidence threshold.

Ž At first it takes the consequent items “B” and “D” as input of the apriori gen()
function and generates all candidate 2-itemsets. Here “BD” turns out to be the only
candidate 2-itemset, so it checks the confidence of the rule ACE ! BD.

Ž Suppose the rule ACE ! BD has a user-specified minimum confidence threshold;
however it is unable to generate any rule for the next iteration because there is only
a single rule that has 2 items in the consequent. The algorithm will not invoke the
apriori gen() function any further, and it stops generating rules from the frequent
itemset “ABCDE”.

EXAMPLE

Using the frequent itemset fcheese coffee milkg in Figure 16.9, the following three rules
hold, since the confidence is 100%:

cheese, coffee ! milk

cheese, milk ! coffee

coffee, milk ! cheese

448 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Then we use the apriori gen() function to generate all candidate 2-itemsets, resulting in
fcheese milkg and fcoffee milkg. After confidence calculation, the following two rules hold:

coffee ! cheese, milk .confidence D 100%/

cheese ! coffee, milk .confidence D 75%/

Therefore, from one frequent itemset fcheese coffee milkg alone, five association rules
shown above have been generated. For the complete association rule results, refer to
Figure 16.7.

16.3.3 Association Rules: Parallel Processing

There are several reasons that parallelism is needed in association rule mining. One
obvious reason is that the data set (or the database) is big (i.e., the data set consists
of a large volume of record transactions). Another reason is that a small number of
items can easily generate a large number of frequent itemsets. The mining process
might be prematurely terminated because of insufficient main memory. I/O over-
head due to the number of disk scans is also known to be a major problem. All of
these motivate the use of parallel computers to not only speed up the entire mining
process but also address some of the existing problems in the uniprocessor system.

Earlier in this chapter, two parallelism models for data mining were described.
This section will examine these two parallelism models for association rule mining.
In the literature, data parallelism for association rule mining is often referred to as
count distribution, whereas result parallelism is widely known as data distribution.

Count Distribution (Based on Data Parallelism)

Count distribution-based parallelism for association rule mining is based on data
parallelism whereby each processor will have a disjoint data partition to work with.
Each processor, however, will have a complete candidate itemset, although with
partial support or support count.

At the end of each iteration, since the support or support count of each candi-
date itemset in each processor is incomplete, each processor will need to “redis-
tribute” the count to all processors. Hence, the term “count distribution” is used.
This global result reassembling stage is basically to redistribute the support count,
which often means global reduction to get global counts. The process in each pro-
cessor is then repeated until the complete frequent itemset is ultimately generated.

Using the same example shown in Figure 16.9, Figure 16.11 shows an illus-
tration of how count distribution works. Assume in this case that a two-processor
system is used. Note that after the first iteration, each processor will have an incom-
plete count of each item in each processor. For example, processor 1 will have
only two breads, whereas processor 2 will only have one bread. However, after the
global count reduction stage, the counts for bread are consolidated, and hence each
processor will get the complete count for bread, which in this case is equal to three.

16.3 Parallel Association Rules 449

Original dataset

Transaction ID Items Purchased
100 bread,cereal,milk
200 bread,cheese,coffee,milk
300
400 cheese,coffee,milk
500 bread, sugar, tea

Processor 1 Processor 2

Global reduction of counts

Processor 1 Processor 2

The process continues to generate 2-frequent itemset...

TID Items Purchased
100 bread, cereal, milk
200 bread, cheese, coffee, milk

TID
300 cereal, cheese, coffee, milk
400
500

Candidate
Itemset

Support
Count

bread
cereal
cheese
coffee
milk
sugar
tea

cereal, cheese, coffee, milk

Items Purchased

cheese,coffee,milk
bread, sugar,tea

2
1
1
1
2
0
0

Candidate
Itemset

Support
Count

bread
cereal
cheese
coffee
milk
sugar
tea

1
1
2
2
2
1
1

Candidate
Itemset

Support
Count

bread
cereal
cheese
coffee
milk
sugar
tea

3
2
3
3
4
1
1

Candidate
Itemset

Support
Count

bread
cereal
cheese
coffee
milk
sugar
tea

3
2
3
3
4
1
1

Figure 16.11 Count distribution (data parallelism for association rule mining)

After each processor receives the complete count for each item, the process
continues with the second iteration. For simplicity, the example in Figure 16.11
shows only the results up to the first iteration. Readers can work out the rest in
order to complete this exercise. As a guideline to the key solution, the results in
Figure 16.9 can be consulted.

450 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Data Distribution (Based on Result Parallelism)

Data distribution-based parallelism for association rule mining is based on result
parallelism whereby parallelism is created because of the partition of the result,
instead of the data. However, the term “data distribution” might be confused with
data parallelism (count distribution). To understand why the term “data distribu-
tion” is used, we need to understand how data distribution works.

In data distribution, a candidate itemset is distributed among the processors.
For example, a candidate itemset starting with “b” like bread is allocated to the
first processor, whereas the rest are allocated to the second processor. Initially, the
data set has been partitioned (as in count distribution—see Fig. 16.11). In this
case, processor 1 will get only the first two records, whereas the last three records
will go to processor 2. However, each processor needs to have not only its local
partition but all other partitions from other processors. Consequently, once local
data has been partitioned, it is broadcasted to all other processors; hence the term
“data distribution” is used.

At the end of each iteration, where each processor will produce its own local
frequent itemset, each processor will also need to send to all other processors its
frequent itemset, so that all other processors can use this to generate their own can-
didate itemset for the next iteration. Therefore, “data distribution” is applied not
only in the beginning of the process where the data set is distributed, but also along
the way in the process such that at the end of each iteration, the frequent item-
set is also distributed. Hence, the term “data distribution” appropriately reflects
the case.

With a data distribution model, it is expected that high communication cost will
occur because of the data movement (i.e., data set as well as frequent itemset move-
ments). Also, redundant work due to multiple traversals of the candidate itemsets
can be expected.

Figure 16.12 gives an illustration of how data distribution works in parallel
association rule mining. Note that at the end of the first iteration, processor 1 has
one itemset fbreadg, whereas processor 2 has all other itemsets (items sugar and
tea in processor 2—the dark shaded cells—will be eliminated because of a low
support count).

Then frequent itemsets are redistributed to all processors. In this case, processor
1 that has bread in its 1-frequent itemset will also see other 1-frequent itemset.
With this combine information, 2-candidate itemsets in each processor can be
generated.

16.4 PARALLEL SEQUENTIAL PATTERNS

Sequential patterns, also known as sequential rules, are very similar to association
rules. They form a causal relationship between two itemsets, in the form of X !
Y , where because X occurs, it causes Y to occur with a high probability. Although
both sequential patterns and association rules have been used in the market basket

16.4 Parallel Sequential Patterns 451

Processor 1 Processor 2

Frequent itemset broadcast

Processor 1 Processor 2

Frequent itemset broadcast

Processor 1 Processor 2

Mining process terminates

Frequent
Itemset

Frequent
Itemset

Frequent
Itemset

Support
Count

Support
Count

bread

bread, cereal
bread, cheese
bread, coffee
bread, milk

1
1
1
2

Frequent Itemset Support
Count

cheese, coffee, milk 3

Frequent
Itemset

Support
Count

NIL

Local
partition

Remote
partition

Local
partition

Remote
partition

3

Support
Count

cereal

coffee
milk
sugar
tea

2
3
3
4
1
1

cheese

Frequent
Itemset

Support
Count

cereal, cheese 1
1
2
3
3
3

cereal, coffee
cereal, milk
cheese, coffee
cheese, milk
cheese, milk

0

Figure 16.12 Data distribution (result parallelism for association rule mining)

analysis, the concepts are certainly applicable to any transaction-based applica-
tions.

Despite the similarities, there are two main differences between sequential pat-
terns and association rules:

Association rules are intratransaction patterns or sequences, where the rule
X ! Y indicates that both items X and Y must exist in the same transaction. As

452 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Association rule

Sequential pattern

TID Items
1 A B C G X R T Y
2
3
4
5 J K M N

Figure 16.13 Sequential patterns
vs. association rules

the opposite, sequential patterns are intertransaction patterns or sequences. The
same rule above indicates that since item X exists, this will lead to the existence
of item Y in the near future transaction.

The transaction record structure in an association rule simply consists of the
transaction ID (TID) and a list of items purchased, similar to what is depicted in
Figure 16.5. In a sequential pattern, because the rule involves multiple transactions,
the transactions must belong to the same customer (or owner of the transactions).
Additionally, it is assumed that each transaction has a timestamp. In other words,
a sequential pattern X ! Y has a temporal property.

Figure 16.13 highlights the difference between sequential patterns and
association rules. If one transaction is horizontal, then association rules are
horizontal-based, whereas sequential patterns are vertical-based.

If the association rule algorithms focus on frequent itemset generation,
sequential pattern algorithms focus on frequent sequence generation. In this
section, before parallelism models for sequential patterns are described, the basic
concepts and processes of sequential patterns will first be explained.

16.4.1 Sequential Patterns: Concepts

Mining sequential patterns can be formally defined as follows:

Definition: Given a set of transactions D each of which consists of the following
fields, customer ID, transaction time, and the items purchased in the transaction,
mining sequential patterns is used to find the intertransaction patterns/sequences
that satisfy minimum support minsup, minimum gap mingap, maximum gap max-
gap, and window size wsize specified by the user.

Figure 16.14 shows a sample data set of sequences for customer ID 10.
In sequential patterns, as the name implies, a sequence is a fundamental concept.

If two sequences occur, one sequence might totally contain the other.

Definition: A sequence s is an ordered list of itemsets i . We denote itemset i as
(i1; i2; : : : ; im) and a sequence s by <s1; s2; : : : ; sn> where s j � i .

For example, a customer sequence is a set of transactions of a customer
ordered by increasing transaction time t . Given a set of itemsets i for a customer

16.4 Parallel Sequential Patterns 453

Cust ID Timestamp Items

10 20-Apr Oreo, Aqua, Bread

10 28-Apr Canola oil, Chicken, Fish

10 5-May Chicken wing, Bread crumb

Figure 16.14 Sequences for customer ID 10

that is ordered by transaction time t1; t2; : : : ; tn , the customer sequence is
<i.t1/; i.t2/; : : : ; i.tn/>. Note that a sequence is denoted by the sharp brackets
< >, where as the itemsets in a sequence use a round bracket < > to indicate
that they are sets. Using the example shown in Figure 16.14, the sequence may
be written as <(Oreo, Aqua, Bread), (Canola oil, Chicken, Fish), (Chicken wing,
Bread crumb)>.

Definition 16.5: A sequence s<s1; s2; : : : ; sn> is contained in another sequence
s0<s 0

1; s0
2; : : : ; s0

m>, if there exist integers j1 < j2 < : : : < jn that s1 � s0
j1; s2 �

s0
j2; : : : ; sn � s0

jn , for jn � m.

In other words, s is subsequence of s’, if s’ contained s.

EXAMPLE

<.5 6/ .7/> is contained in <.4 5/ .4 5 6 7/ .7 9 10/>, because .5 6/ � .4 5 6 7/ and
.7/ � .7 9 10/, whereas <.3 5/> is not contained in <.3/ .5/>.

As stated in the definition of mining sequential pattern problem, there are four
important parameters in mining sequential patterns, namely:

Ž Support,
Ž Window size,
Ž Minimum gap, and
Ž Maximum gap

The concept of support in sequential patterns is related to the length of a
sequence. The length of a sequence is the number of items in the sequence. Hence,
a sequence of length k is called a k-sequence.

Definition 16.6: Given a set of customer sequence D, the support of a sequence s
is the fraction of total D that contains s. A frequent sequence (fseq) is the sequence
that has minimum support (minsup).

Definition 16.7: Window size is the maximum time span between the first and the
last itemset in an element, where an element consists of one or more itemsets.

454 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

wsize wsize

mingap

<(A B C) (B C) (A B) (B D)> Figure 16.15 Time and sliding
windows

Definition 16.8: Minimum gap is the minimum time gap between consecutive
itemsets in a sequence.

Definition 16.9: Maximum gap is the maximum time gap between the first itemset
of the previous.

Figure 16.15 shows an illustration of window size and minimum and maxi-
mum gap. The two windows in the sequence are clearly drawn, and there is a gap
(minimum gap) between the two windows. The overall time span between the two
windows defines the maximum gap.

Figure 16.16 shows an example of the use of minsup and wsize in determining
frequent k-sequence. In this example, minsup count is set to 2, meaning that the
database must contain at least two subsequence customers. Since there are only 3
customers in the data set, minsup D 67%.

The first example in Figure 16.16 uses no window, meaning that all the items
bought by a customer are treated individually. When no windowing is used, if we
see that all transactions from the same customer are treated as one transaction,
then sequential patterns can be seen as association rules, and the three customer
transactions in this example can be rewritten as:

100 <(A) (C) (B) (C) (D) (C) (D)>

200 <(A) (D) (B) (D)>

300 <(A) (B) (B) (C)>

With this structure, sequence <(A) (B)>, for example, appears in all of the
three transactions, whereas sequence <(A) (C)> appears in the first and the last
transactions only. If the user threshold minsup D 2 is used, sequences <(B) (D)>
and <(C) (D)> with support 1 are excluded from the result. Example 1 from
Figure 16.16 shows that it only includes four frequent 2-sequences, which are:
<(A) (B)>, <(A) (C)>, <(A) (D)>, and <(B) (C)>.

In the second example in Figure 16.16, window size wsize D 3. This means
that all transactions within the 3-days window are grouped into one, and patterns
will be derived only among windows, not within a window. With wsize D 3, two
transactions from customer 200 are only 2 days apart and are below the threshold
of wsize D 3. As a result, the two transactions will be grouped into one window,
and there will be no frequent sequence from this customer.

Looking at customer 100 with 3 transactions on days 1, 3, and 7, the first two
transactions (days 1 and 3) will be grouped into one window, and the third trans-
action (day 7) will be another window. For customer 300, the 2 transactions on

16.4 Parallel Sequential Patterns 455

Customer transactions

Customer
ID

Transaction
time (days) Items bought

100

200

300

1
3
7

(A C)
(B C D)
(C D)

2
4

(A D)
(B D)

4
8

(A B)
(B C)

The above table can be written as follows:
100 <(A C) (B C D) (C D)>
200 <(A D) (B D)>
300 <(A B) (B C)>

minsup = 2

Example 1: wsize = 0

Frequent 2-sequence Support count
(Support)

<(A) (B)> 3 (100%)
<(A) (C)> 2 (67%)
<(A) (D)> 2 (67%)
<(B) (C)> 2 (67%)

Example 2: wsize = 3

Frequent 2-sequence Support count
(Support)

<(A) (C)> 2 (67%)
<(B) (C)> 2 (67%)

Figure 16.16 minsup and wsize
examples

days 4 and 8 will remain two transactions. The two customers’ transactions can be
rewritten as follows:

100 <(A C B C D) (C D)>

300 <(A B) (B C)>

As s result, two frequent 2-sequences <(A) (C)> and <(B) (C)> are gener-
ated, both with support D 2 from the two customers. The sequence <(A) (C)>
has item A from the first window and C from the second window—from both
transactions. The sequence <(B) (C)> is also the same, where item B is from
the first window and item C from the second. Note that in the above customers’
transaction list, the items that appeared in the frequent 2-sequences are printed
in bold.

Note that the examples in Figure 16.16 have not yet used the time gap con-
straints (i.e., mingap and maxgap).

456 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Algorithm: Mining sequential patterns

1. pass kD1
a. Find all frequent 1-sequences

2. pass k>1
a. Generate candidate sequences Ck from freq (k-1)

sequences
b. Count supports for candidate sequences Ck
c. Get frequent k-sequences
d. Prune frequent k-sequences where some (k-1)

contiguous subsequences is not in frequent (k-1)
sequences

Figure 16.17 Mining sequential pattern algorithm

16.4.2 Sequential Patterns: Processes

The algorithm for a sequential pattern is decomposed into two phases: phase one is
when k D 1, and phase two is applied to k > 1. This multiple passes algorithm is
similar to the Apriori algorithm for mining association rules. Hence, the algorithm
for mining sequential pattern is also based on Apriori. Figure 16.17 shows the
algorithm for mining sequential patterns.

Finding all frequent 1-sequences is rather straightforward, applying the four
parameters, namely, minsup, wsize, mingap, and maxgap. The main process is in
the second phase where k > 1. In the second phase, there are two main important
processes, specifically, generating candidate sequences from the previous iteration
of frequent sequences (step 2a) and the pruning phases (step 2d).

In the original Apriori algorithm for mining association rules, step 2a cor-
responds to the joining phase, where the previous iteration frequent itemset is
self-joined to produce a candidate itemset for the current iteration. Self-join in
frequent itemsets in association rules is rather straightforward, because there is no
notion of sequences. In sequential patterns, the joining phase is rather complex
because of the notion of sequences. To understand the joining phase in sequences,
or sequences join, we need to understand the concept of contiguity.

Definition 16.10: Let Fk denote the set of all frequent k-sequences, and Ck the set
of candidate k-sequences.

Definition 16.11: Given a sequence s D <s1; s2; : : : ; sn> and subsequence s 0,
subsequence s0 is a contiguous subsequence of s if:

Ž Subsequence s0 is derived from sequence s by dropping an item(s) from either
s1 or sn , or

16.4 Parallel Sequential Patterns 457

Ž Subsequence s0 is derived from sequence s by dropping an item from an ele-
ment si that has at least 2 items, or

Ž Subsequence s0 is a contiguous subsequence of s00 and s00 is a contiguous
subsequence of s.

EXAMPLE

Given s D <(1 3) (4) (5 6) (7 8)>

<(1) (4) (5 6) (7)>; <(4) (5)>; and <(3) (4) (6)>

are contiguous subsequence of s.
In contrast,

<(1 3) (5) (8)>; and <(1) (4) (8)>

are not.

In the first part of the above example, subsequence <(1) (4) (5 6) (7)> is con-
tiguous because it is derived by dropping an element from both the first and the
last itemsets (e.g., item 3 is drop from (1 3), and element 8 is dropped from (7 8)).

The second subsequence <(4) (5)> is also contiguous because it is derived by
dropping an element that has 2 items (e.g., dropping an element from all 2 itemsets)
as well as dropping an item from the first and last itemsets.

The third subsequence <(3) (4) (6)> is derived in a similar manner to the sec-
ond subsequence, except that it does not drop an additional item from the first
itemset.

In the second part of the above example, the subsequences are not contiguous
because (4) is missing from the first subsequence <(1 3) (5) (8)>, and (5 6) is
missing from the second subsequence <(1) (4) (8)>. We cannot drop (4) because
it is a single-element item, and we cannot drop two elements within an itemset (5
6) either. Hence, the two subsequences are not contiguous of sequence s.

Join Phase

In the joining phase, all sequences from frequent k � 1 sequences are joined to
create candidate k-sequences. The joining conditions are as follows:

Ž For all s1 2 Fk�1 and s2 2 Fk�1, join s1 and s2 if the subsequence obtained
by dropping the first item of s1 is the same as the subsequence obtained by
dropping the last item of s2.

Ž Given x the last element of s1, and y the last item of s2, the new candidate is
<s1; .y/> if y is a single item element, or add y to x otherwise.

Ž For candidate 2-sequences, for all x 2 F1 and y 2 F1, join x and y to become
<.x/.y/> and <.xy/>.

458 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Pruning Phase

The pruning phase in mining sequential patterns has a concept similar to the prun-
ing phase in the association rule frequent mining, where the anti-monotone prop-
erty is used. The pruning phase in mining sequential patterns is described as fol-
lows:

Ž Delete candidate subsequences Ck that have a contiguous (k � 1)
subsequence that is not in frequent subsequence Fk�1.

Ž If there is no maxgap constraint, we also delete candidate sequences Ck that
have any subsequence not in Fk�1.

Figure 16.18 shows an example of candidate generation. The table gives fre-
quent 3-sequences, and we would like to use the joining and pruning to create
candidate 4-sequences.

By joining the first sequence <(1 2) (3)> and the fifth sequence <(2) (3 4)>,
we get <(1 2) (3 4)>. The two subsequences are joinable because we drop the first
item (1) from the first sequence and drop the last item (4) from the other sequence,
and both subsequences are the same, that is, <(2) (3)>. The result of the join is
sequence <(1 2) (3 4)>, that is, the complete first sequence <(1 2) (3)> plus the
last item (4) of the other sequence, making <(1 2) (3 4)>.

By joining the first sequence <(1 2) (3)> and the sixth sequence <(2) (3) (5)>,
we obtained <(1 2) (3) (5)>. The first item (1) is dropped from the first sequence,
and the last item (5) is dropped from the last sequence. Both subsequences are
identical and hence joinable. The result of the join is sequence <(1 2) (3) (5)>,
whereby (5) is a single element item from the sixth sequence, which is then added
to the end of the first sequence, making <(1 2) (3) (5)>.

Other frequent 3-sequences are not joinable because they do not meet the con-
straints stated in the joining phase. Hence, only two sequences are generated after
the join phase.

In the pruning phase, we need to check whether all subsequences exist in the
frequent 3-sequences. So, first we need to work out all subsequences of the two
sequences produced by the join phase.

No Frequent 3-sequences After join After prune
1 <(1 2) (3)>
2
3
4

6

<(1 2) (4)>
<(1) (3 4)>
<(1 3) (5)>

5 <(2) (3 4)>
<(2) (3) (5)>

<(1 2) (3 4)>
<(1 2) (3) (5)>

<(1 2) (3 4)>

Figure 16.18 Example of the joining and pruning phases

16.4 Parallel Sequential Patterns 459

The sequence <(1 2) (3 4)> has the following subsequences:

<(1) (3 4)>;

<(2) (3 4)>;

<(1 2) (3)>; and

<(1 2) (4)>

All of the subsequences exist in the frequent 3-sequences. Hence, we keep
sequence <(1 2) (3 4)>.

The second sequence produced by the join phase <(1 2) (3) (5)> has the fol-
lowing contiguous subsequences:

<(1) (3) (5)>; <(1 2) (3)> and

<(2) (3) (5)>

Unfortunately, because subsequence <(1) (3) (5)> does not exist in the frequent
3-sequences, sequence <(1 2) (3) (5)> has to be pruned out.

16.4.3 Sequential Patterns: Parallel Processing

Parallel algorithms for mining sequential patterns are very similar to those of min-
ing association rules, which are based on count distribution and data distribution.

Count Distribution

Similar to the parallel association rule algorithm, count distribution is basically
data parallelism, where parallelism is created due to the partitioning of the initial
data set. The count distribution algorithm for mining sequential patterns is listed
in Figure 16.19.

Note that data partitioning is done in steps 1–2. Local processing is done in
steps 3 and 4a–c. The global reduction step to exchange local support count is
done in step 4d. The last step, step 4e, makes the complete frequent k-sequences
available to all processors. The process of step 4 is repeated from the next k.

Data Distribution

Data distribution is based on result parallelism and is similar to the data distribu-
tion model for parallel frequent itemsets generation in association rules. The data
distribution model involves partitioning both the data and the candidate sequences.

The algorithm is shown in Figure 16.20. When k D 1, the process is identical
to count distribution. Counting the support for single items is straightforward, and
frequent 1-sequence is generated.

For k > 1, after each processor generates candidate sequences, it partitions
them into a number of processors according to some partitioning rule. This is

460 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

Algorithm: Count Distribution Sequential Pattern Mining

1. Partition dataset into p partitions
where p is the total number of processors

2. Allocate each partition to a processor

3. pass kD1
a. Each processor Pi asynchronously finds 1-sequence

support count from its local partition
b. Synchronous to exchange local sequence support

count
c. Each processor Pi finds the same set frequent

1-sequences

4. pass k>1
a. Generate candidate sequences Ck from freq (k-1)

sequences
b. Add all candidate k-sequences Ck into hash tree
c. Processor Pi scans its local partition to update

support count for Ck
d. Synchronous all processors and exchange with all

other processors their Ck local support count
e. Each processor gets frequent k-sequences from Ck.

Figure 16.19 Count distribution algorithm for parallel mining sequential patterns

Algorithm: Data Distribution Sequential Pattern Mining

1. pass kD1
a. Similar to Count Distribution

2. pass k>1
a. Generate candidate sequences using previous

iteration frequent sequences. Divide 1/P of them
to each processor

b. Use local and received data sequences to update
candidate sequences support counts

c. Get frequent sequences
d. Gather all frequent sequences from all processors

Figure 16.20 Data distribution algorithm for parallel mining sequential patterns

16.6 Bibliographical Notes 461

the manifestation of result parallelism, which in this case is reflected by the
partitioning of the candidate sequences. After the local candidate sequences have
been updated and local frequent sequences have been produced, before the next
iteration starts, similarly to data distribution for association rule mining, we need
to gather frequent sequences from all other processors. The iteration is then
repeated for the next k, until no more iteration can be done.

16.5 SUMMARY

This chapter introduces another type of data-intensive application, namely data
mining. Data mining analyzes data and produces patterns, rules, clusters, and other
forms of knowledge. There are various data mining techniques. This chapter con-
centrates on the two most common data mining techniques in the form of pattern
discovery, association rules and sequential patterns.

Parallelism for data mining techniques, including data parallelism and result
parallelism, was introduced. These two parallelism methods are also applied to
association rules and sequential patterns. Data parallelism in association rules and
sequential patterns is often known as count distribution, where the counts of candi-
date itemsets in each iteration are shared and distributed to all processors. Hence,
there is a synchronization phase. Result parallelism, on the other hand, is paral-
lelization of the results (i.e., frequent itemset and sequence itemset). This paral-
lelism model is often known as data distribution, where the data set and frequent
itemsets are distributed and moved from one processor to another at the end of
each iteration.

16.6 BIBLIOGRAPHICAL NOTES

The work on parallel data mining, especially focusing on parallel association rules,
started in the late 1990s. One of the early works on parallel association rule was
by Zaki et al. (DMKD 1997). M.J. Zaki, who pioneered parallel data mining, then
published a number of important articles on parallel association rules and parallel
sequential patterns, such as Parthasarathy and Zaki et al. (1998, 2001), which thor-
oughly discussed parallel association rule mining, and Zaki (1999, 2001), which
introduced parallel sequence mining, especially for shared-memory architecture.
There was also a journal special issue on parallel and distributed data mining
edited by Zaki and Pan (DAPD 2002). Another important work on parallel asso-
ciation rule mining is that by Zaïane et al. (ICDM 2001), who proposed parallel
association rule mining without candidate generation.

The work on parallel data mining using PC clusters has been reported in a
number of research articles, such as Jin and Ziavras (IEEE TPDS 2004), Senger
et al. (2004), Kitsuregawa and Pramudiono (2003), Goda et al. (DEXA 2002), and
Oguchi and Kitsuregawa (Cluster Comp 2000).

462 Chapter 16 Parallel Data Mining—Association Rules and Sequential Patterns

The work on parallel sequential patterns includes that of Cong et al. (KDD 2005)
and Demiriz (ICDM 2002).

Recently, there have emerged works on grid data mining. Wang and Helian
(Euro-Par 2005) used Oracle Grid for global association rule mining. Li and
Bollinger (2004) and Congiusta et al. (2005) introduced parallel data mining on
the Grid.

16.7 EXERCISES

16.1. Outline the main differences between:

a. Querying and association rules,

b. Querying and sequential patterns,

c. Querying and clustering, and

d. Querying and classification.
Use examples to highlight your points.

16.2. Discuss the differences between OLAP and OLTP. Illustrate your answer with an
example.

16.3. Anti-monotonicity property is one of the features in many frequent itemset mining
algorithms. Explain this property and illustrate your answer with an example.

16.4. During the frequent itemset generation in association rule mining, to generate fre-
quent candidate itemset of length k, the frequent itemset of k � 1 length is self-joined.
Explain this process and illustrate your answer with an example.

16.5. Association rule mining exercises:

Transaction # Item Purchased

1 bread, milk, toothpaste

2 bread, cheese, milk

3 cereal, coffee, cheese, milk

4 beef, coffee, milk

5 bread, sugar, tea

6 milk, potatoes, sugar

7 cheese, tea

8 bread, coffee, cheese, milk, pasta, sugar

9 beef, coffee, pasta

10 bread, sugar, tea

11 rice, soap, toy

12 battery, beef, potatoes, rice

a. Using the above data set, show a walk-through of how frequent itemset is con-
structed the Apriori algorithm. Use 25% for the support threshold.

b. Then apply the association rule generation algorithm to this frequent itemset to
generate the association rules. Use 60% as the confidence threshold.

16.7 Exercises 463

c. Using three available processors, trace the results of frequent itemset generation
with the count distribution association rule mining algorithm.

d. Now apply the data distribution association rule mining algorithm.

16.6. What are minimum and maximum gaps in sequential pattern mining, and what is the
relationship between minimum gap and window size? Illustrate your answer with an
example.

16.7. Given a subsequence s D <(1 2 3) (4 5) (6) (7 8 9)>, give some examples of con-
tiguous subsequences and noncontiguous subsequences.

16.8. Given the following frequent 3-sequences:

No Frequent 3-sequences

1 <(A) (B) (C)>

2 <(A) (B E)>

3 <(A) (E) (C)>

4 <(B) (C) (D)>

5 <(B) (D) (E)>

6 <(B E) (C)>

7 <(E) (C D)>

a. Show the results of the joining phase.

b. Show the results of the pruning phase.

Chapter17

Parallel Clustering and
Classification

This chapter continues the discussion of parallel data mining from Chapter 16,
but focuses on clustering and classification. There are many different techniques for
clustering and classification. For this chapter, we have chosen k-means and decision
tree for clustering and classification, respectively. Parallelism models for k-means
and decision tree are also based on data parallelism and result parallelism introduced
in the previous chapters.

Section 17.1 briefly introduces clustering and classification. Sections 17.2
and 17.3 describe parallelism models for clustering and classification, respec-
tively. Because a thorough understanding of the main concepts of clustering
and classification is important in order to understand their parallelism models,
Sections 17.2 and 17.3 will also discuss basic concepts and algorithms for clustering
and classification.

17.1 CLUSTERING AND CLASSIFICATION

17.1.1 Clustering

Clustering is a data mining technique to find groups in data. The formed groups
are normally called a “cluster.” A cluster comprises a number of “similar” objects
or data. Members or objects within a cluster are considered to be closer or similar.
This also implies that a member is closer to another member within the same group
than to a member of a different group. The group does not have a category label that
tags the cluster with prior identifiers. Hence, clustering is an unsupervised learning,
where the target label of a training data is unknown. The clustering algorithm tries
to form groups from the data characteristics, not based on cluster labels.

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

464

17.1 Clustering and Classification 465

The following are a couple of clustering examples:

ž Cluster customers according to their buying behaviors. In this example, we
assume that each customer has a number of attributes containing his/her buy-
ing records, and in the database there is a large volume of customers. Clus-
tering is used to form groups of customers whereby customers within a group
(or cluster) have similar buying habits. It does not matter what the cluster is.
The most important thing is the membership of the cluster. After obtaining the
clusters and understanding the members of each cluster, we may identify each
cluster with a label. But this is not the point of clustering. Clustering deals
with cluster formation by using the characteristics of its potential members.

ž Cluster students based on their examination marks, gender, heights, national-
ity, etc. The cluster task is to form groups of students, where students within
a group are more similar than those from a different group. Again, the groups
do not have a prelabel. The grouping is based purely on the characteristics of
each student. At the end, it might turn out that it is difficult to give a label
to the groups, but this is acceptable. The important point is that groups are
formed and the members within each group are identified.

Sometimes it is easier to understand the clustering results if the clusters are
visually presented, such as in Figure 17.1. In this example, each record is presented
by two attributes: age and salary. From the figure, it is clear that the available
records are grouped into three clusters.

In the clustering process, after the data has been initially clustered, the clusters
are further refined until final cluster composition is formed. It is not uncommon
for the process to undergo several iterations, making clustering an intensive data
processing job. Parallel algorithms become desirable in order to speed up the entire
clustering process.

17.1.2 Classification

Classification is predictive data mining. After a model has been built consisting
of the predefined classes, it can be used to predict the class to which an incoming

Salary

Age
Figure 17.1 Clustering example

466 Chapter 17 Parallel Clustering and Classification

instance will be assigned. Classification is the process of assigning new instances
(or objects) to predefined categories or classes. There are many different techniques
for classification. A decision tree is one of the most popular tools for classification
because of its comprehensible result in the form of a decision tree. Other classi-
fication tools are neural networks, statistical models, and genetic models. In this
chapter, we focus on the decision tree.

In a decision tree, the objective is to create a set of rules that could be used to
differentiate one target class from another. The target class is labeled with cate-
gorical values (e.g., animal classes like: Amphibian, Bird, Fish, Insect, Mammal,
Worm), binary values (e.g., Yes or No), or any categorizable values.

The data used to build a decision tree are a collection of records, each containing
attributes and corresponding target class. Using this data, often called a training
data set, a classifier algorithm builds a classification model, which in this case is a
decision tree. To test the correctness of the decision tree model, another set of data,
known as a testing data set, is used to apply the rules to the decision tree model
to check whether the correct class or category of each record in the testing data
set has been correctly produced by the model. Hence, after a set of decision rules
has been constructed, it can be used to help decision makers in decision-making or
estimation.

To some degree, there are similarities between classification and clustering.
Both seem to group the input data set into groups or categories or classes. In clus-
tering, records from the input data set, which are grouped together in one cluster,
are said to be more similar to each other than records from a different cluster. In
classification, records from the training data set fall into the same class or cate-
gory, if they possess the same features. Thus these records can be seen as forming
a group of the class or the category. So both methods form groups or clusters.

Nonetheless, they have distinct differences, which are outlined as follows:

Ž In classification, the label for each class or category is predefined. The aim
of the classifier is to form a set of rules to identify records that will fall into
a predefined class or category. In clustering, the label for each cluster is not
predefined. After the clusters are formed, we may or may not have a label for
each cluster. Hence, labeling that identifies the clusters is not the main issue
in clustering. In contrast, labels (or class/category names) are the input to the
classifier.

Ž In classification, especially in decision trees, a record that falls into a certain
class or category is identifiable through its features or attributes. The records
from the same class or category are grouped or clustered in the same class or
category because their attribute values satisfy the criteria or rules specified in
the decision tree. In other words, because each record satisfies all the rules
of a class, they are grouped together in a class. In clustering, records are
grouped within a cluster because they are “similar” to each other, without
necessarily knowing what their common properties are. Most important is the
fact that if a record is clustered in a cluster with another record, they must be
quite similar. In clustering, we are not interested in finding out the criteria of
cluster membership.

17.2 Parallel Clustering 467

Ž Based on the training data set, a set of rules in the form of a decision tree is
built, which is then used to “predict” to which class the incoming data will
fall. Consequently, a classification model is used for prediction, and hence
the classification technique is a predictive data mining technique. In contrast,
in clustering records from the input data set are analyzed to determine how
close/far they are from each other. The clustering process is used to describe
the input data set, and hence clustering is a descriptive data mining technique.

Ž From a learning point of view, classification is supervised, as the process is
guided toward the stated goals that are the predefined classes or categories.
In contrast, clustering is unsupervised, because the exploration during the
clustering process is not guided in relation to which direction it should take
as the target clusters is not predefined.

The motivation for parallelism in classification is quite similar to that of clus-
tering, that is, classification needs to handle large data sets. Memory limitation of
sequential computers cause sequential algorithms to make multiple expensive I/O
passes over the data set on the disk. The main objective has been to have scalable,
efficient, and fast data mining computation.

17.2 PARALLEL CLUSTERING

17.2.1 Clustering: Concepts

Assuming that each data record is represented as a data point in a high-dimensional
space. The clustering problem can then be defined as follows:

Definition 17.1: Given a set of data points, each having a set of attributes, and
a similarity measure among them, a clustering problem is to find clusters such that

Ž Data points in the same cluster are more similar to one another.
Ž Data points in separate clusters are less similar to one another.

Based on the above definition, one of the key factors in clustering is the simi-
larity measure. A similarity measure can then be used to determine the degree of
similarity between data points.

Similarity Measures

All clustering algorithms must use some kind of similarity measure between two
data points. A similarity measure measures the degree of similarity between two
data points. The more similar the two data points, the higher the similarity measure.

Another way to determine the similarity between two data points is by calculat-
ing the distance between the two data points. With a distance measure, the shorter
the distance, the more similar are the two data points (in other words, a zero dis-
tance means identical). In this context, the similarity measure is the opposite of the
distance measure, although both can be used to achieve the same objective, that is,
to identify the closeness of, or the distance, between two data points.

468 Chapter 17 Parallel Clustering and Classification

One of the most common distance measurements is the Euclidean distance.
Equation 17.1 calculates the distance between two data points xi and x j using the
Euclidean distance. The two data points xi and x j have h dimensions. The distance
between the two data points in each dimension is calculated by subtraction.

dist.xi ; x j / D
vuut hX

kD1

�
xik � x jk

Ð2
(17.1)

Euclidean distance is good for attributes that are continuous. For other types of
data, other problem-specific measures may be used.

Clustering Techniques

The main goal of clustering is to maximize intracluster similarity and minimize
intercluster similarity. To achieve this goal, there are various clustering techniques.
Clustering techniques can be broadly classified into two categories: hierarchical
and partitional clustering.

A hierarchical clustering is a sequence of partitions in which each partition is
nested into the next partition in the sequence. From this view, hierarchical cluster-
ing can be bottom-up or top-down. An agglomerative clustering uses a bottom-up
approach. Agglomerative hierarchical clustering starts by placing each data object
in its own cluster, and then merges these atomic clusters into larger and larger clus-
ters until all data objects are in a single cluster. In contrast, divisive clustering uses
a top-down approach. It reverses the process by starting with all data objects in
one cluster and subdividing into smaller pieces, until each data object forms an
individual cluster. In short, hierarchical cluster methods construct the cluster either
by merging (agglomerative) the clusters or by splitting (divisive) the clusters in
successive steps.

Partitional clustering partitions the data objects based on a clustering criterion
and places the data objects into clusters such that the data objects in a cluster are
more similar to each other than to data objects in different clusters. Partitional clus-
tering is an iterative method with a stopping criterion. It starts with initial clusters
and assigns each data object to a cluster. At each iteration, the cluster’s centroids
are updated and the data objects are reassigned to the nearest cluster.

Therefore, the main difference between hierarchical and partitional clustering
is that the hierarchical does not construct k clusters, but deals with all values of k
in the same run; that is, the partition with k D 1 cluster is part of the output, and
also the situation with k D n clusters where n is the number of data objects. On the
other hand, partitional clustering focuses on k clusters, where the value of k might
be given or discovered during the clustering process.

17.2.2 k -Means Algorithm

One of the basic and common partitional clustering techniques is k-means, which
is the focus of this chapter. It is the simplest and most commonly used algorithm

17.2 Parallel Clustering 469

Algorithm: k-means

Input:
DD {x1, x2, : : :, xn} //Data objects
k //Number of desired clusters

Output:
K //Set of clusters

1. Assign initial values for means m1, m2, : : :, mk
2. Repeat
3. Assign each data object xi to the cluster

which has the closest mean
4. Calculate new mean for each cluster
5. Until convergence criteria is met

Figure 17.2 k-Means algorithm

employing a squared error criterion with a complexity of O.n/ where n is the num-
ber of data objects. k-Means is an iterative algorithm until a convergence criterion
is met. The aim is to minimize total squared error in each iteration.

Figure 17.2 describes the k-means algorithm. First, the algorithm specifies k
number of clusters, and guesses the k seed cluster centroid. It then iteratively looks
at each data point and assigns it to the closest centroid. Because of the addition
of new members coming from other clusters and the loss of members to other
clusters, each cluster must then recalculate the mean (the mean of a cluster being
the centroid of that cluster). This process is repeated until the cluster membership
composition becomes stable or a fixed number of iterations have been performed.

The following gives an example to show how the k-means clustering algorithm
works. Given data set D with twenty data points and k as follows:

D D f5; 19; 25; 21; 4; 1; 17; 23; 8; 7; 6; 10; 2; 20; 14; 11; 27; 9; 3; 16g
k D 3

Suppose the initial centroids chosen from D are m1 D 8; m2 D 7, and m3 D 6,
the three data points in the middle of data set D.

The first three clusters C1 D f1; 2; 3; 4; 5; 6g; C2 D f7g, and C3 D f8; 9; 10;

11; 14; 16; 17; 19; 20; 21; 23; 25; 27g are determined based on the initial means.
The distance of each data point and the centroid (or mean) is calculated using
Euclidean distance. Based on these three clusters, the new means are calculated as
m1 D 3:5; m2 D 7, and m3 D 16:9.

In the second iteration, because of the new means, the distance between each
member of the cluster and the new mean must be recalculated, to see whether it is
closer to its own cluster centroid or to another cluster’s centroid. If it is closer to its
own cluster centroid, obviously the data member stays in its own cluster, otherwise
it has to move out to a new cluster. In the second iteration, data point 6 from C1

moves to C2, and data points 8, 9, 10, and 11 from C3 moves to C2. Because of

470 Chapter 17 Parallel Clustering and Classification

some data points moving out and some moving in, each cluster must recalculate
its centroid or mean, and a new set of means is generated, which in this case is:
m1 D 3; m2 D 8:5, and m3 D 20:2.

In the third iteration, only one data point, which is 14 from C3, moves to C2.
New means are calculated as follows: m1 D 3; m2 D 9:29, and m3 D 21. Note that
the mean of cluster C1 remans unchanged, because C1 membership composition
does not change either.

In the fourth iteration, data point 6 from C2 is now back to C1. Others stay
where they are. The new means for C1 and C2 are m1 D 3:5 and m2 D 9:83: m3 is
unchanged because C3 is unchanged.

In the fifth iteration, there is no data movement and each cluster remains the
same. Because of this, the iteration stops, and the final three clusters are produced
as the final results.

Figure 17.3 gives a table showing the clusters composition and the means in
each iteration. The final clusters are produced at the end of final iteration.

Here are a few observations from the k-means process.

Ž The number of clusters k is predefined. The algorithm does not discover the
ideal number of clusters. During the process, the number of clusters remains
fixed—it does not shrink nor expand.

Ž The final composition of clusters is very sensitive to the choice of initial
centroid values. Different initialisations may result in different final clusters
composition.

For example, if the first three data points 5, 19, and 25 were chosen as the
initial means, the process would terminate in just two iterations with

C1 D f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g;
C2 D f14; 16; 17; 19; 20; 21g; and

C3 D f23; 25; 27g:

If instead, the last three data points in D, 9, 3 and 16 were chosen, after
four iterations only, the final three clusters would be the same as those in
Figure 17.3.

m1 m2 m3 C1 C2 C3

6 7 8 1, 2, 3, 4, 5, 6 7 8, 9, 10, 11, 14, 16, 17, 19, 20, 23, 25, 27

3.5 7 16.9 1, 2, 3, 4, 5 6, 7, 8, 9, 10, 11 14, 16, 17, 19, 20, 21, 23, 25, 27

3 8.5 20.2 1, 2, 3, 4, 5 6, 7, 8, 9, 10, 11, 14 16, 17, 19, 20, 21, 23, 25, 27

3 9.29 21 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 14 16, 17, 19, 20, 21, 23, 25, 27

3.5 9.83 21 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 14 16, 17, 19, 20, 21, 23, 25, 27

Figure 17.3 k-Means example

17.2 Parallel Clustering 471

Initial centroids: 6, 7, 8 or 3, 9, 16

Initial centroids: 5, 19, 25

Figure 17.4 Different clustering results for different initial centroids

If the twenty data points are drawn on a one-dimensional space, such as in
Figure 17.4, we can easily visualize the two versions of the clustering results
for different initial sets of centroids. One might question whether the choice
of k D 3 is the right one. Nevertheless, the k-means algorithm does not decide
the best value for k, but rather forms k clusters.

Ž Each data point is treated equally. Each data point contributes equally to the
centroid (mean) calculation. Because of this property, k-means cannot handle
outliers well.

Ž k-Means does not work with categorical data, because it needs to calculate
the mean of each cluster, which is applicable only to numerical data. Hence,
k-means works well with continuous attributes. For categorical data, k-modes
can be used in lieu of k-means, where it uses modes, instead of means.

Ž Although k-means often produces good results, because k-means relies on
the mean, which becomes the centroid of each cluster, only convex-shaped
clusters are generated.

Ž Performance of k-means might not be ideal. Note that in each iteration the
distance between each data point and the new centroid needs to be calcu-
lated. Without any conceptual revisions to improve the performance, such as
carefully selecting the initial clusters and means, or allowing clusters to split
and merge, parallel processing may offer performance improvement over the
original k-means clustering algorithm.

17.2.3 Parallel k -Means Clustering

The two parallelism models available for data mining techniques as described
earlier in this chapter are applicable to parallel k-means clustering. The two paral-
lelism models are data parallelism and result parallelism. Data parallelism, which
is obvious, creates parallelism from the beginning because of the partition of the
data set. Result parallelism, on the other hand, is based on the target clusters.

The difference between data and result parallelism, especially in parallel clus-
tering, is highlighted as follows. Suppose k D 3, and three processors are used in
parallel processing.

472 Chapter 17 Parallel Clustering and Classification

Using data parallelism, after the data set has been partitioned into three parti-
tions where each processor gets a partition, each processor will work independently
to create three clusters. The final clusters from each processor are respectively
united. For example, all first clusters from each processor are united to form the
first cluster, all second clusters are joined to form the second cluster, and so on.

Using result parallelism, the first cluster is targeted by the first processor, the
second cluster by the second processor, and so on. From the beginning, the first
processor will produce only one cluster assigned to it, namely cluster 1. During the
iteration, the memberships of cluster 1 are likely to change. This requires some data
points to move from a different cluster (different processor) to cluster 1 (processor
1). Hence, data movement is inevitable. Nevertheless, each processor is already
assigned some clusters to be generated, and a cluster is produced by only one
processor. If the number of clusters is larger than the available processors, it is
likely that each processor may be allocated more than one cluster to work with.

Figure 17.5 illustrates the difference between data parallelism and result paral-
lelism in parallel clustering.

Data Parallelism Parallel k-Means

Like count distribution in parallel association rules and parallel sequential patterns,
data parallelism in parallel k-means has a global information exchange at the end
of each iteration. In count distribution parallel association rules, support count of
frequent itemsets in each processor is globally collected so that each processor will
have the global support count for each of the frequent itemsets that it has.

In data parallelism parallel k-means, at the end of each iteration, we collect
information about the sum and the count of data points in the local clusters. We
need both sum and count of data points in order to correctly calculate the new
means. Averaging all means will not produce a correct new mean.

Figure 17.6 shows an algorithm for data parallelism parallel k-means.
Using the same example as in Figure 17.3 with twenty data points, assume that

three processors are employed. The twenty data points are distributed to the three
processors with a round-robin data partitioning. As in the example in Figure 17.3,
the three initial centroids are 6, 7, and 8. Figure 17.7 shows the first two iterations.
As noted in Figure 17.3, the entire process will complete in five iterations.

Note that in Figure 17.7, there are several “data point movements” among dif-
ferent clusters within each processor. The data does not move among processors.
It stays where it was allocated initially and remains in that processor until the end.
In this example, data point 11 in processor 1 moves from cluster 3 to cluster 2 after
one iteration. In processor 2, data point 6 moves from cluster 1 to 2. In processor
3, data points 8 and 9 move from cluster 3 to cluster 2.

Also, note that the mean of the same cluster number from different processors
is the same for the same iteration. For example, cluster 3 in iteration 2 has a mean
of 16.92 across all the three processors. This is because of the global sum/count
distribution at the end of each iteration, whereby the mean of a cluster number is
recalculated based on the global sum and count.

17.2 Parallel Clustering 473

(a) Data Parallelism k-means

Data
partition 1

Processor 1 Processor 2

Cluster
1

Processor 3

Cluster 1

Final Clusters

(b) Result Parallelism k-means

Data
partition 2

Data
partition 3

Cluster
3Cluster

2

Cluster
1

Cluster
3

Cluster
2

Cluster
1

Cluster
3

Cluster
2

Cluster 2 Cluster 3

Processor 2Processor 1 Processor 3

Final Clusters

Cluster 1 Cluster 2 Cluster 3

Cluster 1 Cluster 2 Cluster 3

Data
partition 1

Data
partition 2

Data
partition 3

Figure 17.5 Data parallelism vs. result parallelism in parallel k-means clustering

474 Chapter 17 Parallel Clustering and Classification

Algorithm: Data parallelism parallel k-means

Input:
DD {x1, x2, : : :, xn} //Data objects
k //Number of desired clusters
PD {P1, P2, : : :, Pm} //Processors

Output:
K //Set of clusters

// Initialization
1. Divide dataset D among P processors
2. Replicate the initial means m1, m2, : : :, mk to each

proc P
// In each processor:
3. Compute distance of each local data points to the

centroids
4. Construct local clusters Cij for processor Pi where j

indicates the cluster number 1� j� k by assigning local
data points to closest centroid

5. Maintain a sum and a count of each local cluster Cik
6. At each iteration, the master process computes the

new means and sends them to all processors
7. Repeat steps 3-6 until convergence
8. The master process collate local clusters Cij from

processor Pi to form global clusters Cj where 1� j� k
9. Return clusters KD {C1, C2, : : :, Ck}

Figure 17.6 Data parallelism parallel k-means algorithm

At the end of five iterations, the clusters composition in each processor is
unchanged and the entire process is finished. The results from each processor are:

Processor 1: Cluster 1 D 2, 3, 5

Cluster 2 D 7, 11

Cluster 3 D 17, 21

Processor 2: Cluster 1 D 4, 6

Cluster 2 D NIL

Cluster 3 D 16, 19, 20, 23, 27

Processor 3: Cluster 1 D 1

Cluster 2 D 8, 9, 10, 14

Cluster 3 D 25

Clusters having the same number from each processor will be collated to form
the final cluster results, which are as follows:

Cluster 1 D 1, 2, 3, 4, 5, 6

17.2 Parallel Clustering 475

Processor 1
Data partition 1:
5, 21, 17, 7, 2, 11, 3

Iteration 1

Initial dataset: 5, 19, 25, 21, 4, 1, 17, 23, 8, 7, 6, 10, 2, 20, 14, 11, 27, 9, 3, 16

Processor 2 Processor 3

Cluster 1
Mean = 6
Dataset = 2, 3, 5
Sum = 10; Count = 3

Cluster 2
Mean = 7
Dataset = 7
Sum = 7; Count = 1

Cluster 3
Mean = 8
Dataset = 11, 17, 21
Sum = 49; Count = 3

Iteration 2

Cluster 1
Mean = 3.5
Dataset = 2, 3, 5
Sum = 10; Count = 3
Cluster 2
Mean = 7
Dataset = 7, 11
Sum = 18; Count = 2
Cluster 3
Mean = 16.92
Dataset = 17, 21
Sum = 38; Count = 2

Cluster 1
Mean = 3.5
Dataset = 4
Sum = 4; Count = 1
Cluster 2
Mean = 7
Dataset = 6
Sum = 6; Count = 1
Cluster 3
Mean = 16.92
Dataset = 16, 19, 20, 23, 27
Sum = 105; Count = 5

Cluster 1
Mean = 3.5
Dataset = 1
Sum = 1; Count = 1
Cluster 2
Mean = 7
Dataset = 8, 9, 10
Sum = 27; Count = 3
Cluster 3
Mean = 16.92
Dataset = 14, 25
Sum = 39; Count = 2

Cluster 1
Mean = 6
Dataset = 4, 6
Sum = 10; Count = 2

Cluster 2
Mean = 7
Dataset = NIL
Sum = 0; Count = 0

Cluster 3
Mean = 8
Dataset = 16, 19, 20, 23, 27
Sum = 105; Count = 5

Cluster 1
Mean = 6
Dataset = 1
Sum = 1; Count = 1

Cluster 2
Mean = 7
Dataset = NIL
Sum = 0; Count = 0

Cluster 3
Mean = 8
Dataset = 8, 9, 10, 14, 25
Sum = 66; Count = 5

Data partition 2:
19, 4, 23, 6, 20, 27, 16

Data partition 3:
25, 1, 8, 10, 14, 9

Figure 17.7 An example of data parallelism parallel k-means

Cluster 2 D 7, 8, 9, 10, 11, 14

Cluster 3 D 16, 17, 19, 20, 21, 23, 25, 27

This result is the same as that shown earlier in Figure 17.3.

Result Parallelism Parallelk-Means

Like data distribution in parallel association rules and parallel sequential patterns,
result parallelism in parallel k-means focuses on the result partitioning, which in
clustering is clusters partitioning. The data points may move from one processor to
another at each iteration only to join a cluster in a different processor. As a result,
data movement among processors becomes frequent, whereas in data parallelism
the data never moves out from a processor.

Another difference between data parallelism and result parallelism for parallel
clustering is that in result parallelism a cluster is not replicated as in data par-
allelism. A cluster with the same identification number, say cluster 1, exists in

476 Chapter 17 Parallel Clustering and Classification

Algorithm: Result parallelism parallel k-means

Input:
DD {x1, x2, : : :, xn} //Data objects
k //Number of desired clusters
PD {P1, P2, : : :, Pm} //Processors

Output:
K //Set of clusters

// Initialization
1. Divide dataset D among P processors, and

sort the data within each processor
2. Divide the initial means m1, m2, : : :, mk among P

processors
3. Allocate data points to the nearest cluster centroid
// In each processor:
4. For each cluster, calculate the distance between each

local data point and the cluster centroid
5. For extreme low and high data points in each cluster,
6. If they are closer to centroid of other cluster of

the same processor, then move these data points into
the new cluster

7. If they are closer to centroid of other cluster of
different processor, then move these data points into
a new processor

8. Repeat steps 4-7 until convergence
9. Return clusters K consisting of all local clusters

from processor P

Figure 17.8 Result parallelism parallel k-means algorithm

only one processor. In contrast, clusters with the same number (e.g., cluster 1) are
replicated in data parallelism, making global consolidation necessary at the end of
the entire clustering process. This additional process is not needed in result paral-
lelism. Figure 17.8 shows an algorithm for result parallelism parallel k-means.

The example in Figure 17.9 shows that initially the twenty data points are parti-
tioned to the three processors with a round-robin partitioning. Since there are only
three clusters and three processors, each processor is allocated only one cluster.
This means that the three initial means are distributed among the three processors,
where processor 1 processes cluster 1 with an initial mean of 6, processor 2 with
initial mean D 7, and processor 3 with initial mean D 8.

Figure 17.9 shows the results of the first two iterations. After the first iterations,
there are data movements among processors. In this example, data point 6 is moved
from cluster 1 (processor 1) to cluster 2 (processor 2), whereas data points 8, 9, 10,
and 11 move from cluster 3 (processor 3) to cluster 2 (processor 2).

Since a cluster is processed by one processor, calculating the mean is
straightforward because all the data points within a cluster are located at the same

17.3 Parallel Classification 477

Data partition 1:
2, 3, 5, 7, 11, 17, 21, 17

Iteration 1

Initial dataset: 5, 19, 25, 21, 4, 1, 17, 23, 8, 7, 6, 10, 2, 20, 14, 11, 27, 9, 3, 16

Processor 1
Data partition 2:
4, 6, 16, 19, 20, 23, 27

Processor 2
Data partition 3:
1, 8, 9, 10, 14, 25

Processor 3

Cluster 1
Mean=6
Dataset=1, 2, 3, 4, 5, 6

Iteration 2
Cluster 1
Mean = 3.5
Dataset=1, 2, 3, 4, 5

Cluster 3
Mean = 16.9
Dataset=14, 16, 17, 19, 20, 21
23, 25, 27

Cluster 1
Mean = 7
Dataset=6, 7, 8, 9, 10, 11

Cluster 2
Mean = 7
Dataset = 7

Cluster 3
Mean = 8
Dataset = 8, 9, 10, 11, 14, 16,
17,19,20,21,23,25,27

Figure 17.9 An example of result parallelism parallel k-means

processor. However, at the start of the next iteration, the neighboring processor
needs to check its cluster members and determine whether it is more desirable
to move the data to other neighboring processors. For example, after the first
iteration, data point 6 from processor 1 is closer to the mean of cluster 2, and
hence it is desirable to move data point 6 to cluster 2. In this case, we need to
check only the bordering data points. Since data point 5 from cluster 1 is not
moved to cluster 2 (unlike data point 6), there is no need to check other data points
in cluster 1, because they are even further from the centroid of cluster 2.

At the end of the process, because each cluster is not replicated to processors,
the final cluster result is basically the union of all local clusters from each proces-
sor. In this case, the results are:

Processor 1 cluster 1 D 1, 2, 3, 4, 5, 6

Processor 2 cluster 2 D 7, 8, 9, 10, 11, 14

Processor 3 cluster 3 D 16, 17, 19, 20, 21, 23, 25, 27

17.3 PARALLEL CLASSIFICATION

17.3.1 Decision Tree Classification: Structures

The term “decision tree” comes from the treelike structure constructed from the
training data set. The other important structure in decision tree classification is the
training/testing data set structure itself. The two structures, decision tree and data
set, are discussed in the following:

478 Chapter 17 Parallel Clustering and Classification

Decision Tree Structure

A decision tree is usually a directed graph consisting of nodes and directed arcs.
Like any other trees, nodes can be nonleaf (or internal) nodes or leaf nodes. An
internal node frequently corresponds to a question or a test on an attribute (or
a feature), whereas an arc (or a branch) represents an outcome of the test (e.g.,
weather D shower). A leaf node contains a final decision or target class for a
decision tree. A nonleaf node generally can have as many branches as possible
according to the possible values of the question at that node. Some decision tree
nodes contain only a maximum of two child nodes (in a binary tree). A node is
assigned as a leaf node when all the records at that node belong to the same class
or the majority of records belong to a class.

Figure 17.10 shows an example that illustrates a decision tree structure. Each
nonleaf node asks a question stated by the node label, whereas the answers are
indicated by the branches that come out from the node. For example, the root node
asks how the weather is, whether it is “fine”, “shower”, or “thunderstorm”. The
next question will depend on the answer to the current question. For example, if
the weather is fine, then what is the temperature: “hot”, “mild”, or “cool”?

At the leaf node, it shows the class or category, which in this case is a binary
class: class “Yes” or class “No”. The decision tree shown in Figure 17.10 is an
example of whether “to jog” or “not to jog” (class “Yes” or class “No”, respec-
tively), depending on several indicators, such as the weather, temperature, weekday
or weekend, and time of day.

Dawn

Dawn

Sunset
Midday

Midday

Sunset Midday Weekday

Shower
Thunderstorm

CoolHot

Fine

WeekendWeekday
Mild

Weather

Temperature Day

TimeDay

Time

No

Time Yes

YesNo No

YesNo

YesNo No

No

Weekend

Figure 17.10 A decision tree

17.3 Parallel Classification 479

Following the left-most branches, if the weather is fine, the temperature is hot,
and the time of day is midday, then the decision is not to jog, whereas if the weather
is fine and the temperature is mild, regardless of the time of day, the decision is to
jog. On the right-most branch, if the weather is thunderstorm, we definitely decide
not to jog. Note that each decision (the class label in each leaf node) does not
have to meet all the four criteria (e.g., weather, temperature, time of day, week-
day/weekend). Moreover, some criteria might not be used in a decision tree at all.

Although a decision tree is shown in a treelike structure, a decision tree basically
comprises a set of rules with the nonleaf nodes and branches as the antecedent and
the class label as the consequence. Using the above example, some of the rules can
be expressed as follows:

[Weather D Fine; Temperature D Hot; Time D Midday] ! Jog D No

[Weather D Fine; Temperature D Mild] ! Jog D Yes

: : :

: : :

[Weather D Thunderstorm] ! Jog D No

Hence, a decision tree is perfectly written in the format of a set of rules, which
is equivalent to the tree structure.

A decision tree is constructed based only on the given training data set. It is not
based on a universal belief. The decision of whether to jog or not to jog as shown
in Figure 17.10, is based on the given training data set, which might be limited.
If a different training data set is given, it is likely that the result will be different.
Even for the same training data set, it is most likely that there are several possible
equivalent decision trees that can look very different, but all of which correctly
summarize the decision rules of the training data set and can be used to correctly
classify the training data set. Therefore, the question of which attribute is used
to represent a node (or a question) is critical. Choosing a different attribute as a
leaf node at any level of the decision tree will ultimately produce a different tree
structure.

Data Set Structure

Each record in the data set, whether it is within the training or testing data set,
consists of several attributes and one class or category attribute. The class/category
attribute is used to identify the classes/categories in the decision tree. This is also
called the target class attribute, whereas all the other attributes are feature attributes
that will be used as internal nonleaf nodes in the decision tree. To simplify, the
class/category attribute is called the target class, whereas the others are just known
as attributes.

The attributes can be categorical or continuous. In the example shown in
Figure 17.10, the attributes (e.g., weather, temperature, time, and day) are all
categorical (countable), where each attribute has a number of distinct countable
values. For example, the possible values for weather are fine, shower, and

480 Chapter 17 Parallel Clustering and Classification

Rec# Weather Temperature Time Day Jog (Target Class)

1 Fine Mild Sunset Weekend Yes
2 Fine Hot Sunset Weekday Yes
3 Shower Mild Midday Weekday No
4 Thunderstorm Cool Dawn Weekend No
5 Shower Hot Sunset Weekday Yes
6 Fine Hot Midday Weekday No
7 Fine Cool Dawn Weekend No
8 Thunderstorm Cool Midday Weekday No
9 Fine Cool Midday Weekday Yes
10 Fine Mild Midday Weekday Yes
11 Shower Hot Dawn Weekend No
12 Shower Mild Dawn Weekday No
13 Fine Cool Dawn Weekday No
14 Thunderstorm Mild Sunset Weekend No
15 Thunderstorm Hot Midday Weekday No

Figure 17.11 Training data set

thunderstorm, whereas the possible values for temperature are hot, mild, and cool.
Continuous values are real numbers (e.g., heights of a person in centimetres).

Figure 17.11 shows the training data set for the decision tree shown previously.
This training data set consists of only 15 records. For simplicity, only categorical
attributes are used in this example. Examining the first record and matching it with
the decision tree in Figure 17.10, the target is a Yes for fine weather and mild
temperature, disregarding the other two attributes. This is because all records in
this training data set follow this rule (see records 1 and 10). Other records, such as
records 9 and 13 use all the four attributes.

17.3.2 Decision Tree Classification: Processes

Decision Tree Algorithm

There are many different algorithms to construct a decision tree, such as ID3, C4.5,
Sprint, etc. Constructing a decision tree is generally a recursive process. At the
start, all training records are at the root node. Then it partitions the training records
recursively by choosing one attribute at a time. The process is repeated for the
partitioned data set. The recursion stops when a stopping condition is reached,
which is when all of the training records in the partition have the same target class
label.

Figure 17.12 shows an algorithm for constructing a decision tree. The deci-
sion tree construction algorithm uses a divide-and-conquer method. It constructs
the tree using a depth-first fashion. Branching can be binary (only 2 branches) or
multiway (½2 branches).

17.3 Parallel Classification 481

Algorithm: Decision Tree Construction

Input: training dataset D
Output: decision tree T
Procedure DTConstruct(D):
1. TDØ
2. Determine best splitting attribute
3. TDcreate root node and label with splitting attribute
4. TDadd arc to root node for each split predicate with

label
5. For each arc do
6. DDdataset created by applying splitting predicate

to D
7. If stopping point reached for this path Then
8. T’Dcreate leaf node and label with appropriate

class
9. Else
10. T’DDTConstruct(D)
11. TDadd T’ to arc

Figure 17.12 Decision tree algorithm

Note that in the algorithm shown in Figure 17.12, the key element is the splitting
attribute selection (line 2). The splitting attribute is the attribute chosen to split the
training data set into a number of partitions. The splitting attribute step is also often
known as feature selection, because the algorithm needs to select a feature (or an
attribute) of the training data set to create a node. As mentioned earlier, choosing
a different attribute as a splitting attribute will cause the result decision to be dif-
ferent. The difference in the decision tree produced by an algorithm lies in how
to position the features or input attributes. Hence, choosing a splitting attribute,
which will result in an optimum decision tree, is desirable. The way by which a
splitting node is determined will be described in greater detail in the following.

Splitting Attributes or Feature Selection

When constructing a decision tree, it is necessary to have a means of determining
the importance of the attributes for the classification. Hence, calculation is needed
to find the best splitting attribute at a node. All possible splitting attributes are
evaluated with a feature selection criterion to find the best attribute. Although the
feature selection criterion still does not guarantee the best decision tree, neverthe-
less, it also relies on the completeness of the training data set and whether or not
the training data set provides enough information.

The main aim of feature selection or choosing the right splitting attribute at
some point in a decision tree is to create a tree that is as simple as possible and
gives the correct classification. Consequently, poor selection of an attribute can
result in a poor decision tree.

482 Chapter 17 Parallel Clustering and Classification

At each node, available attributes are evaluated on the basis of separating the
classes of the training records. For example, looking at the training records in
Figure 17.11, we note that if Time D Dawn, then the answer is always No (see
records 4, 7, 11–13). It means that if Time is chosen as the first splitting attribute,
at the next stage, we do not need to process these 5 records (records 4, 7, 11–13).
We need to process only those records with Time D Sunset or Midday (10 records
altogether), making the gain for choosing attribute Time as a splitting attribute
quite high and hence, desirable.

Let us look at another possible attribute, namely, Weather. Also notice that
when the Weather D Thunderstorm, the target class is always No (see records 4, 8,
14–15). If attribute Weather is chosen as a splitting attribute in the beginning, in
the next stage, these four records (records 4, 8, 14–15) will not be processed—we
need to process only the other 11 records. So, the gain in choosing attribute
Weather as a splitting attribute is not that bad, but not as good as the attribute
Time, because a higher number of records are pruned out.

Therefore, the main goal for choosing the best splitting attribute is to choose the
attribute that will prune out as many records as possible at the early stage, so that
fewer records need to be processed in the subsequent stages. We can also say that
the best splitting attribute is the one that will result in the smallest tree.

There are various kinds of feature selection criteria for determining the best
splitting attributes. The basic feature selection criterion is called gain criterion,
which was designed for the one of the original decision tree algorithm (i.e.,
ID3/C4.5). Heuristically, the best splitting attribute will produce the “purest”
nodes. A popular impurity criterion is information gain. Information gain increases
with the average purity of the subsets that an attribute produces. Therefore, the
strategy is to choose an attribute that results in greatest information gain.

The gain criterion basically consists of four important calculations.

Ž Given a probability distribution, the information required to predict an event
is the distribution’s entropy. Entropy for the given probability of the target

classes, p1; p2; : : : ; pn where
nP

iD1
pi D 1, can be calculated as follows:

entropy.p1; p2; : : : ; pn/ D
nX

iD1

.pi log.1=pi // (17.2)

Let us use the training data set in Figure 17.11. There are two target
classes: Yes and No. With 15 records in the training data set, 5 records have
target class Yes and the other 10 records have target class No. The probability
of falling into a Yes is 5/15, whereas the No probability is 10/15. Entropy for
the given probability of the two target classes is then calculated as follows:

entropy(Yes, No) D 5=15 ð log.15=5/ C 10=15 ð log.15=10/

D 0:2764 (17.3)

17.3 Parallel Classification 483

At the next iteration, when the training data set is partitioned to a smaller
subset, we need to calculate the entropy based on the number of training
records in the partition, not the total number of records in the original training
data set.

Ž For each of the possible attributes to be chosen as a splitting attribute, we need
to calculate the entropy value for each of the possible values of that particular
attribute. Equation 17.2 can be used, but the number of records is not the total
number of training records but rather the number of records possessing the
attribute value of the entropy of a particular attribute:

For example, for Weather D Fine, there are 4 records with target class Yes
and 3 records with No. Hence the entropy for Weather D Fine is:

entropy.Weather D Fine/ D 4=7 ð log.7=4/ C 3=7 ð log.7=3/

D 0:2966 (17.4)

For example, for Weather D Shower, there is only 1 record with target
class Yes and 3 records with No. Hence the entropy for Weather D Shower
is:

entropy.Weather D Shower/ D 1=4 ð log.4=1/ C 3=4 ð log.4=3/

D 0:2442 (17.5)

Note that the entropy calculation for both examples above uses a differ-
ent total number of records. In Weather D Fine the number of records is 7,
whereas in Weather D Shower the number of records is only 4. This number
of records is important, because it affects the probability of having a target
class. For example, for target class Yes in Fine weather the probability is
4/7, whereas the same target class Yes in Shower weather the probability is
only 1/4.

For each of the attribute values, we need to calculate the entropy. In other
words, for attribute Weather, because there are three attribute values (e.g.,
Fine, Shower, and Thunderstorm), each of these three values must have an
entropy value. For attribute Temperature, for instance, we need an entropy
calculated for values Hot, Mild, and Cool.

Ž The entropy values for each attribute must be summed with a weighted sum.
The aim is that each attribute must have one entropy value. Because each
attribute value has an individual entropy value (e.g., attribute Weight has
three entropy values, one for each weather), and the entropy of each attribute
value is based on a different probability distribution, when we combine all
the entropy values from the same attributes, their individual weight must be
considered.

To calculate the weighted sum, each entropy value must be multiplied with
the probability of each value of the total number of training records in the
partition. For example, the weighted entropy value for Fine weather is 7/15 ð
0:2966.

484 Chapter 17 Parallel Clustering and Classification

There are 7 records out of 15 records with Fine weather, and the entropy
for Fine weather is 0.2966 as calculated earlier (see equation 17.4).

Using the same method, the weighted sum for Shower weather is 4/15 ð
0:2442, as there are only 4 records out of the 15 records in the training dataset
with Shower weather, and the original entropy for Shower as calculated in
equation 17.5 is 0.2442.

After each individual entropy value has been weighted, we can sum them
for each individual attribute. For example, the weighted sum for attribute
Weather is:

Weighted sum entropy .W eather/ D Weighted entropy .Fine/

C Weighted entropy .Shower/

C Weighted entropy .T hunderstorm/

D 7=15 ð 0:2966 C 4=15 ð 0:2442 C 4=15 ð 0

D 0:2035 (17.6)

Ž Finally, the gain for an attribute can be calculated by subtracting the weighted
sum of the attribute entropy from the overall entropy. For example, the gain
for attribute Weather is:

gain(Weather) D entropy.training datasetD/ � entropy.attributeWeather/

D 0:2764 � 0:2035

D 0:0729 (17.7)

The first part of equation 17.7 was previously calculated from equation
17.3, whereas the second part of the equation is from equation 17.6

After all attributes have their gain values, the attribute that has the highest gain
value is chosen as the splitting attribute.

After an attribute has been chosen as a splitting attribute, the training data set is
partitioned into a number of partitions according to the number of distinct values
in the splitting attribute. Once the training data set has been partitioned, for each
partition, the same process as above is repeated, until all records at the same parti-
tion fall into the same target class, and then the process for the partition terminates
(refer to Fig. 17.12 for the algorithm).

A Walk-Through Example

Using the sample training data set in Figure 17.11, the following gives a complete
walk-through of the process to create a decision tree.

Step 1: Calculate entropy for the training data set in Figure 17.11. The result is
previously calculated as 0.2764 (see equation 17.3).

Step 2: Process attribute Weather

17.3 Parallel Classification 485

Ž Calculate weighted sum entropy of attribute Weather:
entropy(Fine) D 0:2966 (equation 17.4)
entropy(Shower) D 0:2442 (equation 17.5)
entropy(Thunderstorm) D 0 C 4=4 ð log.4=4/ D 0
weighted sum entropy(Weather) D 0:2035 (equation 17.6)

Ž Calculate information gain for attribute Weather:
gain (Weather) D 0:0729 (equation 17.7)

Step 3: Process attribute Temperature
Ž Calculate weighted sum entropy of attribute Temperature:

entropy(Hot) D 2=5 ð log.5=2/ C 3=5 ð log.5=3/ D 0:2923
entropy(Mild) D entropy(Hot)
entropy(Cool) D 1=5 ð log.5=1/ C 4=5 ð log.5=4/ D 0:2173
weighted sum entropy(Temperature) D 5=15 ð 0:2923 C 5=15

ð 0:2173 D 0:2674
Ž Calculate information gain for attribute Temperature:

gain (Temperature) D 0:2764 � 0:2674 D 0:009 (17.8)

Step 4: Process attribute Time
Ž Calculate weighted sum entropy of attribute Time:

entropy(Dawn) D 0 C 5=5 ð log.5=5/ D 0
entropy(Midday) D 2=6 ð log.6=2/ C 4=6 ð log.6=4/ D 0:2764
entropy(Sunset) D 3=4 ð log.4=3/ C 1=4 ð log.4=1/

D 0:2443
weighted sum entropy (Time) D 0 C 6=15 ð 0:2764 C 4=15

ð 0:2443 D 0:1757
Ž Calculate information gain for attribute Time:

gain.T emperature/ D 0:2764 � 0:1757 D 0:1007 (17.9)

Step 5: Process attribute Day
Ž Calculate weighted sum entropy of attribute Day:

entropy(Weekday) D 4=10 ð log.10=4/ C 6=10 ð log.10=6/

D 0:2923
entropy(Weekend) D 1=5 ð log.5=1/ C 4=5 ð log.5=4/

D 0:2173
weighted sum entropy (Day) D 10=15 ð 0:2923 C 5=15

ð 0:2173 D 0:2674
Ž Calculate information gain for attribute Day:

gain.T emperature/ D 0:2764—0:2674 D 0:009 (17.10)

486 Chapter 17 Parallel Clustering and Classification

Sunset
Dawn

Midday

Time

No

Partition D1

Partition D2 Figure 17.13 Attribute Time
as the root node

Comparing equations 17.7, 17.8, 17.9, and 17.10 ,and 17.10 for the gain of
each other attributes (Weather, Temperature, Time, and Day), the biggest gain is
Time, with gain value D 0:1007 (see equation 17.9), and as a result, attribute Time
is chosen as the first splitting attribute. A partial decision tree with the root node
Time is shown in Figure 17.13.

The next stage is to process partition D1 consisting of records with Time D
Midday. Training dataset partition D1 consists of 6 records with record numbers
3, 6, 8, 9, 10, and 15. The next task is to determine the splitting attribute for par-
tition D1, whether it is Weather, Temperature, or Day. The process similar to the
above to calculate the entropy and information gain, is summarized as follows:

Step 1: Calculate entropy for the training dataset partition D1.

entropy.D1/ D 2=6 log.6=2/ C 4=6 log.6=4/ D 0:2764 (17.11)

Step 2: Process attribute Weather

Ž Calculate weighted sum entropy of attribute Weather
entropy(Fine) D 2=3 ð log.6=2/ C 1=3 ð log.3=1/ D 0:2764
entropy(Shower) D entropy(Thunderstorm) D 0
weighted sum entropy (Weather) D 3=5 ð 0:2764 D 0:1382

Ž Calculate information gain for attribute Weather:

gain.W eather/ D 0:2764 � 0:1382 D 0:1382 (17.12)

Step 3: Process attribute Temperature

Ž Calculate weighted sum entropy of attribute Temperature
entropy(Hot) D 0
entropy(Mild) D entropy(Cool) D 1=2 ð log.2=1/ C 1=2

ð log.2=1/ D 0:3010
weighted sum entropy (Temperature) D 2=6 ð 0:3010 C 2=6

ð 0:3010 D 0:2006
Ž Calculate information gain for attribute Temperature:

gain.T emperature/ D 0:2764—0:2006 D 0:0758 (17.13)

17.3 Parallel Classification 487

Step 4: Process attribute Day
Ž Calculate weighted sum entropy of attribute Day:

entropy(Weekday) D 2=6 ð log.6=2/ C 4=6 ð log.6=4/ D 0:2764
entropy(Weekend) D 0
weighted sum entropy (Day) D 0:2764

Ž Calculate information gain for attribute Day:

gain.T emperature/ D 0:2764—0:2764 D 0 (17.14)

The best splitting node for partition D2 is attribute Weather with information
gain value of 0.1382 (see equation 17.12). Continuing from Figure 17.13,
Figure 17.14 shows the temporary decision tree.

For partition D2, the splitting attribute is also Weather. The entropy and infor-
mation gain calculations are summarized as follows:

entropy .D2/ D 0:2443

weighted sum entropy .W eather/ D 0

gain .W eather/ D 0:2443) Highest in f ormation gain

weighted sum entropy .T emperature/ D 0:1505

gain .T emperature/ D 0:0938

weighted sum entropy .Day/ D 0:1505

gain .Day/ D 0:0938

And for partition D11, the splitting attribute is Temperature. The entropy and
information gain calculations are summarized as follows:

entropy .D11/ D 0:2546

weighted sum entropy .T emperature/ D 0

Dawn
Sunset

Midday

Time

No Partition D2Weather

No

Shower

No

Thunderstorm

Partition D11

Fine

Figure 17.14 Attribute
Weather as next splitting attribute

488 Chapter 17 Parallel Clustering and Classification

ThunderstormThunderstorm Fine

Dawn Sunset

Midday

Time

No Weather

No

Shower

No

Fine

Weather

Yes

Shower

NoYes

Hot

Temperature

Yes

Mild

No

Cool

Yes

Figure 17.15 Final decision tree

gain .T emperature/ D 0:2546) Highest in f ormation gain

weighted sum entropy .Day/ D 0:2546

gain .Day/ D 0

Because each of the partitions has branches that reach the target class node, a
complete decision tree is generated. Figure 17.15 shows the final decision tree.
Note that the decision tree in Figure 17.15 looks different from the decision tree in
Figure 17.10, and yet both correctly represent all rules from the training data set in
Figure 17.11. The decision tree in Figure 17.15 looks more compact and is better
than the one previously shown in Figure 17.10. Also note that Figure 17.15 does
not use attribute Day as a splitting attribute at all (as the training data set is limited)
and all rules can be generated without the need for attribute Day.

17.3.3 Decision Tree Classification: Parallel
Processing

Since the structure of a decision tree is similar to query tree optimization,
parallelization of a decision tree would be quite similar to subqueries execution
scheduling in parallel query optimization (refer to Chapter 9). In subqueries
execution scheduling for query tree optimization, there are serial subqueries
execution scheduling and parallel subqueries execution scheduling, whereas for
parallel data mining, this chapter introduces data parallelism and result paral-
lelism. A parallel decision tree combines both concepts, subqueries execution

17.3 Parallel Classification 489

scheduling and parallel data mining, because both deal with tree parallelism. Data
parallelism for a decision tree is basically similar to serial subqueries execution
scheduling, whereas result parallelism is identical to parallel subqueries execution
scheduling. Both data parallelism and result parallelism for a decision tree are
described below.

Data Parallelism for Decision Tree

There are many terms used to describe data parallelism for a decision tree, includ-
ing synchronous tree construction, feature/attribute partitioning, or intratree node
parallelism. All of these basically describe data parallelism from a different angle.
As we discuss data parallelism for a decision tree, we will then note how other
names would occur.

Data parallelism is created because of data partitioning. Previously, particularly
in parallel association rules, parallel sequential patterns, and parallel clustering,
data parallelism employed horizontal data partitioning, whereby different records
from the data set are distributed to different processors. Each processor will have
a disjoint partitioned data set, each of which consists of a number of records with
the complete attributes.

Data parallelism for decision making employs another type of data partition-
ing, namely vertical data partitioning. Note that basic data partitioning, covering
horizontal and vertical data partitioning, was explained in Chapter 3 on parallel
searching operation (or parallel selection operation). For a parallel decision tree
using data parallelism, the training data set is vertically partitioned, so that each
partition will have one or more feature attributes, the target class, and the record
number. In other words, the feature attributes are vertically partitioned, but the
record number and target class are replicated to all partitions. Figure 17.16 illus-
trates the vertical data partitioning of a training data set.

The target class needs to be replicated to all partitions because only by having
the target class can the partitions be glued together. The record numbers will be
used in the subsequent iterations in building the tree, as the partition size will be
shrunk because of further partitioning of each partition.

In data parallelism for a decision tree, like any other data parallelism, the com-
plete temporary result, in this case the decision tree, will be maintained in each
processor. In other words, at the end of each stage of building the decision tree, the
same temporary decision tree will exist in all processors. This is the same as any
other data parallelism, like data parallelism for association rules, where in count
distribution, at the end of each iteration, the frequent itemset is the same for each
processor. This is also the same in data parallelism for k-means clustering, where
each processor will have the same clusters at the end of each iteration.

Figure 17.17 shows an illustration of data parallelism for a decision tree. At
level 1, the root node is processed and determined. At the end of level 1, each
processor will have the same root node.

At level 2, if the root node has n branches, there will be n level 2s. In the
example shown in Figure 17.17, there are 3 branches from the root node. Con-
sequently, there will be levels 2a, 2b, and 2c. Each sublevel of level 2 will be

490 Chapter 17 Parallel Clustering and Classification

Record#

Feature attributes
Target
Class

Partition 1 Partition 2 Partition 3

Figure 17.16 Vertical data partitioning of training data set

processed one after another, but when processing a sublevel of level 2, parallel
processors are employed. In this sense, it is similar to the serial subqueries exe-
cution scheduling. Parallelism is within a node, and hence it is an intratree node
parallelism.

The sublevel processing is also applied to the subsequent levels. For example,
Figure 17.17 shows the processing of level 3a. To highlight that a node is currently
being processed within a sublevel, the node in the decision tree in Figure 17.17 is
filled in black to indicate the node currently being processed. All other nodes are
not filled.

Using the training data set in Figure 17.11, assume that there are 2 processors
to be employed in the parallel decision tree construction. As there are four feature
attributes, these attributes are vertically partitioned into the two processors: proces-
sor 1 receives the first two attributes, Weather and Temperature, whereas processor
2 receives the other two attributes, Time and Day. Figure 17.18 shows the parallel
processing.

At the level 1 stage (processing the root node), each processor focuses solely on
their partitions in order to calculate the entropy value for each attribute.

After each processor completes the entropy calculation of each attribute, each
processor needs to share with other processors the target class counts in order to
calculate the entropy of the training data set. This value, together with the indi-
vidual entropy value for each attribute, is needed to determine the best splitting
attribute. Once the splitting attribute has been determined, we need to identify
which records to include in the subsequent partitions, and hence the distribution
of record numbers is carried out. All of these activities are information sharing

17.3 Parallel Classification 491

Level 3a

Level 2c

Level 2b

Level 2a

Level 1

Processor 1 Processor 2 Processor 3

Figure 17.17 Data
parallelism of parallel decision
tree construction

activities—similar to count distribution in parallel association rules. In a parallel
decision tree, these information sharing activities can be thought of as a mean to
“synchronize” the decision tree, and hence data parallelism for a parallel decision
tree is also known as a synchronous tree construction approach.

Once the tree has been synchronized, each processor will have the same deci-
sion tree. Then the next stage (i.e., level 2a) starts. Note that each partition has
a smaller number of records (i.e., only 6 records in each partition). Furthermore,
because attribute Time is already processed, this attribute is then eliminated from
the partition (see the shaded Time attribute in Fig. 17.18). In this case, processor 2
will have only one feature attribute (e.g., Day) to process, whereas processor 1 has
the original two feature attributes (e.g., Weather and Temperature).

If all of the feature attributes from one partition (one processor) have been pro-
cessed in the previous stages, then there are two options. Option one is to leave
the processor idle, and option two is to request other processors to send or to share
one of their feature attributes. The latter is the subject of load balancing, which
has been discussed in Chapter 9 on parallel query optimization. So, although the-
oretically data parallelism does not require any data movements, in some cases
where load balancing needs to be performed, data movement among processors
may happen.

If, in the first place, the number of processors is more than the available number
of feature attributes, then a few processors may share the same feature attribute.

492 Chapter 17 Parallel Clustering and Classification

Level 1 (Root Node):

Processor 1 Processor 2

Rec# Weather Target Class Rec# Time Day Target Class
1
2
…
15

1
2
…
15

Locally calculate the information gain
values for: Weather and Temperature

Locally calculate the information gain
values for: Time and Day

Global information sharing stage:
a. Share target class counts to calculate dataset entropy value
b. Exchange dataset entropy value to determine splitting attribute

(e.g. Time attribute is decided to be the splitting attribute)
c. Distribute selected records# to all processor for the next phase

(e.g. records 3, 6, 8, 9, 10, 15 for Time Midday, and
records 1, 2, 5, 14 for Time Sunset)

Decision tree for Level 1:

Processor 1 Processor 2

Dawn
Sunset

Midday

Time

No

Level 2a
Level 2b

Dawn
Sunset

Midday

Time

No

Level 2a
Level 2b

Temperature

Figure 17.18 Data parallelism in decision tree

Once level 2a processing starts, each processor will work independently, and
afterward information sharing or tree synchronization is carried out. The process
is repeated for all nodes. In this case, level 2b will commence once level 2a has
completed its task.

Result Parallelism for Decision Tree

As opposed to data parallelism, where the parallelism is intratree node, the result
parallelism for the decision tree is intertree node parallelism. Hence, if there are
multiple nodes on a level, parallelism is achieved through processing nodes con-
currently by several processors.

Analogous to subqueries execution scheduling in parallel query optimization,
if data parallelism is serial subqueries execution scheduling, result parallelism is
parallel subqueries execution scheduling. So, there is some degree of similarity
between parallel decision tree construction and parallel query tree optimization.

17.3 Parallel Classification 493

Level 2a:

Processor 1 Processor 2

Rec# Weather Temperature TargetClass Rec# Time Day TargetClass
3
6
8
9
10
15

3
6
8
9
10
15

Locally calculate the information gain
values for:Weather and Temperature

Locally calculate the information
gain values for: Day

Global information sharing stage:
a. Share target class counts of each partition to calculate dataset entropy value
b. Exchange dataset entropy value to determine splitting attribute

(e.g. Weather attribute is decided to be the splitting attribute)
c. Distribute selected records# to all processor for the next phase

Result decision tree for Level 2:

Processor 1 Processor 2

Dawn
Sunset

Midday

Time

No Level 2b
Weather

No

Shower

No

Thunderstorm

Level 3a

Fine

Dawn
Sunset

Midday

Time

No Level 2b
Weather

No

Shower

No

Thunderstorm

Level 3a

Fine

Level 2b: to continue…

Figure 17.18 (Continued)

Basically, result parallelism focuses on the result—the decision tree. Hence,
the tree itself is parallelized or partitioned, and that’s why result parallelism for
parallel decision tree is also known as “partitioned tree construction.” Figure 17.19
gives an illustration of how a decision tree is partitioned. Logically, partitioning a
decision tree is similar to the partially replicated index (PRI) described in Chapter
7 on parallel indexing. The main rule is that the processor that processes a child
node in a tree will also process its parent nodes. Consequently, the root node is
processed by all processors.

Figure 17.19 shows that at the root node level the root node processing is
shared by all the three processors. On level 2, the three nodes below the root

494 Chapter 17 Parallel Clustering and Classification

Proc 2

Processor 1
Processor 3

Figure 17.19 Tree partitioning in
result parallelism

node are processed independently by the three processors—resulting in intern-
ode parallelism. On level 3, since the number of nodes is greater than the available
processors, the processors need to take on more nodes. For example, processor 1
processes 2 nodes, and so does processor 2. Processor 3 takes not only the two
nodes on level 3, but all the child nodes in the subsequent level.

In summary, if the number of processors is less than the number of nodes, an
intranode parallelism is applied. If not, then an internode parallelism is employed.

The decision tree partitioning in Figure 17.19 can be redrawn to Figure 17.20,
emphasizing the load of each processor. The dark shaded nodes indicate the node
being processed by the processor at a particular level.

Level 3

Level 2

Level 1

Processor 1 Processor 2 Processor 3

Level 4
Figure 17.20 Result
parallelism of parallel decision
tree construction

17.4 Summary 495

Using the training dataset in Figure 17.11, again assume that 2 processors are
used. If in data parallelism, vertical data partitioning is used; in result parallelism,
a horizontal data partitioning is used to partition the training data set. In this
example, we simply split the training data set into 2 partitions, where processor
1 gets the first 8 records, and processor 2 the last 7 records.

Since entropy and information gain calculations need global information from
the entire training data set, each processor needs to exchange counts with other
processors, and this is global information exchange. Once each processor receives
the necessary information to calculate the entropy and information gain values, it
decides the best splitting attribute.

Before level 2 processing starts, each processor needs to know which records
are to be processed next. In this case, processor 1 will process the node pointed
by the Midday time arc, whereas processor 2 will process the node pointed by the
Sunset time arc. Processor 1 needs to know which records to process, and so does
processor 2. In this example, processor 1 will obtain a data set partition containing
records 3, 6, 8, 9, 10, and 15, whereas processor 2 will obtain records 1, 2, 5,
and 14. At this stage, there will be record movement from one processor to the
other, since each processor may require records from other processors to process
the node allocated to it. For example, processor 1 now needs record 15, which was
initially located in partition 2 (processor 2). Once data movement is complete, level
2 processing can commence.

Note that the decision tree from level 1 is shown in each processor. The dotted
line indicates that this path is processed by another processor. Arc Sunset dotted
in processor 1 means that this arc is processed by processor 2, and on the other
hand, the arc Midday, which is dotted line in processor 2, refers to the path being
processed by processor 1.

During level 2 processing, global information sharing is also needed, as in level
1 processing. The global information sharing is needed to calculate the entropy and
information gain values in order to determine the next splitting attribute. After the
splitting attribute has been determined, the records need to be redistributed again.

In our example in Figure 17.21, level 3 processing requires only processor 1
to work. This is because processor 2 has completed its part and all the necessary
target class nodes have been generated. Processor 1 on level 3 processing will
obtain records 6, 9, and 10, which are a subset of the previous partition in level 2.

Figure 17.21 shows the entire process of result parallelism of the parallel deci-
sion tree.

17.4 SUMMARY

This chapter presents two more data mining techniques, namely clustering and
classification. For clustering, the k-means method is chosen, whereas for classifi-
cation, the decision tree method is used.

Parallel k-means and the parallel decision tree adopt data parallelism and result
parallelism. Data parallelism in clustering is based on data partitioning whereby

496 Chapter 17 Parallel Clustering and Classification

Horizontal Data Partitioning:

Processor 1 Processor 2

Rec# Weather Time Day Target
Class

Rec# Weather Time Day

1
2
…
8

9
10
…
15

Level 1 (Root Node):

a. Count target class on each partition

b. Perform intra-nod eparallelism the same as for data parallelism to share target class
 counts to calculate dataset entropy value, exchange dataset entropy value todetermine
 splitting attribute, and distribute selected records# to all other processors for the next
 phase)

Decision tree for Level 1:

Processor 1 Processor 2

Dawn
Sunset

Midday

Time

No
Processor 1

\

Dawn Sunset

Midday

Time

No Processor 2

Level 2:

Processor 1 Processor 2

Rec# Weather Time Day Target
Class

Rec#

3
6
8
9
10
15

1
2
5
14

Global information sharing stage:
a. Count target class on each partition

b. Perform intra-node parallelism the same as for data parallelism to share target
class counts to calculate dataset entropy value, exchange dataset entropy value to
determin esplitting attribute,and distribute selected records# to allother processors
for the next phase)

Temp Temp Target
Class

Temp Time DayTemp Target
Class

Weather

Figure 17.21 Result parallelism in decision tree

17.4 Summary 497

Result decision tree for Level 2:

Processor 1 Processor 2

ThunderstormThunderstorm Fine

Dawn Sunset

Midday

Time

No Weather

No

Shower

No

Fine

Weather

Yes

Shower

NoYesProcessor 1

ThunderstormThunderstorm Fine

Dawn Sunset

Midday

Time

No Weather

No

Shower

Fine

Yes

Shower

No Yes

Level 3:

Processor 1 Processor 2

Rec#

WeatherTempTime

Day Target
Class

6
9
10

Global information sharing stage:… as like in Level 2 …
Result decision tree for Level 3:

Processor 1 Processor 2

ThunderstormThunderstorm Fine

Dawn Sunset

Midday

Time

No Weather

No

Shower

No

Fine

Weather

Yes

Shower

NoYes

Hot

Temperature

Yes

Mild

No

Cool

Yes

ThunderstormThunderstorm Fine

Dawn Sunset

Midday

Time

No Weather

No

Shower

No

Fine

Weather

Yes

Shower

NoYes

Hot

Temperature

Yes

Mild

No

Cool

Yes

No

Weather

Weather Temp Time Rec# Day Target
Class

Weather Temp Time

Figure 17.21 (Continued)

each processor builds local clusters based on its data partition, whereas result par-
allelism in clustering is based on allocating different final clusters into different
processors to construct them.

Data parallelism in a decision tree is based on vertical data partitioning, as
opposed to horizontal data partitioning commonly used by other data parallelism
models (e.g., data parallelism of association rules, data parallelism of clustering,
etc). Vertical data partitioning in a decision tree is necessary so that each pro-
cessor may focus on different feature attributes of the training data set. Result
parallelism in a decision tree is based on tree partitioning. This resembles par-
allel index partitioning explained in Chapter 7. Both data parallelism and result

498 Chapter 17 Parallel Clustering and Classification

parallelism for decision tree have a similar concept with subqueries execution
scheduling explained in Chapter 9 on parallel query optimization.

All parallelism methods for various data mining techniques show some simi-
larities with those of query processing, indexing partitioning, and query optimiza-
tion. All of these parallelism methods are designed for data-intensive applications,
including database query processing, data warehousing, and OLAP, as well as data
mining.

17.5 BIBLIOGRAPHICAL NOTES

Zaki et al. (ICDE 1999), who pioneered the work on parallel data mining, proposed
parallel classification for shared-memory architecture. Jin and Agrawal (Euro-Par
2002) also used shared-memory architecture in their parallelization of decision
trees. Eitrich and Lang (2006) used the parallel support vector machine (SVM) for
classification.

Foti et al. (2000) presented parallel clustering for multicomputers. Recent
work on parallel clustering includes that of Qiang et al. (2005), who proposed
a window-based incremental parallel clustering method, and Fiolet and Toursel
(2005), who also described progressive clustering, but for the Grid. Kim et al.
(WAIM 2006) also focused on clustering algorithms for the Grid.

17.6 EXERCISES

17.1. One of the main differences between clustering and classification is that in classi-
fication each class or category is predefined, whereas in clustering the label of each
cluster is not predefined. Elaborate this concept with an example.

17.2. One of the main differences between clustering and decision trees is that in decision
trees a record that falls into a certain class or category is identifiable through its fea-
tures or attributes, whereas in clustering records are grouped within a cluster because
they are “similar” to each other, without necessarily knowing what their common
properties are. Elaborate this concept with an example.

17.3. Clustering exercises:

a. Given a data set D D f55; 30; 68; 39; 1; 4; 49; 90; 34; 76; 82; 56; 31; 25; 78; 56;

38; 32; 88; 9; 44; 98; 11; 70; 66; 89; 99; 22; 23; 26g, use the k-means serial algo-
rithm to cluster the data in three clusters.

b. Now choose a different set of centroid values, and perform the k-means clustering
again. Analyze whether the clusters are different as a result of choosing different
centroid values.

c. Use the k-means serial algorithm to cluster the data above in four clusters.
Observe the clusters’ composition and how they differ should there only be three
clusters.

d. Use the k-means data parallelism algorithm to cluster the data in three clusters
using three processors.

17.6 Exercises 499

e. Now use the k-means result parallelism algorithm to cluster the data in three clus-
ters using three processors.

17.4. Classification exercises:

Approved
Rec# Employment Marital Gender Age (Target Class)

1 Full-Time Single M Teen No
2 Full-Time Single F 20–50 No
3 Self Employed Single M Above 50 Yes
4 Part-Time Single F Above 50 Yes
5 Self Employed Single F 20–50 Yes
6 Self Employed Married M 20–50 Yes
7 Self Employed Married M Above 50 Yes
8 Full-Time Married F Teen No
9 Full-Time Married F 20–50 Yes

10 Part-Time Married F Above 50 Yes
11 Part-Time Single M Teen No
12 Full-Time Single M Above 50 No
13 Full-Time Married M 20–50 Yes
14 Full-Time Single M 20–50 No
15 Part-Time Married M 20–50 Yes

a. Using the this data set, show a walk-through of how a decision tree is built with a
serial decision tree algorithm.

b. Assuming that there are three available processors, demonstrate with a
walk-through how a decision tree is built with a data parallelism decision tree
algorithm.

c. Now use a result parallelism decision tree algorithm to build the decision tree.

Permissions

CHAPTER 4: PARALLEL SORT AND GROUP-BY

Some parts of this chapter have appeared in our early publications:

[1] David Taniar, Wenny Rahayu: Parallel database sorting. Inf. Sci. 146(1–4):
171–219, 2002 (2002 Elsevier)

[2] David Taniar, Wenny Rahayu: Parallel group-by query processing in a clus-
ter architecture. Comput. Syst. Sci. Eng. 17(1): 23–39, 2002 (2002 CRL
Publishing)

[3] David Taniar, Wenny Rahayu: Sorting in parallel database systems, HPC-
Asia (2) 2000: 830–835 (2000 IEEE)

Sections 4.2, 4.3, and 4.5 contain materials from [1] with kind permission from
Elsevier. Sections 4.4 and 4.6 contain materials from [2] with kind permission
from CRL Publishing.

Figures 4.1–4.9 have been reproduced from [1] with kind permission from
Elsevier. Figures 4.3–4.4 and 4.6–4.9 have been reproduced from [3] with kind
permission from IEEE. Figures 4.12–4.13 have been reproduced from [3] with
kind permission from CRL Publishing.

Table 4.1 has been reproduced from [1] with kind permission from Elsevier.

CHAPTER 6: PARALLEL GROUP-BY JOIN

Some parts of this chapter have appeared in our early publications:

[4] David Taniar, Wenny Rahayu, Hero Ekonomosa: Performance Evaluation
of Parallel GroupBy-Before-join Query Processing in High Performance
Database Systems. HPCN Europe 2001: 241–250, Lecture Notes in Com-
puter Science 2110 (2001 Springer)

[5] David Taniar, Wenny Rahayu: Parallel Processing of "GroupBy-Before-
Join" Queries in Cluster Architecture. CCGrid 2001: 178–185 (2001
IEEE)

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

501

502 PERMISSIONS

[6] David Taniar, Wenny Rahayu: Parallel "GroupBy-Before-Join" Query Pro-
cessing for High Performance Parallel/Distributed Database Systems. AINA
(1) 2006: 693–700 (2006 IEEE)

[7] David Taniar Rebecca Boon-Noi Tan: Parallel Processing of Multi-Join
Expansion aggregate Data Cube Query in High Performance Database Sys-
tems. ISPAN 2002 (2002 IEEE)

[8] David Taniar, Yi Jiang, Kevin Liu, Clement H.C. Leung: Aggregate-join
query processing in parallel database systems, HPC-Asia (2) 2000:
824–829 (2000 IEEE)

[9] David Taniar, Rebecca Boon-Noi Tan, Clement H. C. Leung, Kevin H. Liu:
Performance analysis of "Groupby-After-Join" query processing in parallel
database systems. Inf. Sci. 168(1–4): 25–50, 2004 (2004 Elsevier)

[10] David Tania, Yi Jian, Kevin H. Liu, Clement H. C. Leung: Parallel
Aggregate-Join Query Processing. Informatica (Slovenia) 26(3), 2002

Section 6.1 contains materials from [9] with kind permission from Elsevier,
from [5,8] with kind permission from IEEE. Section 6.2 contains materials from
[5] with kind permission from IEEE, and from [4] with kind permission from
Springer. Section 6.3 contains materials from [8, 9] with kind permissions from
IEEE and Elsevier. Section 6.5 contains materials from [6] with kind permission
from IEEE. Section 6.6 contains materials from [9] with kind permissions from
Elsevier.

Figures 6.1–6.3 have been reproduced from [4,5,7] with kind permissions from
Springer and IEEE. Figures 6.4–6.5 have been reproduced from [8,9] with kind
permissions from IEEE and Elsevier.

CHAPTER 7: PARALLEL INDEXING

Some parts of this chapter have appeared in our early publications:

[11] David Taniar, J. Wenny Rahayu: Global parallel index from multi-
processors database systems. Inf. Sci. 165 (1–2): 103–127, 2004 (2004
Elsevier)

[12] David Taniar, J. Wenny Rahayu: A Taxonomy of Indexing Schemes for Par-
allel Database Systems. Distributed and Parallel Databases 12(1): 73–106,
2002 (2002 Kluwer Springer)

[13] David Taniar, Wenny Rahayu: Global BC Tree Indexing in Parallel
Database Systems. IDEAL 2003: 701–708, Lecture Notes in Computer
Science 2690 (2003 Springer)

[14] David Taniar, Wenny Rahayu, Rebecca Boon-Noi Tan: Parallel algorithms
for selection query processing involving index in parallel database systems.
Comput. Syst. Sci. Eng. 19(2): 95–114, 2004 (2004 CRL Publishing)

[15] Wenny Rahayu, David Taniar: Parallel Selection Query Processing Involv-
ing Index in Parallel Database Systems. ISPAN 2002: 309–314 (2002
IEEE)

PERMISSIONS 503

Sections 7.1–7.5 contain materials from [12] with kind permission from Springer.
Section 7.2 contains materials from [11, 12, 13, 14] with kind permissions from
Elsevier, Springer, and CRL Publishing. Sections 7.5–7.7 contain materials from
[11, 13, 14, 15] with kind permissions from Elsevier, CRL Publishing and IEEE.

Figure 7.1 has been reproduced from [11, 12] with kind permissions from Else-
vier and Springer. Figure 7.2 has been reproduced from [12] with kind permission
from Springer. Figures 7.3–7.17 have been reproduced from [11, 12, 13, 14, 15]
with kind permissions from Elsevier, Springer, CRL Publishing, and IEEE. Figures
7.18–7.27 have been reproduced from [13, 14, 15] with kind permissions from
Springer, CRL Publishing, and IEEE.

CHAPTER 8: PARALLEL UNIVERSAL
QUANTIFICATION—COLLECTION JOIN QUERIES

Some parts of this chapter have appeared in our early publications:

[16] David Taniar, Wenny Rahayu: Parallel sort-merge object-oriented collec-
tion join algorithms. Comput. Syst. Sci. Eng. 17(3): 145–158, 2002 (2002
CRL Publishing)

[17] David Taniar, Wenny Rahayu: Parallel sort-hash object-oriented collection
join algorithms for shared-memory machines. Parallel Algorithms Appl.
17(2): 85–126, 2002 (2002 Taylor & Francis)

[18] David Taniar, Wenny Rahayu: Parallel Collection Equi-Join Algorithms for
Object-Oriented Databases. IDEAS 1998: 159–168 (1998 IEEE)

[19] David Taniar, Wenny Rahayu: Parallel double sort-merge algorithm for
object-oriented collection join queries, HPC-Asia 1997: 122-127 (1997
IEEE)

[20] David Taniar, Wenny Rahayu: Divide and Partial Broadcast Method for Par-
allel Collection Join Queries. HPCN Europe 1998: 937–939, Lecture Notes
in Computer Science 1401 (1998 Springer)

[21] David Taniar: Toward an Ideal Data Placement Scheme for High Perfor-
mance Object-Oriented Database Systems. HPCN Europe 1998: 508–517,
Lecture Notes in Computer Science 1401 (1998 Springer)

[22] David Taniar, Wenny Rahayu: Collection-Intersect Join Algorithms for Par-
allel Object-Oriented Database Systems. Euro-Par 1998: 505–512, Lecture
Notes in Computer Science 1470 (1998 Springer)

[23] David Taniar, Wenny Rahayu: Parallel Sub-Collection Join Algorithm for
High Performance Object-Oriented Databases. BNCOD 1998: 173–174,
Lecture Notes in Computer Science 1405 (1998 Springer)

[24] David Taniar, Wenny Rahayu: Parallel Sub-collection Join Query Algo-
rithms for a High Performance Object-Oriented Database Architecture.
ACPC 1999: 559–569, Lecture Notes in Computer Science 1557 (1999
Springer)

504 PERMISSIONS

Sections 8.1, 8.2, 8.4–8.6 contain some materials form [16, 17, 18, 20–24] with
kind permission from CRL Publishing, Taylor & Francis, IEEE, and Springer.

Figures 8.1, 8.3–8.6, 8.12, 8.20, 8.23 have been reproduced from [16] with
kind permission from CRL Publishing. Figure 8.1, 8.3–8.5, 8.7–8.8, 8.11–8.12,
8.20–8.25 have been reproduced from [17] with kind permission from Taylor &
Francis. Figures 8.1, 8.3, 8.6–8.8 have been reproduced from [18] with kind per-
mission from IEEE.

CHAPTER 9: PARALLEL QUERY SCHEDULING AND
OPTIMIZATION

Some parts of this chapter have appeared in our early publications:

[25] David Taniar, Yi Jiang: A High Performance Object-Oriented Distributed
Parallel Database Architecture. HPCN Europe 1998: 498–507, Lecture
Notes in Computer Science 1401 (1998 Springer)

[26] David Taniar, Clement H. C. Leung: Query execution scheduling in par-
allel object-oriented databases. Information & Software Technology 41(3):
163–178, 1999 (1999 Elsevier)

[27] Yi Jiang, David Taniar, Clement H. C. Leung: High performance distributed
parallel query processing. Comput Syst. Sci. Eng. 16(5): 277–289, 2001
(2001 CRL Publishing)

[28] David Taniar, Clement H. C. Leung: The impact of load balancing to object-
oriented query execution scheduling in parallel machine environment. Inf.
Sci. 157: 33–71, 2003 (2003 Elsevier)

Sections 9.2–9.3 contain materials from [26,28] with kind permission from Else-
vier. Section 9.4 contains materials from [26] with kind permission from Elsevier.
Sections 9.5–9.7 contain materials from [27] with kind permission from CRL Pub-
lishing.

Figure 9.2 has been reproduced from [25] courtesy of Springer. Figures 9.3,
9.5 and 9.6 have been reproduced from [28] with kind permission from Elsevier.
Figures 9.4 and 9.7–9.9 have been reproduced from [26] with kind permission
from Elsevier. Figures 9.10–9.15 have been reproduced from [27] with kind per-
mission from CRL Publishing.

CHAPTER 10: TRANSACTIONS IN DISTRIBUTED AND
GRID DATABASES

Some parts of this chapter have appeared in our early publications:

[29] Sushant Goel, Hema Sharda, David Taniar: Multi-scheduler Concurrency
Control for Parallel Database Systems. APPT 2003: 643–654, Lecture
Notes in Computer Science volume 2834 (2003 Springer)

[30] Sushant Goel, Hema Sharda, David Taniar: Transaction Management
in Distributed Scheduling Environment for High Performance Database

PERMISSIONS 505

Applications. IWDC 2003: 120–130, Lecture Notes in Computer Science
volume 2918 (2003 Springer)

[31] Sushant Goel, Hema Sharda, David Taniar: Distributed scheduler for
high performance data-centric systems, TENCON (3) 2003: 1157–1161
(2003 IEEE)

Section 10.3 contains materials from [29, 31] courtesy of Springer and with kind
permission from IEEE.

CHAPTER 11: GRID CONCURRENCY CONTROL

Some parts of this chapter have appeared in our early publications:

[32] David Taniar, Sushant Goel: Concurrency control issues in Grid databases.
Future Generation Comp. Syst. 23(1): 154–162, 2007 (2007 Elsevier)

[33] Sushant Goel, Hema Sharda, David Taniar: Preserving Data Consistency
in Grid Databases with Multiple Transactions. GCC (2) 2003: 847–854,
Lecture Notes in Computer Science volume 3033 (2003 Springer)

Sections 11.2–11.4 contain some materials from [32] with kind permission from
Elsevier. Sections 11.3–11.4 contain some material from [33] courtesy of Springer.
Figures 11.3–11.4 have been reproduced from [32] with kind permission from
Elsevier.

CHAPTER 12: GRID TRANSACTION ATOMICITY AND
DURABILITY

Some parts of this chapter have appeared in our early publications:

[34] Sushant Goel, Hema Sharda, David Taniar: Atomic Commitment in Grid
Database Systems. NPC 2004: 22–29, Lecture Notes in Computer Science
volume 3222 (2004 Springer)

[35] Sushant Goel, Hema Sharda, David Taniar: Failure Recovery in Grid
Database Systems, IWDC 2004: 75–81, Lecture Notes in Computer
Science volume 3326 (2004 Springer)

Sections 12.1–12.2 contain some materials from [34] courtesy of Springer.
Section 12.3 contains some materials from [35] courtesy of Springer.

Figures 12.1–12.3 have been reproduced from [34] courtesy of Springer.
Figure 12.5 has been reproduced from [35] courtesy of Springer.

List of Conferences and Journals

Important conferences and journals mentioned in the Bibliographical Notes at the end of
each chapter are listed below.

Ž Database Conferences.
SIGMOD (ACM)—International Conference on Management of Data
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/sigmod/index.html
ACM SIGMOD URL: http://www.sigmod.org/

PODS—International Symposium on Principles of Database Systems (normally col-
located with ACM SIGMOD)

DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/pods/index.html
ACM SIGMOD URL: http://www.sigmod.org/

VLDB—International Conference on Very Large Data Bases
URL: http://www.informatik.uni-trier.de/¾ley/db/conf/vldb/index.html
VLDB URL: http://www.vldb.org/

ICDE—International Conference on Data Engineering
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/icde/index.html

ICDT—International Conference on Database Theory
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/icdt/index.html

EDBT—International Conference on Extending Database Technology
A database conference based in Europe.
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/edbt/index.html

ADBIS—International Conf. on Advances in Databases and Information Systems
Like EDBT, ADBIS is also based in Europe.
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/adbis/index.html

DASFAA—International Conf. on Database Systems for Advanced Applications
This conference is based in Asia.
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/dasfaa/index.html

BNCOD—British National Conference on Databases
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/bncod/index.html

DEXA—International Conference on Database and Expert Systems Applications

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

507

508 LIST OF CONFERENCES AND JOURNALS

An applied database conference normally held in Europe.
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/dexa/index.html
DEXA URL: http://www.dexa.org/

CIKM—International Conference on Information and Knowledge Management
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/cikm/index.html
CIKM URL: http://www.cikm.org/

Ž Other Data-Related (Data Warehousing, Data Mining, and the Web) Conferences.

DaWaK—International Conference on Data Warehousing and Knowledge Discovery
Normally held in conjunction with DEXA.
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/dawak/index.html
DEXA URL: http://www.dexa.org/

ICDM—IEEE International Conference on Data Mining
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/incdm/index.html
ICDM URL: http://www.cs.uvm.edu/¾icdm/

KDD (also known as ACM SIGKDD)—Knowledge Discovery and Data Mining
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/kdd/index.html
ACM SIGKDD URL: http://www.acm.org/sigs/sigkdd/

APWeb—Asia-Pacific Web Conference
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/apweb/index.html

WAIM—International Conference on Web-Age Information Management
Often regarded as the Asian version of VLDB.
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/waim/index.html

Ž Parallel/Distributed, High-Performance, and Grid Computing Conferences.

ICPP—International Conference on Parallel Processing
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/icpp/index.html

ICPADS—International Conference on Parallel and Distributed Systems
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/icpads/index.html

IPDPS—International Parallel and Distributed Processing Symposium
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/ipps/index.html

CCGrid—IEEE/ACM International Symposium on Cluster Computing and the Grid
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/ccgrid/index.html
CCGrid URL: http://www.buyya.com/ccgrid/

GCC—International Conference on Grid and Cooperative Computing
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/gcc/index.html

HPDC—IEEE International Symp. on High-Performance Distributed Computing
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/hpdc/index.html
HPDC URL: http://www.hpdc.org/

LIST OF CONFERENCES AND JOURNALS 509

Euro-Par—European Conference on Parallel Processing
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/conf/europar/index.html
Euro-Par URL: http://www.euro-par.org/

Ž Database journals.

IEEE TKDE— IEEE Transactions on Knowledge and Data Engineering
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/tkde/index.html
TKDE URL: http://www.computer.org/tkde

ACM TODS—ACM Transactions on Database Systems
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/tods/index.html
TODS URL: http://www.acm.org/tods/

DAPD—Distributed and Parallel Databases
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/dpd/index.html
DAPD URL: http://www.springerlink.com/content/100257/

VLDB J—The VLDB Journal
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/vldb/index.html

DKE—Data & Knowledge Engineering
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/dke/index.html
DKE Science Direct URL: http://www.sciencedirect.com/science/journal/0169023X

Ž Other Data-Related Journals.

DMKD—Data Mining and Knowledge Discovery
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/datamine/index.

html
DMKD URL: http://www.springerlink.com/content/100254/

Ž Parallel/Distributed, High-Performance, and Grid Computing Journals.

IEEE TPDS—IEEE Transactions on Parallel and Distributed Systems
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/tpds/index.html
TPDS URL: http://computer.org/tpds/

IEEE TC—IEEE Transactions on Computers
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/tc/index.html
TC URL: http://www.computer.org/tc

FGCS—Future Generation Computer Systems
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/fgcs/index.html
FGCS Science Direct URL: http://www.sciencedirect.com/science/journal/0167739X

Cluster Computing
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/cluster/index.html
Cluster Computing URL: http://www.springerlink.com/content/101766/

Parallel Computing
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/pc/index.html
ParCo Science Direct URL: http://www.sciencedirect.com/science/journal/01678191

510 LIST OF CONFERENCES AND JOURNALS

Concurrency and Computation—Concurrency and Computation: Practice and
Experience

DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/concurrency
Ž General Computing Journals.

CACM—Communications of the ACM
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/cacm/index.html
CACM URL: http://www.acm.org/pubs/cacm/

ACM Comp Surv—ACM Computing Surveys
DBLP URL: http://www.informatik.uni-trier.de/¾ley/db/journals/csur/index.html
ACM Survey URL: http://www.acm.org/pubs/surveys/

Bibliography

CHAPTER 1: PARALLEL DATABASES AND GRID
DATABASES

Almasi, G. and Gottlieb, A., Highly Parallel Computing, Second edition, The
Benjamin/Cummings Publishing Company Inc., 1994.

Antonioletti, M., et al., “The design and implementation of Grid database services in
OGSA-DAI”, Concurrency—Practice and Experience, 17(2–4):357–376, 2005.

Atkinson, M.P., “Databases and the Grid: Who Challenges Whom?”, Proceedings of British
National Conference on Databases (BNCOD), pp. 1–2, 2003.

Bergsten, B., Couprie, M., and Valduriez, P., “Overview of Parallel Architecture for
Databases”, The Computer Journal, 36(8):734–740, 1993.

Bhalla, S., “Improving Parallelism in Asynchronous Reading of an Entire Database”, Pro-
ceedings of High Performance Computing (HiPC), pp. 377–384, 2000.

Boral, H. and DeWitt, D.J., “Database Machines: An Idea Whose Time Passed? A Critique
of the Future of Database Machines”, Proceedings of International Workshop on Data
Machines (IWDM), pp. 166–187, 1983.

Burger, A., “Developing Scientific Database Applications in a Grid Environment”, Pro-
ceedings of Statistical and Scientific Database Management (SSDBM), pp. 187, 2002.

Chandrasekaran, S. and Bamford, R., “Shared Cache—The Future of Parallel Databases”,
Proceedings of International Conference on Data Engineering (ICDE), pp. 840–850,
2003.

Chen, H., Wu, Z., and Mao, Y., “Q3: A Semantic Query Language for Dart Database Grid”,
Proceedings of Grid and Cooperative Computing (GCC), pp. 372–380, 2004.

Chen, H., Wu, Z., Mao, Y., and Zheng, G., “DartGrid: a semantic infrastructure for building
database Grid applications”, Concurrency and Computation: Practice and Experience,
18(14):1811–1828, 2006.

Cruanes, T., Dageville, B., and Ghosh, B., “Parallel SQL Execution in Oracle 10g”,
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 850–854, 2004.

DeWitt, D.J. and Gray, J., “Parallel Database Systems: The Future of High Performance
Database Systems”, Communication of the ACM, 35(6):85–98, 1992.

DeWitt, D., et al., “The Gamma Database Machine Project”, IEEE Transaction on Knowl-
edge and Data Engineering, 2(1):44–62, 1990.

DeWitt, D.J., Gerber, R.H., Graefe, G., Heytens, M.L., Kumar, K.B., and Muralikrishna, M.,
“GAMMA—A High Performance Dataflow Database Machine”, Proceedings of Very
Large Data Bases (VLDB), pp. 228–237, 1986.

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

511

512 BIBLIOGRAPHY

Fu, X., Xu, H., Hou, W., Lu, Y., and Chen, B., “Research of the Access and Integration
of Grid Database”, Proceedings of the 10th International Conference on Computer Sup-
ported Cooperative Work in Design (CSCWD), pp. 1071–1076, 2006.

Gançarski, S., Naacke, H., Pacitti, E., and Valduriez, P., “Parallel Processing with
Autonomous Databases in a Cluster System”, Proceedings of CoopIS/DOA/ODBASE,
pp. 410–428, 2002.

Gottemukkala, V., Jhingran, A., and Padmanabhan, S., “Interfacing Parallel Applications
and Parallel Databases”, Proceedings of International Conference on Data Engineering
(ICDE), pp. 355–364, 1997.

Grabs, T., Böhm, K., and Schek, H., “High-level Parallelism in a Database Cluster: A Fea-
sibility Study Using Document Services”, Proceedings of International Conference on
Data Engineering (ICDE), pp. 121–130, 2001.

Graefe, G. and Davison, D.L., “Encapsulation of Parallelism and Architecture-Indepen-
dence in Extensible Database Query Execution”, IEEE Trans. Software Eng.,
19(8):749–764, 1993.

Hameurlain, A. and Morvan, F., “Parallel Relational Database Systems: Why, How
and Beyond”, Proceedings of Database and Expert Systems Applications (DEXA),
pp. 302–312, 1996.

Haran, B., et al., “Prototyping Bubba, A Highly Parallel Database System”, IEEE Transac-
tion on Knowledge and Data Engineering, 2(1):4–24, 1990.

Hawthorn, P.B., “Database Machines”. Proceedings of the Very Large Data Bases (VLDB),
pp. 393–395, 1980.

Hawthorn, P.B., “People Who Need Large Parallel Databases”, Proceedings of Conference
on Parallel and Distributed Information Systems (PDIS), p. 192, 1993.

Hoschek, W., Martinez, J.J., Samar, A.S., Stockinger, H., and Stockinger, K., “Data man-
agement in an international data grid project.” ACM International Workshop on Grid
Computing (GRID-00), pp. 77–90, 2000.

Hsiao, D.K., “Database Machines are Coming, Database Machines are Coming!” IEEE
Computer 12(3), 1979.

Hua, K.A and Lee, C., “Interconnecting Shared-Everything Systems for Efficient Paral-
lel Query Processing”, Proceedings of the 1st International Conference on Parallel and
Distributed Information Systems PDIS’91, Miami Beach, pp. 262–270, 1991.

Jeffery, K.G., “Database Research Issues in a WWW and GRIDs World”, Proceedings
of Conference on Current Trends in Theory and Practice of Informatics (SOFSEM),
pp. 9–21, 2004.

Jeffery, K.G., “GRIDS, Databases, and Information Systems Engineering Research”, Pro-
ceedings of Extending Database Technology (EDBT), pp. 3–16, 2004.

Johnston, W.E., Gannon, D., Nitzberg, B., Tanner, L.A., Thigpen, B., and Woo, A., “Com-
puting and Data Grids for Science and Engineering”, Proceedings of the ACM/IEEE
Conference on Supercomputing, Dallas, November 2000.

Langdon Jr., G.G., “Database Machines: An Introduction”, IEEE Trans. Computers
28(6):381–383, 1979.

Leung, C.H.C. and Ghogomu, H.T., “A High-Performance Parallel Database Architecture”,
Proceedings of International Conference on Supercomputing, pp. 377–386, 1993.

Liu, D.T., Franklin, M.J., and Parekh, D., “GridDB: A relational interface for the Grid”,
Proceedings of the ACM SIGMOD International Conference on Management of Data,
June 2003.

BIBLIOGRAPHY 513

Majkic, Z., “Massive Parallelism for Query Answering in Weakly Integrated P2P
Systems”, Proceedings of Database and Expert Systems Applications DEXA Workshop,
pp. 524–528, 2004.

Malaika, S., Eisenberg, A., and Melton, J., “Standards for Databases on the Grid”, ACM
SIGMOD Record, 32(3):92–100, 2003.

Mehta, M. and DeWitt, D.J., “Managing Intra-operator Parallelism in Parallel Database
Systems”, Proceedings of Very Large Data Bases (VLDB), pp. 382–394, 1995.

Miller, S.S., “Parallel Databases”, Proceedings of High-Performance Web Databases,
pp. 653–659, 2001.

Narayanan, S., Kurç, T.M., Çatalyürek, Ü.V., and Saltz, J.H., “Database Support
for Data-Driven Scientific Applications in the Grid”, Parallel Processing Letters,
13(2):245–271, 2003.

Nieto-Santisteban, M.A., Gray, J., Szalay, A.S., Annis, J., Thakar, A.R., and O’Mullane,
W., “When Database Systems Meet the Grid”, Proceedings of Conference on Innovative
Data Systems Research (CIDR), pp. 154–161, 2005.

Ozkarahan, E., Database Machines and Database Management, Prentice-Hall, 1986.

Patterson, D.A and Hennessy, J.L., Computer Organization & Design: The Hard-
ware/Software Interface, Morgan Kaufmann, 1994.

Poess, M. and Othayoth, R., “Large Scale Data Warehouses on Grid: Oracle Database
10g and HP ProLiant Systems”, Proceedings of Very Large Data Bases (VLDB),
pp. 1055–1066, 2005.

Sion, R., Natarajan, R., Narang, I., and Phan, T., “XG: A Grid-Enabled Query Process-
ing Engine”, Proceedings of Extending Database Technology (EDBT), pp. 1115–1120,
2006.

Soares, T., “Deductive Databases: Implementation, Parallelism and Applications”, Proceed-
ings of International Conference on Logic Programming (ICLP), pp. 467–468, 2006.

Song, S.W., “A Survey and Taxonomy of Database Machines”, IEEE Database Eng. Bull.,
4(2):3–13, 1981.

Stockinger, H., “Distributed Database Management Systems and the Data Grid”, 18th IEEE
Symposium on Mass Storage Systems and 9th NASA Goddard Conference on Mass stor-
age Systems and Technologies, April 2001.

Su, S.Y.W., “Database Machines”, Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp. 157–158, 1978.

Valduriez, P., “Parallel Database Systems: Open Problems and New Issues”, Distributed
and Parallel Databases 1, pp. 137–165, 1993.

Valduriez, P., “Parallel Database Systems: The Case for Shared-Something”, Proceedings
of the International Conference on Data Engineering (ICDE), pp. 460–465, 1993.

Wang, J., Miyazaki, M. and Li, J., “A Technique for Upgrading Database Machines Online”,
Proceedings of Advances in Information Systems (ADVIS), pp. 82–91, 2000.

Watson, P., “Databases and the Grid”, UK e-Science Programme Technical Report,
UKeS-2002-01, National e-Science Centre; Technical Report, CS-TR-755, University of
Newcastle, 2002.

Weikum, G., “Tutorial on Parallel Database Systems”, Proceedings of the Fifth Interna-
tional Conference on Database Theory ICDT’95, Prague, pp. 33–37, 1995.

Weininger, A., “Handling Very Large Databases with Informix Extended Parallel Server”,
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 548–549, 2000.

514 BIBLIOGRAPHY

Winters, V.G., “Parallelism For High Performance Query Processing”, Proceedings of
Extending Database Technology (EDBT), pp. 344–356, 1992.

Wu, Z., Chen, H., Changhuang, C., Zheng, G., and Xu, J., “DartGrid: Semantic-Based
Database Grid”, Proceedings of International Conference on Computational Science,
pp. 59–66, 2004.

Wu, Z., Chen, H., Mao, Y., and Zheng, G., “Dart Database Grid: A Dynamic, Adaptive,
RDF-Mediated, Transparent Approach to Database Integration for Semantic Web”, Pro-
ceedings of Asia-Pacific Web Conference (APWeb), pp. 1053–1057, 2005.

CHAPTER 2: ANALYTICAL MODELS

Bogdanowicz, R., Crocker, M., Hsiao, D.K., Ryder, C., Stone, V., and Strawser, P., “Exper-
iments in Benchmarking Relational Database Machines”, Proceedings of International
Workshop on Digital Mammography (IWDM), pp. 106–134, 1983.

Dietrich, S.W., Brown, M., Cortes-Rello, E., and Wunderlin, S., “A Practitioner’s
Introduction to Database Performance Benchmarks and Measurements”, Comput. J.,
35(4):322–331, 1992.

Englert, S., Gray, J., Kocher, T., and Shah, P., “A Benchmark of NonStop SQL Release 2
Demonstrating Near-Linear Speedup and Scaleup on Large Databases”, Proceedings of
Measurement and Modeling of Computer Systems (SIGMETRICS), pp. 245–246, 1990.

Ganguly, S., Goel, A., and Silberschatz, A., “Efficient and Acurate Cost Models for Paral-
lel Query Optimization”, Proceedings of Symposium on Principles of Database Systems
(PODS), pp. 172–181, 1996.

Graefe, G. and Cole, R.L., “Fast Algorithms for Universal Quantification in Large
Databases”, ACM Trans. Database Syst., 20(2):187–236, 1995.

Gray, J., The Benchmark Handbook for Database and Transaction Systems, Second edition,
Morgan Kaufmann, 1993.

Hameurlain, A. and Morvan, F., “A Cost Evaluator for Parallel Database Systems”, Pro-
ceedings of Database and Expert Systems Applications (DEXA), pp. 146–156, 1995.

Hennessy, J.L. and Patterson, D.A., Computer Architecture: A Quantitative Approach, Mor-
gan Kaufmann, 1990.

Jain, R., The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling, John Wiley & Sons, 1991.

Jelly, I., Kerridge, J.M., and Bates, C., “Benchmarking Parallel SQL Database Machines”,
Proceedings of British National Conference on Databases (BNCOD), pp. 105–120,
1994.

Leung, C.H.C., Quantitative Analysis of Computer Systems, John Wiley & Sons, 1988

O’Neil, P. E., The Set Query Benchmark, The Benchmark Handbook, 1993.

Orji, C.U., “A Methodology for Benchmarking Distributed Database Management
Systems”, Proceedings of International Conference on Data Engineering (ICDE),
pp. 612–619, 1991.

Poess, M., “Controlled SQL query evolution for decision support benchmarks”, Proceed-
ings of Workshop on Software and Performance (WOSP), pp. 38–41, 2007.

Sampaio, S., Paton, N.W., Smith, J., and Watson, P., “Validated Cost Models for Parallel
OQL Query Processing”, Proceedings of Object Oriented Information Systems (OOIS),
pp. 60–75, 2002.

BIBLIOGRAPHY 515

Shatdal, A. and Naughton, J.F., “Adaptive Parallel Aggregation Algorithms”, Proceedings
of the ACM SIGMOD International Conference on Management of Data, pp. 104–114,
1995.

Slimani, Y., Najjar, F., and Mami, N., “An Adaptive Cost Model for Distributed Query
Optimization on the Grid”, Proceedings of OnTheMove (OTM) Workshops, pp. 79–87,
2004.

Zipf, G.K., Human Behaviour and the Principle of Least Effort, Addison Wesley, 1949.

CHAPTER 3: PARALLEL SELECTION/SEARCH AND
DATA PARTITIONING/PLACEMENT

Bell, D., “Difficult Data Placement Problems”, The Computer Journal, 27(4):315–320,
1984.

Copeland, G. et. al., “Data Placement in Bubba”, Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pp. 99–108, 1988.

Dikenelli, O., Ünalir, M.O., and Ozkarahan, E.A., “BLOCKER: A Variable & Multiat-
tribute Declustering for Parallel Database Machines”, Proceedings of Euro-Par, Vol. II,
pp. 892–895, 1996.

Duan, G., Suzuki, Y. and Kawagoe, K., “Grid Representation for Efficient Similarity Search
in Time Series Databases”, Proceedings of the International Conference on Data Engi-
neering (ICDE) Workshops, pp. 123, 2006.

Feelifl, H. and Kitsuregawa, M., “RING: A Strategy for Minimizing the Cost of Online Data
Placement Reorganization for Btree Indexed Database over Shared-Nothing Machines”,
Proceedings of Database Systems for Advanced Applications (DASFAA), pp. 190–199,
2001.

Furtado, P., “Experimental evidence on partitioning in parallel data warehouses”, Proceed-
ings of International Workshop on Data Warehousing and OLAP (DOLAP), pp. 23–30,
2004.

Gao, Y., Chen, L., Chen, G., and Chen, C., “Efficient Parallel Processing for
K-Nearest-Neighbor Search in Spatial Databases”, Proceedings of Computational
Science and Its Applications (ICCSA), pp. 39–48, 2006.

García, M.B. et al., “Multi-dimensional Declustering Methods for Parallel Database Sys-
tems”, Proceedings of Euro-Par, pp. 866–871, 1996.

Geisler, S., “Efficient Parallel Search in Video Databases with Dynamic Feature Extrac-
tion”, Proceedings of Parallel Computing (PARCO), pp. 431–438, 2003.

Ghandeharizadeh, S. and DeWitt, D.J., “MAGIC: A Multiattribute Declustering Mech-
anism for Multiprocessor Database Machines”. IEEE Trans. Parallel Distrib. Syst,
5(5):509–524, 1994.

Ghandeharizadeh, S. et. al., “A Performance Analysis of Alternative Multi-Attribute
Declustering Strategies, Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 29–38, 1992.

Ghandeharizadeh, S. and DeWitt, D., “Hybrid-Range Partitioning Strategy: A New Declus-
tering Strategy for Multiprocessor Database Machines”, Proceedings of the 16th Very
Large Data Bases (VLDB) Conference, Brisbane, pp.481–492, 1990.

Golubchik, L., Khanna, S., Khuller, S., Thurimella, R. and Zhu, A., “Approximation algo-
rithms for data placement on parallel disks”, Proceedings of Symposium on Discrete
Algorithms (SODA), pp. 223–232, 2000.

516 BIBLIOGRAPHY

Guha, S. and Munagala, K., “Improved algorithms for the data placement problem”, Pro-
ceedings of Symposium on Discrete Algorithms (SODA), pp. 106–107, 2002.

Hababeh, I.O., Ramachandran, M. and Bowring, N., “A high-performance comput-
ing method for data allocation in distributed database systems”, The Journal of
Supercomputing, 39(1):3–18, 2007.

Hua, K.A. and Lee, C., “An Adaptive Data Placement Scheme for Parallel Database Com-
puter Systems”, Proceedings of the Very Large Data Bases (VLDB), pp. 493–506, 1990.

Ibáñez-Espiga, M. and Williams, M.H., “Data Placement Strategy for a Parallel Database
System”, Proceedings of Database and Expert Systems Applications (DEXA), pp. 48–54,
1992.

Joshi, R. and Aslandogan, Y.A., “Concept-based web search using domain prediction and
parallel query expansion”, Proceedings of Information Reuse and Integration (IRI),
pp. 166–171, 2006.

Kido, K., Amagasa, T., and Kitagawa, H., “Processing XPath Queries in PC-Clusters Using
XML Data Partitioning”, Proceedings of ICDE Workshops, pp. 114, 2006.

Knuth, D.E., The Art of Computer Programming, Volume III: Sorting and Searching,
Addison-Wesley, 1973.

Layer, C. and Pfleiderer, H., “High Performance Associative Coprocessor Architecture
for Advanced Database Searching”, Proceedings of Databases and Applications (DBA),
pp. 87–92, 2004.

Lee, M., Kitsuregawa, M., Ooi, B.C., Tan, K., and Mondal, A., “Towards Self-Tuning Data
Placement in Parallel Database Systems”, Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 225–236, 2000.

Märtens, H., “On Disk Allocation of Intermediate Query Results in Parallel Database Sys-
tems”, Proceedings of Euro-Par, pp. 469–476, 1999.

Ndiaye, Y., Diene, A.W., Litwin, W., and Risch, T., “Scalable Distributed Data Structures
for High-Performance Databases”, Proceedings of Workshop on Distributed Data and
Structures (WDAS), pp. 45–69, 2000.

Nguyen, K.Q., Thompson, T., and Bryan, G., “An Enhanced Hybrid Range Partitioning
Strategy for Parallel Database Systems”, Proceedings of DEXA Workshop, pp. 289–294,
1997.

No, J., Thakur, R., and Choudhary, A.N., “Integrating Parallel File I/O and Database Sup-
port for High-Performance Scientific Data Management”, Proceedings of Supercomput-
ing Conference (SC), 2000.

Qiao, J., Ye, Y., and Zhang, C., “Parallelization of Similarity Search in Large Time Series
Databases”, Proceedings of International Multi-Symposium of Computer and Computa-
tional Sciences (IMSCCS), pp. 355–362, 2006.

Schmidt, B., Schröder, H., and Schimmler, M., “Scanning Biosequence Databases on a
Hybrid Parallel Architecture”, Proceedings of Euro-Par, pp. 360–370, 2001.

Stöhr, T. and Rahm, E., “WARLOCK: A Data Allocation Tool for Parallel Warehouses”,
Proceedings of Very Large Data Bases (VLDB), pp. 721–722, 2001.

Stöhr, T., Märtens, H., and Rahm, E., “Multi-Dimensional Database Allocation for Parallel
Data Warehouses”, Proceedings of Very Large Data Bases (VLDB), pp. 273–284, 2000.

Sun, J. and Grosky, W.I., “Dynamic Maintenance of Multidimensional Range Data Parti-
tioning for Parallel Data Processing”, Proceedings of International Workshop on Data
Warehousing and OLAP (DOLAP), pp. 72–79, 1998.

Tamura, K., Nakano, Y., Kaneko, K., and Makinouchi, A., “The Parallel Processing of
Spatial Selection for Very Large Geo-Spatial Databases”, Proceedings of International
Conference on Parallel and Distributed Systems (ICPADS), pp. 721–726, 2001.

BIBLIOGRAPHY 517

Tang, N., Wang, G., Yu, J.X., Wong, K., and Yu, G., “WIN: An Efficient Data Placement
Strategy for Parallel XML Databases”, Proceedings of International Conference on Par-
allel and Distributed Systems (ICPADS), pp. 349–355, 2005.

Veitch, A.C., Riedel, E., Towers, S.J., and Wilkes, J., “Towards Global Storage Management
and Data Placement”, Proceedings of Workshop on Hot Topics in Operating Systems
(HotOS), pp. 184, 2001.

Watson, P., “Databases in Grid Applications: Locality and Distribution”, Proceedings of
British National Conference on Databases (BNCOD), pp. 1–16, 2005.

Yang, G., Jin, R., and Agrawal, G., “Impact of Data Distribution, Level of Parallelism,
and Communication Frequency on Parallel Data Cube Construction”, Proceedings of
International Parallel and Distributed Processing Symposium (IPDPS), pp. 66, 2003.

Yu, Y., Wang, G., Yu, G., Wu, G., Hu, J., and Tang, N., “Data Placement and Query Pro-
cessing Based on RPE Parallelisms”, Proceedings of International Computer Software
and Applications Conference (COMPSAC), 2003.

Zhu, Y. and Lü, K., “An Effective Data Placement Strategy for XML Documents”, Proceed-
ings of British National Conference on Databases (BNCOD), pp. 43–56, 2001.

CHAPTER 4: PARALLEL SORTING

Baugst, B.A.W. and Greipsland, J.F., “Parallel Sorting Methods for Large Data Volumes
on a Hypercube Database Computer”, Proceedings of International Workshop on Digital
Mammography (IWDM), pp. 127–141, 1989.

Bitton, D., et al, “A Taxonomy of Parallel Sorting”, ACM Comp. Surv., 16(3), pp. 287–318,
1984.

Cérin, C., Koskas, M., Fkaier, H., and Jemni, M., “Sequential in-core sorting performance
for a SQL data service and for parallel sorting on heterogeneous clusters”, Future Gen-
eration Comp. Syst., 22(7):776–783, 2006.

Cérin, C., Dubacq, J., and Roch, J., “Methods for Partitioning Data to Improve Parallel
Execution Time for Sorting on Heterogeneous Clusters”, Proceedings of Advances in
Grid and Pervasive Computing (GPC), pp. 175–186, 2006.

Dementiev, R. and Sanders, P., “Asynchronous parallel disk sorting”, Proceedings of ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pp. 138–148, 2003.

DeWitt, D.J., Naughton, J.F., Schneider, D.A., and Seshadri, S., “Practical Skew Handling
in Parallel Joins”, Proceedings of Very Large Data Bases (VLDB), pp. 27–40, 1992.

Govindaraju, N.K., Gray, J., Kumar, R., and Manocha, D., “GPUTeraSort: high perfor-
mance graphics co-processor sorting for large database management”, Proceedings of the
ACM SIGMOD International Conference on Management of Data, pp. 325–336, 2006.

Iyer, B.R. and Dias, D.M., “System Issues in Parallel Sorting for Database Systems”, Pro-
ceedings of International Conference on Data Engineering (ICDE), pp. 246–255, 1990.

Jeon, M. and Kim, D., “Distribution-Insensitive Parallel External Sorting on PC Clus-
ters”, Proceedings of International Symposium High Performance Computing (ISHPC),
pp. 202–213, 2003.

Knuth, D.E., The Art of Computer Programming, Volume III: Sorting and Searching,
Addison-Wesley, 1973.

Levcopoulos, C., “On Optimal Parallel Algorithm for Sorting Presorted Files”, Proceedings
of Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
pp. 154–160, 1988.

518 BIBLIOGRAPHY

Lo, Y. and Huang, Y., “Effective Skew Handling for Parallel Sorting in Multiprocessor
Database Systems”, Proceedings of International Conference on Parallel and Distributed
Systems (ICPADS), pp. 151–156, 2002.

Lorie, R.A. and Young, H.C., “A Low Communication Sort Algorithm for a Parallel
Database Machine”, Proceedings of Very Large Data Bases (VLDB), pp. 125–134,
1989.

Maekawa, M., “Parallel Join and Sorting Algorithms”, Proceedings of Data Base Design
Techniques II, pp. 266–298, 1979.

Pawlowski, M. and Bayer, R., “Parallel Sorting of Large Data Volumes on Distributed Mem-
ory Multiprocessors”, Proceedings of Parallel Computer Architectures, pp. 246–264,
1993.

Yamane, Y. and Take, R., “Parallel Partition Sort for Database Machines”, Proceedings of
International Workshop on Digital Mammography (IWDM), pp. 117–130, 1987.

Young, H.C. and Swami, A.N., “The parameterized Round-Robin partitioned algorithm
for parallel external sort”, Proceedings of International Parallel Processing Symposium
(IPPS), 1995.

Zhao, X., Martin, N.J. and Johnson, R.G., “PPS—A Parallel Partition Sort Algorithm
for Multiprocessor Database Systems”, Proceedings of DEXA Workshop, pp. 635–646,
2000.

CHAPTER 5: PARALLEL JOIN

Aguilar-Saborit, J., Muntés-Mulero, V., Zuzarte, C., and Larriba-Pey, J., “Ad Hoc Star
Join Query Processing in Cluster Architectures”, Proceedings of Data Warehousing and
Knowledge Discovery (DaWaK), pp. 200–209, 2005.

Alsabti, K., Ranka, S., and Singh, V., “An Efficient Parallel Algorithms for High Dimen-
sional Similarity Join”, Proceedings of the International Parallel Processing Sympo-
sium/Symposium on Parallel and Distributed Processing (IPPS/SPDP), pp. 556–560,
1998.

Bamha, M. and Exbrayat, M., “Pipelined parallelism for multi-join queries on shared noth-
ing machines”, Proceedings of Parallel Computing (PARCO), pp. 47–54, 2003.

Ben-Asher, Y., Berkovsky, S., Tammam, A., and Shmueli, E., “Using a J2EE Cluster for
Parallel Computation of Join Queries in Distributed Databases”, Proceedings of the Third
International Symposium on Parallel and Distributed Computing/the Third International
Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous
Networks (ISPDC/HeteroPar), pp. 58–63, 2004.

Chung, S.M. and Yang, J., “A Parallel Distributive Join Algorithm for Cube-Connected
Multiprocessors”, IEEE Trans. Parallel Distrib. Syst., 7(2):127–137, 1996.

Chung, S.M. and Chatterjee, A., “Adaptive Parallel Distributive Join Algorithm for Skewed
Data”, Proceedings of International Conference on Parallel and Distributed Systems
(ICPADS), pp. 15–22, 2001.

Chen, S.D., Shen, H., and Topor, R.W., “Efficient Parallel Permutation-Based Range-Join
Algorithms on Mesh-Connected Computers”, Proceedings of Asian Computing Science
Conference (ASIAN), pp. 225–238, 1995.

Chung, W., Park, S., and Bae, H., “Efficient Parallel Spatial Join Processing Method in
a Shared-Nothing Database Cluster System”, Proceedings of Int. Conf. on Embedded
Software and Systems (ICESS), pp. 81–87, 2004.

DeWitt, D.J., Naughton, J.F., Schneider, D.A., and Seshadri, S., “Practical Skew Handling
in Parallel Joins”, Proceedings of Very Large Data Bases (VLDB), pp. 27–40, 1992.

BIBLIOGRAPHY 519

Esquivel, J.A. and Chan, P., “An Algorithm for Resolving the Join Component Selection
Problem in Parallel Join Optimization”, Proceedings of International Symposium on Par-
allel Architectures, Algorithms and Networks (I-SPAN), pp. 45–50, 2002.

Harada, L. and Kitsuregawa, M., “Dynamic Join Product Skew Handling for Hash-Joins
in Shared-Nothing Database Systems”, Proceedings of Database Systems for Advanced
Applications (DASFAA), pp. 246–255, 1995.

Hua, K.A. and Lee, C., “Handling Data Skew in Multiprocessor Database Computers Using
Partition Tuning”, Proceedings of the 17th International Conference on Very Large Data
Bases (VLDB), Barcelona, pp. 525–535, 1991.

Hua, K.A., Lee, C., and Hua, C.M., “Dynamic Load Balancing in Multicomputer Database
Systems Using Partition Tuning”, IEEE Transactions on Knowledge and Data Engineer-
ing, 7(6):968–983, December 1995.

Jiang, Y. and Makinouchi, A., “A parallel hash-based join algorithm for a networked cluster
of multiprocessor nodes”, Proceedings of International Computer Software and Applica-
tions Conference (COMPSAC), pp. 678–, 1997.

Kang, M., Ko, S., Koh, K., and Choy, Y., “A Parallel Spatial Join Processing for Dis-
tributed Spatial Databases”, Proceedings of Flexible Query-Answering Systems (FQAS),
pp. 212–225, 2002.

Kim, J. and Hong, B., “Parallel Spatial Joins Using Grid Files”, Proceedings of Interna-
tional Conference on Parallel and Distributed Systems (ICPADS), pp. 531–536, 2000.

Kitsuregawa, M. and Ogawa, Y., “Bucket Spreading Parallel Hash: A New, Robust, Parallel
Hash Join Method for Data Skew in the Super Database Computer (SDC)”, Proceedings
of Very Large Data Bases (VLDB), pp. 210–221, 1990.

Kitsuregawa, M., Tsudaka, S., and Nakano, M., “Parallel GRACE Hash Join on
Shared-Everything Multiprocessor: Implementation and Performance Evaluation on
Symmetry S81”, Proceedings of International Conference on Data Engineering (ICDE),
pp. 256–264, 1992.

Lakshmi, M.S. and Yu, P.S., “Effectiveness of Parallel Joins”, IEEE Transactions of Knowl-
edge and Data Engineering, 2(4):410–424, December 1990.

Li, J., Sun, W., and Li, Y., “Parallel Join Algorithms based on Parallel B C -trees”, Pro-
ceedings of International Symposium on Cooperative Database Systems for Advanced
Applications (CODAS), pp. 197–204, 2001.

Li, W., Gao, D., and Snodgrass, R.T., “Skew handling techniques in sort-merge join”,
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 169–180, 2002.

Lifschitz, S. and Sá, M., “Competitive Online Comparison for Parallel Joins”, Proceedings
of Brazilian Symposium on Databases (SBBD), pp. 151–165, 2002.

Lima, A., Esperança, C., and Mattoso, M., “A Parallel Spatial Join Framework Using
PMR-Quadtrees”, Proceedings of DEXA Workshop, pp. 889–893, 2000.

Liu, B. and Rundensteiner, E.A., “Revisiting Pipelined Parallelism in Multi-Join Query
Processing”, Proceedings of Very Large Data Bases (VLDB), pp. 829–840, 2005.

Lu, H., Shan, M-C., and Tan, K-L., “Optimization of Multi-Way Join Queries for Parallel
Execution”, Proceedings of Very Large Data Bases (VLDB), pp. 549–560, 1991.

Luo, G., Naughton, J.F., and Ellmann, C., “A Non-Blocking Parallel Spatial Join
Algorithm”, Proceedings of International Conference on Data Engineering (ICDE),
pp. 697–705, 2002.

Luo, G., Naughton, J.F., Ellmann, C., and Watzke, M., “A Comparison of Three Methods for
Join View Maintenance in Parallel RDBMS”, Proceedings of International Conference
on Data Engineering (ICDE), pp. 177–188, 2003.

520 BIBLIOGRAPHY

Mishra, P. and Eich, M. H., “Join Processing in Relational Databases”, ACM Comput. Surv.,
24(1):63–113, 1992.

Mohammed, S. and Zhou, P.L., “Efficient Parallel Join Algorithms for Skewed Multidi-
mensional Data”, Proceedings of Parallel and Distributed Processing Techniques and
Applications (PDPTA), pp. 1103–1112, 2006.

Moon, A., Oh, K., and Cho, H., “Performance of Dynamic Load Balanced Join Algorithms
in Shared Disk Parallel Database Systems”, Proceedings of Future Trends of Distributed
Computer Systems (FTDCS), pp. 176–184, 1999.

Moon, A. and Cho, H., “Parallel Hash Join Algorithms for Dynamic Load Balancing in
a Shared Disks Cluster”, Proceedings of Computational Science and Its Applications
(ICCSA), pp. 214–223, 2006.

Nakano, M., Imai, H., and Kitsuregawa, M., “Performance Analysis of Parallel Hash Join
Algorithms on a Distributed Shared Memory Machine: Implementation and Evaluation
on HP Exemplar SPP 1600”, Proceedings of International Conference on Data Engineer-
ing (ICDE), pp. 76–85, 1998.

Patel, J.M. and DeWitt, D.J., “Clone join and shadow join: two parallel spatial join
algorithms”, Proceedings of ACM International Symposium on Advances in Geographic
Information Systems (ACM-GIS), pp. 54–61, 2000.

Schikuta, E., “Modeling and Analysis of a Parallel Nested Loop Join on Cluster Architec-
tures”, Proceedings of International Symposium on Parallel and Distributed Processing
and Applications (ISPA), pp. 33–38, 2005.

Schikuta, E., “Performance Analysis of a Parallel Sort Merge Join on Cluster Architec-
tures”, Proceedings of International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP), pp. 277–286, 2005.

Schneider, D. and DeWitt, D.J., “A Performance Evaluation of Four Parallel Join Algo-
rithms in a Shared-Nothing Multiprocessor Environment”, Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pp. 110–121, 1989.

Schneider, D.A. and DeWitt, D.J., “Tradeoffs in Processing Complex Join Queries via
Hashing in Multiprocessor Database Machines”, Proceedings of the 16th Very Large
Data Bases (VLDB) Conference, pp. 469–480, Brisbane, Australia, 1990.

Shum, C., “Parallel Implementations of Exclusion Joins”, Proceedings of Symposium on
Parallel and Distributed Processing (SPDP), pp. 742–747, 1993.

Walton, C.B. et al., “A Taxonomy and Performance Model of Data Skew Effects in Paral-
lel Joins”, Proceedings of the 17th International Conference on Very Large Data Bases
(VLDB), Barcelona, pp. 537–548, 1991.

Wilschut, A.N., Flokstra, J., and Apers, P.M.G., “Parallel Evaluation of Multi-Join Queries”,
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 115–126, 1995.

Wilschut, A.N., Flokstra, J., and Apers, P.M.G., “Parallel Evaluation of Multi-join Queries”,
Proceedings of Third International ACPC Conference with Special Emphasis on Parallel
Databases and Parallel I/O (ACPC), pp. 90–97, 1996.

Wolf, J.L. et al., “A Parallel Hash Join Algorithm for Managing Data Skew”, IEEE Trans-
actions on Parallel and Distributed Systems, 4(12):1355–1371, 1993.

Wolf, J.L., Dias, D.M., and Yu, P.S., “A Parallel Sort Merge Join Algorithm for Manag-
ing Data Skew”, IEEE Transactions on Parallel and Distributed Systems, 4(1):70–86,
1993.

BIBLIOGRAPHY 521

Zhang, X., Kurç, T.M., Pan, T., Çatalyürek, Ü.V., Narayanan, S., Wyckoff, P., and
Saltz, J.H., “Strategies for Using Additional Resources in Parallel Hash-Based Join
Algorithms”, Proceedings of IEEE International Symposium on High Performance
Distributed Computing (HPDC), pp. 4–13, 2004.

CHAPTER 6: PARALLEL GROUPBY-JOIN

Albrecht, J. and Sporer, W., “Aggregate-Based Query Processing in a Parallel Data Ware-
house Server”, Proceedings of DEXA Workshop, pp. 40–44, 1999.

Bhargava, G., Goel, P., and Iyer, B.R., “Efficient Processing of Outer Joins and Aggre-
gate Functions”, Proceedings of International Conference on Data Engineering (ICDE),
pp. 441–449, 1996.

Bultzingsloewen, G., “Translating and optimizing SQL queries having aggregate”, Proceed-
ings of the 13th International Conference on Very Large Data Bases, 1987.

Cohen, S., Nutt, W., and Serebrenik, A., “Algorithms for Rewriting Aggregate Queries
Using Views”, Proceedings of East-European Conference on Advances in Databases and
Information Systems Held Jointly with International Conference on Database Systems for
Advanced Applications (ADBIS-DASFAA), pp. 65–78, 2000.

Deutsch, A., Papakonstantinou, Y., and Xu, Y., “Minimization and Group-By Detection
for Nested XQueries”, Proceedings of International Conference on Data Engineering
(ICDE), pp. 839, 2004.

Dobra, A., “Histograms revisited: when are histograms the best approximation method
for aggregates over joins?”, Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pp. 228–237, 2005.

Ganguly, S., Garofalakis, M.N., Kumar, A., and Rastogi, R., “Join-distinct aggregate esti-
mation over update streams”, Proceedings of Symposium on Principles of Database
Systems (PODS), pp. 259–270, 2005.

Ganguly, S., Garofalakis, M.N., and Rastogi, R., “Processing Data-Stream Join Aggregates
Using Skimmed Sketches”, Proceedings of Extending Database Technology (EDBT),
pp. 569–586, 2004.

Gao, D., Gendrano, J.A.G., Moon, B., Snodgrass, R.T., Park, M., Huang, B.C., and
Rodrigue, J.M., “Main Memory-Based Algorithms for Efficient Parallel Aggregation for
Temporal Databases”, Distributed and Parallel Databases, 16(2):123–163, 2004.

Gray, P.M.D., “The “Group By” Operation in Relational Algebra”, Proceedings of the First
British National Conference on Databases (BNCOD), pp. 80–93, 1981.

Gray, J., Bosworth, A., Layman, A., and Pirahesh, H., “Data Cube: A Relational Aggrega-
tion Operator Generalizing Group-By, Cross-Tab, and Sub-Total”, Proceedings of Inter-
national Conference on Data Engineering (ICDE), pp. 152–159, 1996.

Hassan, M.A.H. and Bamha, M., “Parallel processing of “group-by join” queries on shared
nothing machines”, Proceedings of International Conference on Software and Data Tech-
nologies (ICSOFT), pp. 301–307, 2006.

Jiang, Z., Luo, C., Hou, W., Yan, F., and Zhu, Q., “Estimating Aggregate Join Queries over
Data Streams Using Discrete Cosine Transform”, Proceedings of Database and Expert
Systems Applications (DEXA), pp. 182–192, 2006.

Lee, Y., Loh, W., Moon, Y., Whang, K., and Song, I., “An Efficient Algorithm for Comput-
ing Range-Groupby Queries”, Proceedings of Database Systems for Advanced Applica-
tions (DASFAA), pp. 483–497, 2006.

522 BIBLIOGRAPHY

Li, H., Yu, H., Agrawal, D., and Abbadi, A.E., “Progressive Ranking of Range Aggregates”,
Proceedings of Data Warehousing and Knowledge Discovery (DaWaK), pp. 179–189,
2005.

Liang, W. and Orlowska, M.E., “Computing Multidimensional Aggregates in Parallel”,
Informatica (Slovenia), 24(1), 2000.

Liu, K. and Lochovsky, F.H., “Efficient Computation of Aggregate Structural Joins”, Pro-
ceedings of Web Information Systems Engineering (WISE), pp. 21–30, 2003.

Luo, G., Naughton, J.F., Ellmann, C., and Watzke, M., “Locking Protocols for Materialized
Aggregate Join Views”, Proceedings of Very Large Data Bases (VLDB), pp. 596–607,
2003.

Luo, G., Naughton, J.F., Ellmann, C.J. and Watzke, M., “Locking Protocols for Materialized
Aggregate Join Views”, IEEE Trans. Knowl. Data Eng., 17(6):796–807, 2005.

Kim, J., Kim, Y., Kim, S. and Ok, S., “An Efficient Processing of Queries with Joins and
Aggregate Functions in Data Warehousing Environment”, Proceedings of DEXA Work-
shops, pp. 785–794, 2002.

Kiviniemi, J., Wolski, A., Pesonen, A. and Arminen, J., “Lazy Aggregates for Real-Time
OLAP”, Proceedings of Data Warehousing and Knowledge Discovery (DaWaK),
pp. 165–172, 1999.

Mandawat, P. and Tsotras, V.J., “Indexing Schemes for Efficient Aggregate Computation
over Structural Joins”, Proceedings of International Workshop on the Web and Databases
(WebDB), pp. 55–60, 2005.

Muralikrishna, M., “Improved Unnesting Algorithms for Join Aggregate SQL Queries”,
Proceedings of Very Large Data Bases (VLDB), pp. 91–102, 1992.

Pourabbas, E. and Shoshani, A., “Answering Joint Queries from Multiple Aggregate OLAP
Databases”, Proceedings of Data Warehousing and Knowledge Discovery (DaWaK),
pp. 24–34, 2003.

Shatdal, A. and Naughton, J.F., “Adaptive Parallel Aggregation Algorithms”, Proceedings
of the ACM SIGMOD International Conference on Management of Data, pp. 104–114,
1995.

Spiliopoulou, M., Hatzopoulos, M. and Cotronis, Y., “Parallel Optimization of Large
Join Queries with Set Operators and Aggregates in a Parallel Environment Supporting
Pipeline”, IEEE Trans. Knowl. Data Eng, 8(3):429–445, 1996.

Wang, W., Li, J., Zhang, D. and Guo, L., “Processing Sliding Window Join Aggregate in
Continuous Queries over Data Streams”, Proceedings of Advances in Databases and
Information Systems (ADBIS), pp. 348–363, 2004.

Yan, W.P. and Larson, P., “Performing Group-By before Join”, Proceedings of International
Conference on Data Engineering (ICDE), pp. 89–100, 1994.

Yan, W.P., “Interchanging group-by and join in distributed query processing”, Proceedings
of the 1993 Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON), pp. 823–831, 1993.

CHAPTER 7: PARALLEL INDEXING

Achyutuni, K.J., Omiecinski, E., and Navathe, S.B., “Two Techniques for On-Line Index
Modification in Shared Nothing Parallel Databases”, Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 125–136, 1996.

Ali, M.H., Saad, A.A., and Ismail, M.A., “The PN-Tree: A Parallel and Distributed Multi-
dimensional Index”, Distributed and Parallel Databases, 17(2):111–133, 2005.

BIBLIOGRAPHY 523

An, J., Chen, H., Furuse, K., Ohbo, N., and Keogh, E.J., “Grid-Based Indexing for Large
Time Series Databases”, Proceedings of Intelligent Data Engineering and Automated
Learning (IDEAL), pp. 614–621, 2003.

Berchtold, S., Böhm, C., and Kriegel, H., “Improving the Query Performance of
High-Dimensional Index Structures by Bulk-Load Operations”, Proceedings of
Extending Database Technology (EDBT), pp. 216–230, 1998.

Bok, K.S., Seo, D.M., Song, S.I., Kim, M., and Yoo, J.S., “An Index Structure for Parallel
Processing of Multidimensional Data”, Proceedings of Web-Age Information Manage-
ment (WAIM), pp. 589–600, 2005.

Bok, K.S., Song, S.I., and Yoo, J.S., “Efficient k-Nearest Neighbor Searches for Parallel
Multidimensional Index Structures”, Proceedings of Database Systems for Advanced
Applications (DASFAA), pp. 870–879, 2006.

Cambazoglu, B.B., Catal, A., and Aykanat, C., “Effect of Inverted Index Partitioning
Schemes on Performance of Query Processing in Parallel Text Retrieval Systems”,
Proceedings of International Symposium on Computer and Information Sciences
(ISCIS), pp. 717–725, 2006.

Chang, J., Kim, Y., and Kim, Y., “Parallel High-Dimensional Index Structure Using
Cell-Based Filtering for Multimedia Data”, Proceedings of International Symposium on
Parallel and Distributed Processing and Applications (ISPA) Workshops, pp. 781–790,
2006.

Chen, W., Tseng, S., Chang, L., Hong, T., and Jiang, M., “A parallelized indexing method
for large-scale case-based reasoning”, Expert Syst. Appl., 23(2):95–102, 2002.

Cooper, B.F., Sample, N., and Shadmon, M., “A parallel index for semi-structured data”,
Proceedings of Symposium on Applied Computing (SAC), pp. 890–896, 2002.

Dehne, F., Eavis, T., and Rau-Chaplin, A., “Parallel Multi-Dimensional ROLAP Indexing”,
Proceedings of Cluster Computing and the Grid (CCGRID), 2003.

Ding, C.H.Q., “An Optimal Index Reshuffle Algorithm for Multidimensional Arrays
and Its Applications for Parallel Architectures”, IEEE Trans. Parallel Distrib. Syst.,
12(3):306–315, 2001.

Elmasri, R. and Navathe, S.B., Fundamentals of Database Systems, 5th edition,
Addison-Wesley, 2007.

Feelifl, H., Kitsuregawa, M., and Ooi, B.C., “A Fast Convergence Technique for Online
Heat-Balancing of B tree Indexed Database over Shared-Nothing Parallel Systems”, Pro-
ceedings of Database and Expert Systems Applications (DEXA), pp. 846–858, 2000.

Fu, X., Wang, D., and Zheng, W., “GPR-Tree: A Global Parallel Index Structure for Multi-
attribute Declustering on Cluster of Workstations”, Proceedings of Advances in Parallel
and Distributed Computing (APDC), pp. 300–306, 1997.

Honishi, T., Satoh, T., and Inoue, U., “An Index Structure for Parallel Database Processing”,
Proceedings of Research Issues on Data Engineering—Transaction and Query Process-
ing (RIDE-TQP), pp. 224–225, 1992.

Lee, C. and Chang, Z., “Utilizing Page-Level Join Index for Optimization in Parallel Join
Execution”, IEEE Trans. Knowl. Data Eng. 7(6):900–914, 1995.

Omiecinski, E. and Shonkwiler, R., “Parallel Join Processing Using Nonclustered Indexes
for a Shared Memory Multiprocessor”, Proceedings of Symposium on Parallel and Dis-
tributed Processing (SPDP), pp. 144–151, 1990.

Premchaiswadi, W., Premchaiswadi, N., and Patnasirivakin, T., Chimlek, S. and Narita, S.,
“Image Indexing Technique and Its Parallel Retrieval on PVM”, Proceedings of Digital
Image Computing: Techniques and Applications (DICTA), pp. 289–298, 2003.

524 BIBLIOGRAPHY

Ramakrishnan, R. and Gehrke, J., Database Management Systems, 2nd edition, McGraw
Hill, 2000.

Tsuji, T., Vreto, A., Higuchi, K., and Hochin, T., “A Two Dimensional Parallel Indexing
Scheme for Complex Objects”, I. J. Comput. Appl., 9(2):67–78, 2002.

CHAPTER 8: PARALLEL UNIVERSAL
QUANTIFICATION, OBJECT-ORIENTED AND
OBJECT-RELATIONAL DATABASES

Carvalho, S., Lerner, A., and Lifschitz, S., “An Object-Oriented Framework for the Parallel
Join Operation”, Proceedings of DEXA Workshop, pp. 34–38, 1999.

Fang, Q., Wang, G., Yu, G., Kaneko, K., and Makinouchi, A., “Design and Performance
Evaluation of Parallel Algorithms for Path Expressions in Object Database Systems
on NOW”, Proceedings of Database Applications in Non-Traditional Environments
(DANTE), pp. 395–402, 1999.

Graefe, G. and Cole, R.L., “Fast Algorithms for Universal Quantification in Large
Databases”, ACM Trans. Database Syst., 20(2):187–236, 1995.

Hahn, K., Reiner, B., and Höfling, G., “Parallel Query Support for Multidimensional Data:
Intra-object Parallelism”, Proceedings of Database and Expert Systems Applications
(DEXA), pp. 212–222, 2003.

Hahn, K., Reiner, B., Höfling, G., and Baumann, P., “Parallel Query Support for Multidi-
mensional Data: Inter-object Parallelism”, Proceedings of Database and Expert Systems
Applications (DEXA), pp. 820–830, 2002.

Horie, T., Ukon, T., Tsuji, T., and Higuchi, K., “An Efficient Parallel Retrieval for Complex
Object Index”, Proceedings of ICDE Workshops, 2005.

Hyun, S.J. and Su, S.Y.W., “Parallel Query Processing Strategies for Object-Oriented Tem-
poral Databases”, Proceedings of Conference on Parallel and Distributed Information
Systems (PDIS), pp. 232–245, 1996.

Jaedicke, M., New Concepts for Parallel Object-Relational Query Processing, Springer,
2001.

Kaczmarski, K., Habela, P., Kozankiewicz, H., Stencel, K., and Subieta, K., “Transparency
in Object-Oriented Grid Database Systems”, Proceedings of Parallel Processing and
Applied Mathematics (PPAM), pp. 675–682, 2005.

Khoshafian, S., Valduriez, P., and Copeland, G.P., “Parallel Query Processing for Complex
Objects”, Proceedings of the International Conference on Data Engineering (ICDE),
pp. 202–209, 1988.

Kim, K-C., “Parallelism in Object-Oriented Query Processing”, Proceedings of the Inter-
national Conference on Data Engineering, pp. 209–217, 1990.

Kuliberda, K., Wislicki, J., Adamus, R., and Subieta, K., “Object-Oriented Wrapper for
Relational Databases in the Data Grid Architecture”, Proceedings of OnTheMove (OTM)
Workshops, pp. 367–376, 2005.

Leung, C. and Taniar, D., “Parallel Query Processing in Object-Oriented Database Sys-
tems”. Proceedings of Australasian Database Conference, pp. 119–131, 1995.

Mendes, S.F. and Sampaio, P.R.F., “Rule-Based Parallel Query Optimization for
OQL Using a Parallelism Extraction Technique”, Proceedings of DEXA Workshop,
pp. 705–710, 1998.

Sampaio, S., Paton, N.W., Watson, P., and Smith, J., “A Parallel Algebra for Object
Databases”, Proceedings of DEXA Workshop, pp. 56–60, 1999.

BIBLIOGRAPHY 525

Sampaio, S., Smith, J., Paton, N.W., and Watson, P., “An Experimental Performance
Evaluation of Join Algorithms for Parallel Object Databases”, Proceedings of Euro-Par,
pp. 280–290, 2001.

Sampaio, S, Smith, J., Paton, N.W., and Watson, P., “Experimenting with Object Navigation
in Parallel Object Databases”, Proceedings of DEXA Workshop, pp. 103–109, 2001.

Smith, J., Watson, P., Sampaio, S., and Paton, N.W., “Polar: An Architecture for a Par-
allel ODMG Compliant Object Database”, Proceedings of International Conference on
Information and Knowledge Management (CIKM), pp. 352–359, 2000.

Taniar, D. and Rahayu, J.W. “Performance Analysis of Parallelization Models for Path
Expression Queries”, Inf. Sci. 117(1–2):107–142, 1999.

Wang, G., Yu, G., Kaneko, K., and Makinouchi, A., “Comparison of Parallel Algorithms for
Path Expression Query in Object Database Systems”, Proceedings of Database Systems
for Advanced Applications (DASFAA), pp. 250–258, 2001.

CHAPTER 9: PARALLEL AND GRID QUERY
OPTIMIZATION AND SCHEDULING

Andrade, H., Kurç, T.M., Sussman, A., and Saltz, J.H., “Active Proxy-G: optimizing the
query execution process in the grid”, Proceedings of Supercomputing (SC), pp. 1–15,
2002.

Andrade, H., Kurç, T.M., Sussman, A., and Saltz, J.H., “Scheduling Multiple Data Visual-
ization Query Workloads on a Shared Memory Machine”, Proceedings of International
Parallel and Distributed Processing Symposium (IPDPS), pp. 11–18, 2002.

Baboo, S.S., Subashini, P., and Easwarakumar, K.S., “Parallel Query Processing Using
Warp Edged Bushy Trees in Multimedia Databases”, Proceedings of International Con-
ference on Enterprise Information Systems (ICEIS), pp. 273–276, 2006.

Biscondi, N., Flory, A., and Brunie, L., “Parallel Databases: Structured Query Opti-
mization”, Proceeding of Advances in Databases and Information Systems (ADBIS),
pp. 146–152, 1996.

Bonneau, S. and Hameurlain, A., “Hybrid Simultaneous Scheduling and Mapping in SQL
Multi-query Parallelization”, Proceedings of Database and Expert Systems Applications
(DEXA), pp. 88–99, 1999.

Bültzingsloewen, G.v., “Optimizing SQL Queries for Parallel Execution”, SIGMOD
Records, 18(4):17–22, 1989.

Chekuri, C., Hasan, W., and Motwani, R., “Scheduling Problems in Parallel Query
Optimization”, Proceedings of Symposium on Principles of Database Systems (PODS),
pp. 255–265, 1995.

Chen, M., Yu, P.S., and Wu, K., “Scheduling and Processor Allocation for Parallel Execu-
tion of Multi-Join Queries”, Proceedings of International Conference on Data Engineer-
ing (ICDE), pp. 58–67, 1992.

Drews, F., Ecker, K.H., Kao, O., and Schomann, S., “A Stimulated Annealing Strategy
for Workload Balancing in Parallel Image Databases”, Proceedings of Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA), pp. 734–740, 2002.

Frieder, O. and Baru, C.K., “Site and Query Scheduling Policies in Multicomputer Database
Systems”, IEEE Trans. Knowl. Data Eng., 6(4):609–619, 1994.

Furtado, P., “Workload-Based Placement and Join Processing in Node-Partitioned Data
Warehouses”, Proceedings of Data Warehousing and Knowledge Discovery (DaWaK),
pp. 38–47, 2004.

526 BIBLIOGRAPHY

Gounaris, A., Paton, N.W., Sakellariou, R., and Fernandes, A., “Adaptive Query Process-
ing and the Grid: Opportunities and Challenges”, Proceedings of DEXA Workshops,
pp. 506–510, 2004.

Gounaris, A., Paton, N.W., Sakellariou, R., Fernandes, A., Smith, J., and Watson, P., “Prac-
tical Adaptation to Changing Resources in Grid Query Processing”, Proceedings of Inter-
national Conference on Data Engineering (ICDE), pp. 165–166, 2006.

Gounaris, A., Sakellariou, R., Paton, N.W., and Fernandes, A., “A novel approach to
resource scheduling for parallel query processing on computational grids”, Distributed
and Parallel Databases, 19(2–3):87–106, 2006.

Gounaris, A., Sakellariou, R., Paton, N.W., and Fernandes, A., “Resource Scheduling for
Parallel Query Processing on Computational Grids”, Proceedings of International Work-
shop on Grid Computing (GRID), pp. 396–401, 2004.

Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A., and Watson, P., “Adapt-
ing to Changing Resource Performance in Grid Query Processing”, Proceedings of Data
Management in Grids (DMG), pp. 30–44, 2005.

Graefe, G., “Encapsulation of Parallelism in the Volcano Query Processing System”.
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 102–111, 1990.

Graefe, G., “Query Evaluation Techniques for Large Databases”, ACM Computing Survey,
25(2), pp. 73–170, 1993.

Graefe, G. et al., “Extensible Query Optimization and Parallel Execution in Volcano”,
Query Processing For Advanced Database Systems, J.C. Freytag et al. (eds.), Morgan
Kaufmann, pp. 305–335, 1994.

Hameurlain, A. and Morvan, F., “CPU and incremental memory allocation in dynamic par-
allelization of SQL queries”, Parallel Computing, 28(4):525–556, 2002.

Hameurlain, A. and Morvan, F., “Invited Address: An Overview of Parallel Query Opti-
mization in Relational Systems”, Proceedings of Database and Expert Systems Applica-
tions DEXA Workshop, pp. 629–634, 2000.

Hameurlain, A. and Morvan, F., “A Parallel Scheduling Method for Efficient Query
Processing”, Proceedings of International Conference on Parallel Processing (ICPP),
pp. 258–262, 1993.

Hameurlain, A. and Morvan, F., “Exploiting Inter-Operation Parallelism for SQL Query
Optimization”, Proceedings of Database and Expert Systems Applications (DEXA),
pp. 759–768, 1994.

Hameurlain, A. and Morvan, F., “Scheduling and Mapping for Parallel Execution of
Extended SQL Queries”, Proceedings of International Conference on Information and
Knowledge Management (CIKM), pp. 197–204, 1995.

Heichler, J. and Keller, J., “A Distributed Query Structure to Explore Random Mappings
in Parallel”, Proceedings of the 14th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP’06), pp. 173–177, 2006.

Hong, W. and Stonebraker, M., “Optimization of Parallel Execution Plans in XPRS”, Pro-
ceedings of the First International Conference on Parallel and Distributed Information
Systems PDIS’91, Florida, pp. 218–225, 1991.

Hong, W. and Stonebraker, M., “Optimization of Parallel Query Execution Plans in XPRS”,
Distributed and Parallel Databases 1, pp. 9–32, 1993.

Hong, W., “Exploiting Inter-Operation Parallelism in XPRS”, Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pp. 19–28, 1992.

Langer, U.J. and Meyer, H., “Join Sequence Optimization in Parallel Query Plans”, Pro-
ceedings of DEXA Workshop, pp. 506–513, 1996.

BIBLIOGRAPHY 527

Li, J., Cai, Z. and Chen, S., “Multi-Weighted Tree Based Query Optimization Method
for Parallel Relational Database Systems”, Proceedings of International Symposium
on Cooperative Database Systems for Advanced Applications (CODAS), pp. 205–212,
2001.

Li, W., Altintas, K., and Kantarcioglu, M., “On demand synchronization and load distri-
bution for database grid-based Web applications”, Data Knowl. Eng., 51(3):295–323,
2004.

Lin, E.T., Omiecinski, E. and Yalamanchili, S., “Parallel Optimization and Execution
of Large Join Queries”, Proceedings of Fifth Generation Computer Systems (FGCS),
pp. 907–914, 1992.

Lu, H., Shan, M. and Tan, K., “Optimization of Multi-Way Join Queries for Parallel Execu-
tion”, Proceedings of Very Large Data Bases (VLDB), pp. 549–560, 1991.

Lu, H. and Tan, K-L., “Dynamic and Load-balanced Task-Oriented Database Query Pro-
cessing in Parallel Systems”, Proceedings of Extending Database Technology (EDBT),
pp. 357–372, 1992.

Mayr, T., Bonnet, P., Gehrke, J., and Seshadri, P., “Leveraging Non-Uniform Resources for
Parallel Query Processing”, Proceedings of Cluster Computing and the Grid (CCGRID),
2003.

Miranda, B., Lima, A.A.B., Valduriez, P., and Mattoso, M., “Apuama: Combining
Intra-query and Inter-query Parallelism in a Database Cluster”, Proceedings of
Extending Database Technology Extending Database Technology (EDBT) Workshops,
pp. 649–661, 2006.

Morvan, F. and Hameurlain, A., “Dynamic memory allocation strategies for parallel query
execution”, Proceedings of Symposium on Applied Computing (SAC), pp. 897–901,
2002.

Nafjan, K.A. and Kerridge, J.M., “Large Join Order Optimization on Parallel
Shared-Nothing Database Machines Using Genetic Algorithms”, Proceedings of
Euro-Par, pp. 1159–1163, 1997.

Rahm, E., “Parallel Query Processing in Shared Disk Database Systems”, Proceedings of
High Performance Transaction Systems (HPTS), 1993.

Silva, V.F.V.d., Dutra, M.L., Porto, F., Schulze, B., Barbosa, Á.C.P., and Oliveira, J.C.d.,
“An adaptive parallel query processing middleware for the Grid”, Concurrency and Com-
putation: Practice and Experience, 18(6):621–634, 2006.

Smith, J., Gounaris, A., Watson, P., Paton, N.W., Fernandes, A.A.A., and Sakellariou, R.,
“Distributed Query Processing on the Grid”, Proceedings of International Workshop on
Grid Computing (GRID), pp. 279–290, 2002.

Soe, K.M., Aung, T.N., Nwe, A.A., Naing, T.T., and Thein, N., “A Framework for Parallel
Query Processing on Grid-Based Architecture”, Proceedings of International Conference
on Enterprise Information Systems (ICEIS), pp. 203–208, 2005.

Sokolinsky, L.B., “Organization of Parallel Query Processing in Multiprocessor Database
Machines with Hierarchical Architecture”, Programming and Computer Software,
27(6):297–308, 2001.

Soleimany, C. and Dandamudi, S.P., “Distributed Parallel Query Processing on Networks of
Workstations”, Proceedings of the International Conference on High-Performance Com-
puting and Networking (HPCN) Europe, pp. 427–436, 2000.

Soleimany, C. and Dandamudi, S.P., “Performance of a distributed architecture for query
processing on workstation clusters”, Future Generation Comp. Syst., 19(4):463–478,
2003.

528 BIBLIOGRAPHY

Wolf, J.L. et al., “A Hierarchical Approach to Parallel Multiquery Scheduling”, IEEE Trans-
actions on Parallel and Distributed Systems, 6(6):578–589, 1995.

Woo, S. and Yang, S., “An improved network clustering method for I/O-efficient query pro-
cessing”, Proceedings of the ACM International Symposium on Advances in Geographic
Information System (ACM-GIS), pp. 62–68, 2000.

Wu, J., Chen, J., Hsueh, C., and Kuo, T., “Scheduling of Query Execution Plans in Sym-
metric Multiprocessor Database Systems”, Proceedings of International Parallel and
Distributed Processing Symposium (IPDPS), pp. 113–118, 2004.

Zheng, X., Chen, H., Wu, Z., and Mao, Y., “Dynamic Query Optimization Approach for
Semantic Database Grid”, J. Comput. Sci. Technol., 21(4):597–608, 2006.

Zheng, X., Chen, H., Wu, Z., and Mao, Y., “Query Optimization in Database Grid”, Pro-
ceedings of Grid and Cooperative Computing (GCC), pp. 486–497, 2005.

Ziane, M., Zaït, M., and Quang, H.H., “The Impact of Parallelism on Query Optimization”,
Proceedings of Workshop on Foundations of Models and Languages for Data and Objects
(FMLDO), pp. 127–138, 1993.

CHAPTERS 10, 11, 12: PARALLEL AND GRID
TRANSACTION PROCESSING

Bhalla, S. and Hasegawa, M., “Parallelizing Serializable Transactions Within Distributed
Real-Time Database Systems”, Proceedings of Embedded and Ubiquitous Computing
(EUC), pp. 203–213, 2005.

Bhalla, S. and Hasegawa, M., “Parallelizing serializable transactions using transaction clas-
sification in real-time database systems”, Proceedings of the 10th ISPE International
Conference on Concurrent Engineering (ISPE CE 2003), pp. 1051–1057, 2003.

Bhalla, S., “Parallel Concurrency Control Activity for Transaction Management in
Real-time Database Systems”, The Journal of Supercomputing, 28(3):345–369, 2004.

Brayner, A., “Lock Downgrading: An Approach to Increase Inter-transaction Parallelism in
Advanced Database Applications”, Proceedings of Database and Expert Systems Appli-
cations (DEXA), pp. 330–339, 2001.

Burger, A. and Thanisch, P., “Branching Transactions: A Transaction Model for Parallel
Database Systems”, Proceedings of British National Conference on Databases
(BNCOD), pp. 121–136, 1994.

Coghlan, B.A., Walsh, J., Quigley, G., O’Callaghan, D., Childs, S., and Kenny, E., “Prin-
ciples of Transactional Grid Deployment”, Proceedings of European Grid Conference
(EGC), pp. 88–97, 2005.

Colohan, C.B., Ailamaki, A., Steffan, J.G., and Mowry, T.C., “Optimistic Intra-Transaction
Parallelism on Chip Multiprocessors”, Proceedings of Very Large Data Bases (VLDB),
pp. 73–84, 2005.

Hammond, L., Carlstrom, B.D., Wong, V., Chen, M.K., Kozyrakis, C., and Olukotun, K.,
“Transactional Coherence and Consistency: Simplifying Parallel Hardware and Soft-
ware”, IEEE Micro, 24(6):92–103, 2004.

Hwang, J., Aravamudham, P., Liddy, E.D., Stanton, J., and MacInnes, I., “IRTL (Informa-
tion Resource Transaction Layer) Middleware Design for P2P and Open GRID Services”,
Proceedings of Hawaii International Conference on System Sciences (HICSS), pp. 218,
2003.

BIBLIOGRAPHY 529

Ibrahim, H., “Checking Integrity Constraints—How it Differs in Centralized, Distributed
and Parallel Databases”, Proceedings of DEXA Workshops, pp. 563–568, 2006.

Ibrahim, H., “Parallel Execution of Transaction and Integrity Rules for Maintaining
Database Integrity”, Proceedings of Parallel and Distributed Processing Techniques and
Applications (PDPTA), pp. 1809–1818, 2003.

Jiang, J., Yang, G., and Shi, M., “A Transaction Model for Service Grid Environment and
Implementation Considerations”, Proceedings of International Conference on Web Ser-
vices (ICWS), pp. 949–950, 2006.

Jiang, J., Yang, G., and Shi, M., “Towards a Transaction Model for Services in Grid Envi-
ronment”, Proceedings of Web Intelligence, pp. 625–628, 2006.

Kim, I.K. and Lee, J.S., “Resource Demand Prediction-Based Grid Resource Transaction
Network Model in Grid Computing Environment”, Proceedings of Computational Sci-
ence and Its Applications (ICCSA), pp. 1–9, 2006.

Kuo, T-W., Wu, J., and Hsih, H-C., “Real-Time Concurrency Control in Multiprocessor
Environment”, IEEE Transactions on Parallel and Distributed Systems, 13(6):659–671,
2002.

Lang, F. and Bodendorf, F., “Agent Based Transaction Support in Commercial Grid”,
Proceedings of Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS), pp. 88,
2005.

Leymann, F. and Güntzel, K., “The Business Grid: Providing Transactional Business Pro-
cesses via Grid Services”, Proceedings of International Conference on Service Oriented
Computing (ICSOC), pp. 256–270, 2003.

Li, J., Wang, J., and Kameda, H., “Performance Studies of Shared-Nothing Parallel Trans-
action Processing Systems”, Proceedings of Parallel Computing Technologies (PaCT),
pp. 235–247, 1999.

Liu, B., Chen, S., and Rundensteiner, E.A., “A Transactional Approach to Parallel Data
Warehouse Maintenance”, Proceedings of Data Warehousing and Knowledge Discovery
(DaWaK), pp. 307–316, 2002.

Machado, J. and Collet, C., “A Parallel Execution Model for Database Transactions”,
Proceedings of Database Systems for Advanced Applications (DASFAA), pp. 511–520,
1997.

Pan, Y. and Lu, Y., “A Study on Parallel Real-Time Transaction Scheduling”, Proceedings
of the Fourth International Conference on Computer and Information Technology (CIT),
pp. 701–706, 2004.

Qi, Z., Fu, C., Shi, D., You, J., and Li, M., “Membrane Calculus: A Formal Method for
Grid Transactions”, Proceedings of Grid and Cooperative Computing (GCC), pp. 73–80,
2004.

Qi, Z., Li, M., Fu, C., Shi, D., and You, J., “Membrane Calculus: a Formal Method
for Grid transactions”, Concurrency and Computation: Practice and Experience,
18(14):1799–1809, 2006.

Qi, Z., Xie, X., Zhang, B., and You, J., “Integrating X/Open DTP into Grid Services for Grid
Transaction Processing”, Proceedings of Future Trends of Distributed Computer Systems
(FTDCS), pp. 128–134, 2004.

Qi, Z., You, J., Jin, Y., and Tang, F., “GridTP Services for Grid Transaction Processing”,
Proceedings of Grid and Cooperative Computing (GCC), pp. 891–894, 2003.

530 BIBLIOGRAPHY

Salvadores, M., Herrero, P., Pérez, M.S., and Robles, V., “DCP-Grid, a Framework for
Conversational Distributed Transactions on Grid Environments”, Proceedings of Inter-
national Conference on Computational Science, pp. 171–178, 2005.

Tang, F., Li, M., and Cao, J., “A Transaction Model for Grid Computing”, Proceedings of
Advanced Parallel Programming Technologies (APPT), pp. 382–386, 2003.

Tang, F., Li, M., and Huang, J.Z., “Automatic Transaction Compensation for Reliable Grid
Applications”, J. Comput. Sci. Technol., 21(4):529–536, 2006.

Tang, F., Li, M., Cao, J., and Deng, Q., “Coordinating Business Transaction for Grid Ser-
vice”, Proceedings of Grid and Cooperative Computing (GCC), pp. 108–114, 2003.

Tang, F., Li, M., Huang, J.Z., Cao, L., and Wang, Y., “A Real-Time Transaction Approach
for Grid Services: A Model and Algorithms”, Proceedings of Network and Parallel Com-
puting (NPC), pp. 57–64, 2004.

Tang, F., Li, M., Huang, J.Z., Wang, C., and Luo, Z., “Petri-Net-Based Coordination Algo-
rithms for Grid Transactions”, Proceedings of International Symposium on Parallel and
Distributed Processing and Applications (ISPA), pp. 499–508, 2004.

Türker, C., Haller, K., Schuler, C., and Schek, H., “How can we support Grid Transactions?
Towards Peer-to-Peer Transaction Processing”, Proceedings of Conference on Innovative
Data Systems Research (CIDR), pp. 174–185, 2005.

Wang, J., Li, J., and Kameda, H., “Scheduling Algorithms for Parallel Transaction Process-
ing Systems”, Proceedings of Parallel Computing Technologies (PaCT), pp. 283–297,
1997.

Wang, J., Li, J., and Kameda, H., “Simulation Studies on Concurrency Control in Parallel
Transaction Processing Systems”, Parallel Computing, 23(6):755–775, 1997.

Wang, J., Miyazaki, M., Kameda, H., and Li, J., “Improving Performance of Parallel Trans-
action Processing Systems by Balancing Data Load on Line”, Proceedings of Interna-
tional Conference on Parallel and Distributed Systems (ICPADS), pp. 331–338, 2000.

Weikum, G. and Hasse, C., “Multi-Level Transaction Management for Complex Objects:
Implementation, Performance, Parallelism”, VLDB J., 2(4):407–453, 1993.

Yali, Z., Hong, L., and Yonghua, W., “A Transaction Model and Implementation Based on
Message Exchange for Grid Computing”, Proceedings of Web Information Systems and
Technologies (WEBIST), pp. 225–228, 2006.

Yu, J., Li, M., Tang, F., Li, Y., and Hong, F., “A Framework for Implementing Transactions
on Grid Services”, Proceedings of International Conference on Computer and Informa-
tion Technology (CIT), pp. 375–379, 2004.

CHAPTERS 13 AND 14: GRID DATA REPLICATION

Carman, M., Zini, F., Serafini, L., and Stockinger, K., “Towards an Economy-Based Optimi-
sation of File Access and Replication on a Data Grid”, Proceedings of Cluster Computing
and the Grid (CCGRID), pp. 340–345, 2002.

Chakrabarti, A., Dheepak, R.A., and Sengupta, S., “Integration of Scheduling and Replica-
tion in Data Grids”, Proceedings of High Performance Computing (HiPC), pp. 375–385,
2004.

Chen, C. and Cheng, C.T., “Replication and retrieval strategies of multidimensional data on
parallel disks”, Proceedings of International Conference on Information and Knowledge
Management (CIKM), pp. 32–39, 2003.

BIBLIOGRAPHY 531

Coulon, C., Pacitti, E., and Valduriez, P., “Consistency Management for Partial Replication
in a High Performance Database Cluster”, Proceedings of International Conference on
Parallel and Distributed Systems (ICPADS), pp. 809–815, 2005.

Dullmann, D., Hosckek, W., Jaen-Martinez, J., Segal, B., Samar, A., Stockinger, H.,
and Stockinger, K., “Models for Replica Synchronisation and Consistency in a Data
Grid”, Proceedings of 10th IEEE International Symposium on High Performance and
Distributed Computing (HPDC), pp. 67–75, August 2001.

Honicky, R.J. and Miller, E.L., “A Fast Algorithm for Online Placement and Reorganization
of Replicated Data”, Proceedings of International Parallel and Distributed Processing
Symposium (IPDPS), pp. 57, 2003.

Huang, C., Xu, F., and Hu, X., “Massive Data Oriented Replication Algorithms for Consis-
tency Maintenance in Data Grids”, Proceedings of International Conference on Compu-
tational Science, pp. 838–841, 2006.

Lamehamedi, H., Shentu, Z., Szymanski, B.K., and Deelman, E., “Simulation of Dynamic
Data Replication Strategies in Data Grids”, Proceedings of International Parallel and
Distributed Processing Symposium (IPDPS), pp. 100, 2003.

Lei, M. and Vrbsky, S.V., “A Data Replication Strategy to Increase Data Availability in Data
Grids”, Proceedings of the International Conference on Grid Computing & Applications
(GCA), pp. 221–227, 2006.

Lin, Y., Liu, P., and Wu, J., “Optimal Placement of Replicas in Data Grid Environments
with Locality Assurance”, Proceedings of International Conference on Parallel and Dis-
tributed Systems (ICPADS), pp. 465–474, 2006.

Liu, P. and Wu, J., “Optimal Replica Placement Strategy for Hierarchical Data Grid Sys-
tems”, Proceedings of Cluster Computing and the Grid (CCGRID), pp. 417–420, 2006.

Park, S., Kim, J., Ko, Y., and Yoon, W., “Dynamic Data Grid Replication Strategy Based
on Internet Hierarchy”, Proceedings of Grid and Cooperative Computing (GCC),
pp. 838–846, 2003.

Rahman, R.M., Barker, K., and Alhajj, R., “Replica Placement in Data Grid: A
Multi-objective Approach”, Proceedings of Grid and Cooperative Computing (GCC),
pp. 645–656, 2005.

Ranganathan, K. and Foster, I.T., “Identifying Dynamic Replication Strategies for
a High-Performance Data Grid”, Proceedings of International Workshop on Grid
Computing (GRID), pp. 75–86, 2001.

Sithole, E., Parr, G.P., and McClean, S.I., “Data grid performance analysis through study
of replication and storage infrastructure parameters”, Proceedings of Cluster Computing
and the Grid (CCGRID), pp. 293–300, 2005.

Stockinger, H., Samar, A., Holtman, K., Allcock, W.E., Foster, I.T., and Tierney, B., “File
and Object Replication in Data Grids”, Proceedings of IEEE International Symposium
on High Performance Distributed Computing (HPDC), pp. 76–86, 2001.

Tang, M., Lee, B., Tang, X., and Yeo, C.K., “Combining Data Replication Algorithms and
Job Scheduling Heuristics in the Data Grid”, Proceedings of Euro-Par, pp. 381–390,
2005.

Tao, J. and Williams, J., “Concurrency Control and Data Replication Strategies for
Large-scale and Wide-distributed Databases”, Proceedings of Database Systems for
Advanced Applications (DASFAA), 2001.

Vazhkudai, S., Tuecke, S., and Foster, I., “Replica Selection in the Globus Data Grid”,
Proceedings of the 1st IEEE/ACM International Conference on Cluster Computing and
the Grid (CCGrid), pp. 106–113, May 2001.

532 BIBLIOGRAPHY

You, X., Chang, G., Chen, X., Tian, C., and Zhu, C., “Utility-Based Replication Strategies
in Data Grids”, Proceedings of Grid and Cooperative Computing (GCC), pp. 500–507,
2006.

CHAPTER 15: PARALLEL OLAP AND BUSINESS
INTELLIGENCE

Akal, F., Böhm, K., and Schek, H., “OLAP Query Evaluation in a Database Cluster: A
Performance Study on Intra-Query Parallelism”, Proceedings of Advances in Databases
and Information Systems (ADBIS), pp. 218–231, 2002.

Azharul Hasan, K.M., Tsuji, T., and Higuchi, K., “A Parallel Implementation Scheme of
Relational Tables Based on Multidimensional Extendible Array”, International Journal
of Data Warehousing and Mining, 2(4):66–85, 2006.

Chen, Y., Dehne, F., Eavis, T., and Rau-Chaplin, A., “Building Large ROLAP Data Cubes
in Parallel”, Proceedings of International Database Engineering and Application Sym-
posium (IDEAS), pp. 367–377, 2004.

Chen, Y., Dehne, F., Eavis, T., and Rau-Chaplin, A., “Improved data partitioning for build-
ing large ROLAP data cubes in parallel”, Journal of Data Warehousing and Mining,
2(1):1–26, 2006.

Chen, Y., Dehne, F., Eavis, T., and Rau-Chaplin, A., “Parallel ROLAP Data Cube Con-
struction On Shared-Nothing Multiprocessors”, Proceedings of International Parallel
and Distributed Processing Symposium (IPDPS), pp. 70, 2003.

Chen, Y., Dehne, F., Eavis, T., and Rau-Chaplin, A., “Parallel ROLAP Data Cube
Construction on Shared-Nothing Multiprocessors”, Distributed and Parallel Databases,
15(3):219–236, 2004.

Chen, Y., Dehne, F., Eavis, T., and Rau-Chaplin, A., “PnP: Parallel And External Memory
Iceberg Cubes”, Proceedings of International Conference on Data Engineering (ICDE),
pp. 576–577, 2005.

Chen, Y., Rau-Chaplin, A., Dehne, F., Eavis, T., Green, D., and Sithirasenan, E., “cgmO-
LAP: Efficient Parallel Generation and Querying of Terabyte Size ROLAP Data Cubes”,
Proceedings of International Conference on Data Engineering (ICDE), pp. 164–165,
2006.

Codd, E. F. “An evaluation scheme for database management systems that are claimed to
be relational”, Proceedings of International Conference on Data Engineering (ICDE),
pp. 720–729, 1986.

Codd, E.F. et. al. “Providing OLAP to User-Analysts: An IT Mandate”, http://dev.hyperion.
com/resource library/white papers/providing olap to user analysts.pdf, 1993.

Datta, A., VanderMeer, D.E., and Ramamritham, K., “Parallel Star Join C DataIndexes:
Efficient Query Processing in Data Warehouses and OLAP”, IEEE Trans. Knowl. Data
Eng., 14(6):1299–1316, 2002.

Dehne, F., Eavis, T., and Rau-Chaplin, A., “A Cluster Architecture for Parallel Data Ware-
housing”, Proceedings of Cluster Computing and the Grid (CCGRID), pp. 161–168,
2001.

Dehne, F., Eavis, T., and Rau-Chaplin, A., “Coarse Grained Parallel On-Line Analytical
Processing (OLAP) for Data Mining”, Proceedings of International Conference on Com-
putational Science, pp. 589–598, 2001.

Dehne, F., Eavis, T., and Rau-Chaplin, A., “Computing Partial Data Cubes for Parallel Data
Warehousing Applications”, Proceedings of the 8th European PVM/MPI Users’ Group

BIBLIOGRAPHY 533

Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface,
pp. 319–326, 2001.

Dehne, F., Eavis, T., and Rau-Chaplin, A., “Parallel querying of ROLAP cubes in the pres-
ence of hierarchies”, Proceedings of International Workshop on Data Warehousing and
OLAP (DOLAP), pp. 89–96, 2005.

Dehne, F., Eavis, T., and Rau-Chaplin, A., “The cgmCUBE project: Optimizing parallel
data cube generation for ROLAP”, Distributed and Parallel Databases, 19(1):29–62,
2006.

Dehne, F., Eavis, T., Hambrusch, S.E., and Rau-Chaplin, A., “Parallelizing the Data Cube”,
Distributed and Parallel Databases, 11(2):181–201, 2002.

Dehne, F., Eavis, T., Hambrusch, S.E., and Rau-Chaplin, A., “Parallelizing the Data Cube”,
Proceedings of International Conference on Database Theory (ICDT), pp. 129–143,
2001.

Fiser, B., Onan, U., Elsayed, I., Brezany, P., and Tjoa, A.M., “On-Line Analytical Pro-
cessing on Large Databases Managed by Computational Grids”, Proceedings of DEXA
Workshops, pp. 556–560, 2004.

Gao, H. and Li, J., “Parallel Data Cube Storage Structure for Range Sum Queries and
Dynamic Updates”, J. Comput. Sci. Technol., 20(3):345–356, 2005.

Gorawski, M. and Chechelski, R., “Parallel Telemetric Data Warehouse Balancing Algo-
rithm”, Proceedings of the 5th International Conference on Intelligent Systems Design
and Applications (ISDA), pp. 387–392, 2005.

Gorawski, M. and Marks, P., “Resumption of Data Extraction Process in Parallel Data
Warehouses”, Proceedings of Parallel Processing and Applied Mathematics (PPAM),
pp. 478–485, 2005.

Gorawski, M. and Stachurski, K., “On Efficiency and Data Privacy Level of Association
Rules Mining Algorithms within Parallel Spatial Data Warehouse”, Proceedings of
the First International Conference on Availability, Reliability and Security (ARES),
pp. 936–943, 2006.

Hallmark, G., “Oracle Parallel Warehouse Server”, Proceedings of International Confer-
ence on Data Engineering (ICDE), pp. 314–320, 1997.

Hu, K., Ling, C., Jie, S., Qi, G., and Tang, X., “Computing High Dimensional MOLAP
with Parallel Shell Mini-cubes”, Proceedings of Fuzzy Systems and Knowledge Discovery
(FSKD), pp. 1192–1196, 2005.

Jin, R., Vaidyanathan, K., Yang, G., and Agrawal, G., “Communication and Memory
Optimal Parallel Data Cube Construction”, IEEE Trans. Parallel Distrib. Syst.,
16(12):1105–1119, 2005.

Jin, R., Vaidyanathan, K., Yang, G., and Agrawal, G., “Using Tiling to Scale Parallel Data
Cube Construction”, Proceedings of International Conference on Parallel Processing
(ICPP), pp. 365–372, 2004.

Jin, R., Yang, G., and Agrawal, G., “Parallel Data Cube Construction: Algorithms, Theo-
retical Analysis, and Experimental Evaluation”, Proceedings of High Performance Com-
puting (HiPC), pp. 74–84, 2003.

Jin, R., Yang, G., Vaidyanathan, K., and Agrawal, G., “Communication and Memory Opti-
mal Parallel Data Cube Construction”, Proceedings of International Conference on Par-
allel Processing (ICPP), pp. 573–580, 2003.

Kim, J., Lee, B.S., Moon, Y., Ok, S., and Lee, W., “Parallel Consistency Maintenance of
Materialized Views Using Referential Integrity Constraints in Data Warehouses”, Pro-
ceedings of Data Warehousing and Knowledge Discovery (DaWaK), pp. 146–156, 2005.

534 BIBLIOGRAPHY

Lawrence, M. and Rau-Chaplin, A., “The OLAP-Enabled Grid: Model and Query Pro-
cessing Algorithms”, Proceedings of International Symposium on High Performance
Computing Systems (HPCS), pp. 4, 2006.

Li, J. and Gao, H., “Parallel Hierarchical Data Cube for Range Sum Queries and
Dynamic Updates”, Proceedings of Database and Expert Systems Applications (DEXA),
pp. 339–348, 2004.

Lima, A., Mattoso, M., and Valduriez, P., “OLAP Query Processing in a Database Cluster”,
Proceedings of Euro-Par, pp. 355–362, 2004.

Liu, B., Chen, S., and Rundensteiner, E.A., “A Transactional Approach to Parallel Data
Warehouse Maintenance”, Proceedings of Data Warehousing and Knowledge Discovery
(DaWaK), pp. 307–316, 2002.

Lu, H., Yu, J.X., Feng, L., and Li, Z., “Fully Dynamic Partitioning: Handling Data Skew in
Parallel Data Cube Computation”, Distributed and Parallel Databases, 13(2):181–202,
2003.

Märtens, H., Rahm, E., and Stöhr, T., “Dynamic query scheduling in parallel
data warehouses”, Concurrency and Computation: Practice and Experience,
15(11–12):1169–1190, 2003.

Märtens, H., Rahm, E., and Stöhr, T., “Dynamic Query Scheduling in Parallel Data Ware-
houses”, Proceedings of Euro-Par, pp. 321–331, 2002.

Monteiro, A.M.C. and Furtado, P., “Data Skew-Handling in Parallel MDIM Data Ware-
houses”, Proceedings of Databases and Applications, pp. 157–162, 2005.

Nguyen, T. M., Brezany, P., Tjoa, A. M., and Weippl, E., “Toward a Grid-Based
Zero-Latency Data Warehousing Implementation for Continuous Data Streams
Processing”, International Journal of Data Warehousing and Mining, 1(4):22–55,
2005.

Saeki, S., Bhalla, S., and Hasegawa, M., “Parallel Generation of Base Relation Snapshots
for Materialized View Maintenance in Data Warehouse Environment”, Proceedings
of the 2002 International Conference on Parallel Processing Workshops (ICPPW),
pp. 383–390, 2002.

CHAPTERS 16 AND 17: PARALLEL AND GRID DATA
MINING

Brezany, P., Kloner, C., and Tjoa, A.M., “Development of a Grid Service for Scalable Deci-
sion Tree Construction from Grid Databases”, Proceedings of Parallel Processing and
Applied Mathematics (PPAM), pp. 616–624, 2005.

Christen, P., Hegland, M., Nielsen, O.M., Roberts, S., Strazdins, P.E., Semenova, T., Altas,
I., and Hancock, T., “Towards a Parallel Data Mining Toolbox”, Proceedings of Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pp. 156, 2001.

Chung, S.M. and Mangamuri, M., “Mining Association Rules from Relations on a Parallel
NCR Teradata Database System”, Proceedings of Information Technology: Coding and
Computing (ITCC), pp. 465–470, 2004.

Chung, S.M. and Mangamuri, M., “Mining Association Rules from the Star Schema on a
Parallel NCR Teradata Database System”, Proceedings of Information Technology: Cod-
ing and Computing (ITCC), pp. 206–212, 2005.

Cong, S., Han, J., and Padua, D.A., “Parallel mining of closed sequential patterns”, Pro-
ceedings of Knowledge Discovery and Data Mining (KDD), pp. 562–567, 2005.

BIBLIOGRAPHY 535

Congiusta, A., Talia, D., and Trunfio, P., “Parallel and Grid-Based Data Mining - Algo-
rithms, Models and Systems for High-Performance KDD”, Proceedings of the Data
Mining and Knowledge Discovery Handbook, pp. 1017–1041, 2005.

Dehne, F., Eavis, T., and Rau-Chaplin, A., “Coarse Grained Parallel On-Line Analytical
Processing (OLAP) for Data Mining”, Proceedings of International Conference on Com-
putational Science, pp. 589–598, 2001.

Demiriz, A., “webSPADE: A Parallel Sequence Mining Algorithm to Analyze Web
Log Data”, Proceedings of IEEE International Conference on Data Mining (ICDM),
pp. 755–758, 2002.

Eitrich, T. and Lang, B., “Data Mining with Parallel Support Vector Machines for Classifi-
cation”, Proceedings of Advances in Information Systems (ADVIS), pp. 197–206, 2006.

El-Hajj, M. and Zaïane, O.R., “Parallel Association Rule Mining with Minimum
Inter-Processor Communication”, Proceedings of DEXA Workshops, pp. 519–523,
2003.

El-Hajj, M. and Zaïane, O.R., “Parallel Leap: Large-Scale Maximal Pattern Mining in a
Distributed Environment”, Proceedings of International Conference on Parallel and Dis-
tributed Systems (ICPADS), pp. 135–142, 2006.

Fiolet, V. and Toursel, B., “Progressive Clustering for Database Distribution on a Grid”,
Proceedings of the 4th International Symposium on Parallel and Distributed Computing
(ISPDC), pp. 282–289, 2005.

Foti, D., Lipari, D., Pizzuti, C., and Talia, D., “Scalable Parallel Clustering for Data Min-
ing on Multicomputers”, Proceedings of the 15 IPDPS 2000 Workshops on Parallel and
Distributed Processing, pp. 390–398, 2000.

Garcke, J. and Griebel, M., “On the Parallelization of the Sparse Grid Approach for Data
Mining”, Proceedings of Large-Scale Scientific Computing (LSSC), pp. 22–32, 2001.

Glimcher, L., Zhang, X., and Agrawal, G., “Scaling and Parallelizing a Scientific Feature
Mining Application Using a Cluster Middleware”, Proceedings of International Parallel
and Distributed Processing Symposium (IPDPS), 2004.

Goda, K., Tamura, T., Oguchi, M., and Kitsuregawa, M., “Run-Time Load Balancing Sys-
tem on SAN-connected PC Cluster for Dynamic Injection of CPU and Disk Resource - A
Case Study of Data Mining Application”, Proceedings of Database and Expert Systems
Applications (DEXA), pp. 182–192, 2002.

Gorawski, M. and Stachurski, K., “On Efficiency and Data Privacy Level of Association
Rules Mining Algorithms within Parallel Spatial Data Warehouse”, Proceedings of
the First International Conference on Availability, Reliability and Security (ARES),
pp. 936–943, 2006.

Guralnik, V., Garg, N., and Karypis, G., “Parallel Tree Projection Algorithm for Sequence
Mining”, Proceedings of Euro-Par, pp. 310–320, 2001.

Holt, J.D. and Chung, S.M., “Parallel Mining of Association Rules from Text Databases
on a Cluster of Workstations”, Proceedings of International Parallel and Distributed
Processing Symposium (IPDPS), 2004.

Inoue, H. and Narihisa, H., “Parallel and Distributed Mining with Ensemble
Self-Generating Neural Networks”, Proceedings of International Conference on
Parallel and Distributed Systems (ICPADS), pp. 423–428, 2001.

Ishikawa, H., Shioya, Y., Omi, T., Ohta, M., and Katayama, K., “A Peer-to-Peer Approach
to Parallel Association Rule Mining”, Proceedings of Knowledge-Based Intelligent Infor-
mation & Engineering Systems (KES), pp. 178–188, 2004.

Jin, D. and Ziavras, S.G., “A Super-Programming Approach for Mining Association Rules
in Parallel on PC Clusters”, IEEE Trans. Parallel Distrib. Syst., 15(9):783–794, 2004.

536 BIBLIOGRAPHY

Jin, R. and Agrawal, G., “Shared Memory Parallelization of Decision Tree Construction
Using a General Data Mining Middleware”, Proceedings of Euro-Par, pp. 346–354,
2002.

Jinlan, T., et al., “Parallelism of Association Rules Mining and Its Application in Insur-
ance Operations”, Proceedings of International Conference on Computational Science,
pp. 907–914, 2004.

Kim, H.S., Gao, S., Xia, Y., Kim, G.B., and Bae, H., “DGCL: An Efficient Density and
Grid Based Clustering Algorithm for Large Spatial Database”, Proceedings of Web-Age
Information Management (WAIM), pp. 362–371, 2006.

Kitsuregawa, M. and Pramudiono, I., “PC Cluster Based Parallel Frequent Pattern Min-
ing and Parallel Web Access Pattern Mining”, Proceedings of Databases in Networked
Information Systems (DNIS), pp. 172–176, 2003.

Kitsuregawa, M., Pramudiono, I., Takahashi, K., and Prasetyo, B., “Web Mining Is Paral-
lel”, Proceedings of High Performance Computing (HiPC), pp. 385–398, 2001.

Kitsuregawa, M., Shintani, T., Yoshizawa, T., and Pramudiono, I., “Web Log Mining and
Parallel SQL Based Execution”, Proceedings of Databases in Networked Information
Systems (DNIS), pp. 20–32, 2000.

Kuntraruk, J. and Pottenger, W.M., “Massively Parallel Distributed Feature Extraction in
Textual Data Mining Using HDDI(tm)”, Proceedings of IEEE International Symposium
on High Performance Distributed Computing (HPDC), pp. 363–370, 2001.

Leung, C.K., “Efficient Parallel Mining of Constrained Frequent Patterns”, Proceedings of
International Symposium on High Performance Computing Systems (HPCS), pp. 73–82,
2004.

Li, E., Li, W., Wang, T., Di, N., Dulong, C., and Zhang, Y., “Towards the Parallelization of
Shot Detection—a Typical Video Mining Application Study”, Proceedings of Interna-
tional Conference on Parallel Processing (ICPP), pp. 585–592, 2006.

Li, T. and Bollinger, T., “Distributed and Parallel Data Mining on the Grid”, Proceed-
ings of International Conference Architecture of Computing Systems (ARCS) Workshops,
pp. 370–379, 2004.

Li, X., Jin, R., and Agrawal, G., “Compiler and Runtime Support for Shared Memory Par-
allelization of Data Mining Algorithms”, Proceedings of Languages and Compilers for
Parallel Computing (LCPC), pp. 265–279, 2002.

Liu, Z., Kamohara, S., and Guo, M., “A Scheme of Interactive Data Mining Support System
in Parallel and Distributed Environment”, Proceedings of International Symposium on
Parallel and Distributed Processing and Applications (ISPA), pp. 263–272, 2003.

Ma, C. and Li, Q., “Parallel Algorithm for Mining Frequent Closed Sequences”, Proceed-
ings of International Workshop on Autonomous Intelligent Systems: Agents and Data
Mining (AIS-ADM), pp. 184–192, 2005.

Melab, N. and Talbi, E., “A Parallel Genetic Algorithm for Rule Mining”, Proceedings of
International Parallel and Distributed Processing Symposium (IPDPS), p. 133, 2001.

Melab, N., Cahon, S., Talbi, E., and Duponchel, L., “Parallel GA-Based Wrapper Feature
Selection for Spectroscopic Data Mining”, Proceedings of International Parallel and
Distributed Processing Symposium (IPDPS), pp. 201–208, 2002.

Oguchi, M. and Kitsuregawa, M., “Optimizing transport protocol parameters for large scale
PC cluster and its evaluation with parallel data mining”, Cluster Computing, 3(1):15–23,
2000.

Oguchi, M. and Kitsuregawa, M., “Parallel Data Mining on ATM-Connected PC Cluster
and Optimization of Its Execution Environments”, Proceedings of International Parallel
and Distributed Processing Symposium (IPDPS) Workshops, pp. 366–373, 2000.

BIBLIOGRAPHY 537

Oguchi, M. and Kitsuregawa, M., “Using Available Remote Memory Dynamically for
Parallel Data Mining Application on ATM-Connected PC Cluster”, Proceedings of Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pp. 411–420, 2000.

Parthasarathy, S., Zaki, M.J., and Li, W., “Memory Placement Techniques for Parallel
Association Mining”, Proceedings of Knowledge Discovery and Data Mining (KDD),
pp. 304–308, 1998.

Parthasarathy, S., Zaki, M.J., Ogihara, M., and Li, W., “Parallel Data Mining for Association
Rules on Shared-Memory Systems”, Knowl. Inf. Syst. 3(1):1–29, 2001.

Pramudiono, I. and Kitsuregawa, M., “Parallel Web Access Pattern Mining on PC Cluster”,
Proceedings of International Conference on Internet Computing, pp. 70–76, 2003.

Pramudiono, I. and Kitsuregawa, M., “Tree Structure Based Parallel Frequent Pattern Min-
ing on PC Cluster”, Proceedings of Database and Expert Systems Applications (DEXA),
pp. 537–547, 2003.

Qiang, Z., Zheng, Z., Wei, S.Z., and Daley, E., “WINP: A Window-Based Incremental and
Parallel Clustering Algorithm for Very Large Databases”, Proceedings of International
Conference on Tools with Artificial Intelligence (ICTAI), pp. 169–176, 2005.

Rana, O.F., Walker, D.W., Li, M., Lynden, S.J., and Ward, M., “PaDDMAS: Parallel and
Distributed Data Mining Application Suite”, Proceedings of International Parallel and
Distributed Processing Symposium (IPDPS), pp. 387–392, 2000.

Sarker, B.K., Mori, T., Hirata, T., and Uehara, K., “Parallel Algorithms for Mining Asso-
ciation Rules in Time Series Data”, Proceedings of International Symposium on Parallel
and Distributed Processing and Applications (ISPA), pp. 273–284, 2003.

Sarker, B.K., Uehara, K., and Yang, L.T., “Exploiting Efficient Parallelism for Mining Rules
in Time Series Data”, Proceedings of the International Conference on High Performance
Computing and Communications (HPCC), pp. 845–855, 2005.

Senger, H., Hruschka, E.R., Silva, F.A.B.d., Sato, L.M., Bianchini, C.D.P., and Esperidi~aao,
M.D., Inhambu: Data Mining Using Idle Cycles in Clusters of PCs, Proceedings of Net-
work and Parallel Computing (NPC), pp. 213–220, 2004.

Shi, L., Niu, C., Zhou, M., and Gao, J., “A DOM Tree Alignment Model for Mining Par-
allel Data from the Web”, Proceedings of Meeting of the Association for Computational
Linguistics (ACL), pp. 489–496, 2006.

Sterritt, R., Adamson, K., Shapcott, M., and Curran, E.P., “Parallel Data Mining of Bayesian
Networks from Telecommunications Network Data”, Proceedings of IPDPS Workshops,
pp. 415–426, 2000.

Talaie, S., Leigh, R., Louis, S.J., and Raines, G.L., “Predicting mining activity with parallel
genetic algorithms”, Proceedings of Genetic and Evolutionary Computation Conference
(GECCO), pp. 2149–2155, 2005.

Valdés, J.J. and Barton, A.J., “Mining Multivariate Time Series Models with
Soft-Computing Techniques: A Coarse-Grained Parallel Computing Approach”,
Proceedings of Computational Science and Its Applications (ICCSA), pp. 259–268,
2003.

Veloso, A., Otey, M.E., Parthasarathy, S. and Meira Jr. W., “Parallel and Distributed Fre-
quent Itemset Mining on Dynamic Datasets”, Proceedings of High Performance Com-
puting (HiPC), pp. 184–193, 2003.

Wang, F. and Helian, N., “Mining Global Association Rules on an Oracle Grid by Scanning
Once Distributed Databases”, Proceedings of Euro-Par, pp. 370–378, 2005.

Wang, H., Xiao, Z., Zhang, H. and Jiang, S., “Parallel Algorithm for Mining Maximal Fre-
quent Patterns”, Proceedings of Advanced Parallel Programming Technologies (APPT),
pp. 241–248, 2003.

538 BIBLIOGRAPHY

Wu, M., Chung, M. and Moonesinghe, H.D.K., “Parallel Implementation of WAP-Tree
Mining Algorithm”, Proceedings of International Conference on Parallel and Distributed
Systems (ICPADS), 2004.

Zaïane, O.R., El-Hajj, M. and Lu, P., “Fast Parallel Association Rule Mining without Can-
didacy Generation”, Proceedings of IEEE International Conference on Data Mining
(ICDM), pp. 665–668, 2001.

Zaki, M.J. and Pan, Y., “Introduction: Recent Developments in Parallel and Distributed Data
Mining”, Distributed and Parallel Databases 11(2):123–127, 2002.

Zaki, M.J. Parthasarathy, S., Ogihara, M., and Li, W., “Parallel Algorithms for Discovery
of Association Rules”, Data Min. Knowl. Discov. 1(4): 343–373, 1997.

Zaki, M.J., “Parallel Sequence Mining on Shared-Memory Machines”, J. Parallel Distrib.
Comput. 61(3):401–426, 2001.

Zaki, M.J., Ho, C-T. and Agrawal, R., “Parallel Classification for Data Mining on
Shared-Memory Multiprocessors”, Proceedings of the International Conference on Data
Engineering (ICDE), pp. 98–205, 1999.

Zaki,M.J., “Parallel Sequence Mining on Shared-Memory Machines”, Proceedings of
Large-Scale Parallel KDD Systems, pp. 161–189, 1999.

Zhao, B., Vogel, S., “Adaptive Parallel Sentences Mining from Web Bilingual News Col-
lection”, Proceedings of IEEE International Conference on Data Mining (ICDM), 2002.

ADDITIONAL READING: FUTURE PARALLEL/GRID
DATA-INTENSIVE APPLICATIONS

Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S., “The Data Grid:
Towards an architecture for the Distributed Management and Analysis of Large
Scientific Datasets”, Journal of Network and Computer Applications, 23(3):187–200,
2001.

Chung, Y., “Parallel Information Retrieval with Query Expansion”, Proceedings of the 6th
International Conference on Applied Parallel Computing Advanced Scientific Computing
(PARA), pp. 195–202, 2002.

Deloch, S., “Databases, Web Services, and Grid Computing—Standards and Directions”,
Proceedings of Euro-Par, pp. 3, 2003.

Koparanova, M.G. and Risch, T., “High-Performance GRID Stream Database Manager for
Scientific Data”, Proceedings of European Across Grids Conference, pp. 86–92, 2003.

Lü, K., Zhu, Y., and Sun, W., “Parallel Processing XML Documents”, Proceedings of
International Database Engineering and Application Symposium (IDEAS), pp. 96–105,
2002.

Matsuda, H., “A Grid Environment for Data Integration of Scientific Databases”, Proceed-
ings of e-Science, pp. 3–4, 2005.

Qin, J., Yang, S., and Dou, W., “Parallel Storing and Querying XML Documents Using
Relational DBMS”, Proceedings of Advanced Parallel Programming Technologies
(APPT), pp. 629–633, 2003.

Sun, W. and Lü, K., “Parallel Query Processing Algorithms for Semi-structured Data”,
Proceedings of Conference on Advanced Information Systems Engineering (CAiSE),
pp. 770–773, 2002.

BIBLIOGRAPHY 539

Trujillo, R., “Application-Specific XML Processing: A Parallel Approach for Optimum
Performance”, Proceedings of Parallel and Distributed Processing Techniques and Appli-
cations (PDPTA), pp. 959–964, 2005.

Zaki, M.J. and Aggarwal, C.C., “XRules: An effective algorithm for structural classification
of XML data”, Machine Learning 62(1–2):137–170, 2006.

Index

Acid properties of transactions, 301–303
atomicity, 302
consistency, 302–303
durability, 302–303
isolation, 302–303

Adaptive Plan Correction (APC), 279–280
Amdahl law, 10
Analytical models, 33–46

cost models, 33–34
cost notations, 34–39

communication costs, 38–39
data parameters, 34–35
query parameters, 37
systems parameters, 36
time unit costs, 37–38

parallel database, operations in, See
Databases, parallel

skew model, 39–43
Architectures, grid database, 26–28

data-intensive applications working in, 26
grid middleware, 27

Architectures, parallel database, 19–26
interconnection networks, 24–26
shared-disk architectures, 20–21
shared-memory architectures, 20–21
shared-nothing architecture, 22

Association rules/Association rule data mining,
432, 440–450

association rules, 444–448
association rules generation, 445–448
frequent itemset generation, 444–445

concepts, 441–444
count distribution-based parallelism for,

448–449
data distribution-based parallelism for, 450
generation, 445–448
itemset, 441
literals, 441

High-Performance Parallel Database Processing and Grid Databases,
by David Taniar, Clement Leung, Wenny Rahayu, and Sushant Goel
Copyright 2008 John Wiley & Sons, Inc.

Asynchronous protocols, GRAP, 381
Atomic commit protocols, 310–314

heterogeneous DBMSs, 313–314
Homogeneous DBMSs, 310–313

Atomicity property, 302, See also Grid
transaction atomicity and durability

for centralized and homogeneous DBMSs,
304

for heterogeneous distributed DBMSs, 306
Autonomy, 294

Basic data partitioning, 55–60
hash, 57–58
range, 58–59
round-robin, 56

BERD (Bubba’s Extended Range Declustering),
67–69

Binary merge sort, parallel, 85–86
cost model, 100–101

Binary search, 71–72
Bus interconnection network, 24
Bushy-tree parallelization, 258

Centralized DBMSs
transactions management in, 303–305

Atomicity, 304
Consistency, 304
solation, 304–305

Classification, parallel, 477–495
data parallelism for a decision tree, 489–492
data set structure, 479–480
decision tree algorithm, 480–481
decision tree classification, 477–480

processes, 480–488
structure, 478–479

result parallelism for the decision tree,
492–495

541

542 INDEX

Classification, parallel (Continued)
splitting attributes or feature selection,

481–484
Cluster/Clustering, parallel, 464–499

architectures, 23
cluster customers, 465
cluster students, 465
concepts, 467–468
hierarchical clustering, 468
in parallel data mining, 433
parallel k-means clustering, 471–477
partitional clustering, 468
query processing model, 270–275

architecture, 272–273
dynamic query processing, 271–272
load information exchange, 273–275

result parallelism parallel k-means, 475–477
similarity measures, 467–468

Collection join queries, 219–255
algorithms for, 225

disjoint data partitioning, 226–227
parallel collection-equi join, 225–233
parallel double sort-merge collection-equi

join algorithm, 227–228
parallel hash collection-equi join algorithm,

232–233
parallel sort-hash collection-equi join

algorithm, 228–231
collection-intersect join algorithms, 233–246

non-disjoint data partitioning, 234–244
hash collection-intersect join algorithm, 246
relational division, 220
repeated relational division, 220
sort-hash collection-intersect join algorithm,

245–246
sort-merge nested-loop collection-intersect

join algorithm, 244–245
subcollection join algorithms, 246–252
types, 222–225

array, 222
bag, 222
collection-equi join queries, 222–223
collection–intersect join queries, 223–224
list, 222
set, 222
subcollection join queries, 224–225

universal quantification and collection join,
220–221

Communication, 11–12
cost, 38–39

parallel merge-all sort, 98–99
parallel partitioned sort, 104
parallel redistribution merge-all sort, 103

Comparative analysis, 207–215
parallel index join, 213–215
parallel search index, 207–213

continuous-range search queries, 212
discrete-range search queries, 212
exact-match search queries, 212
intersection method, 209–210
multi-index search query processing,

209–212
one-index access method, 210–213
one-index search query processing,

207–209
Comparison cost, 70, 72
Compensate approach, 314
Complex data partitioning, 60–69

BERD, 67–69
hybrid-range partitioning strategy, 60–65
MAGIC, 65–67

Compute destination cost, 101
Concurrency control protocols, 309–310

locking-based algorithms, 309
optimistic algorithms, 309
pessimistic algorithms, 309
timestamp ordering algorithms, 310

Conjunctive predicates, 54
Conjunctive prenex normal form (CPNF), 54
Consistency property, 302–303

for centralized and homogeneous DBMSs,
304

for heterogeneous distributed DBMSs,
306–307

Consolidation costs, 10–12
Contingency GRAP, 378–381

correctness of, 383–384
read transaction operation for, 379
write transaction operation for, 379–381

Continuous range search query, 53
Correcting, 276
Correction, dynamic cluster query optimization,

276–280
Adaptive Plan Correction (APC), 279–280
correcting, 276
deferring, 276
discarding, 276
Optimistic Plan Correction (OPC), 278
Pessimistic Plan Correction (PPC), 279
triggering, 276

Correctness of GCC protocol, 336–338
Cost models, 33–34

disjoint partitioning, 129–130
divide and broadcast, 128–129
for the early GroupBy with partitioning

scheme, 156–158
for phase one (grouping phase), 156

INDEX 543

for phase three (GroupBy-JoinPhase),
157–158

for phase two (distribution phase), 157
scan cost, 156

for the early GroupBy with replication
scheme, 158–159
for phase one (grouping phase), 158
for phase three (grouping/joining phase),

159
for phase two (replication phase), 158–159

for GroupBy-After-Join query processing,
159–163
for join partitioning scheme, 159–161
GroupBy partitioning scheme, 161–163
phase four (global aggregation phase), 161
phase one (data partitioning and

broadcasting phase), 162
phase one (data partitioning phase),

159–160
phase three (redistribution phase), 161
phase two (join and aggregation phase),

162–163
phase two (join and local aggregation

phase), 160
for GroupBy-Before-Join query processing,

153–159
for the early distribution scheme, 153–156

local join, 130
for phase one (distribution phase), 153–154

data transfer cost, 154
destination cost, 154
scan cost, 153
select cost, 153

for phase two (GroupBy-Join Phase),
154–156
aggregation and join costs, 154
disk cost of storing final result, 155
generating result records cost, 155
reading/writing of overflow buckets cost,

155
receiving records cost, 154

notations, parallel GroupBy-Join, 151–153
join selectivity, 153
projectivity, 152
selectivity, 152

parallel binary-merge sort, 100–101
parallel groupby, 104–108
parallel merge-all sort, 98–100
parallel partitioned sort, 103–104
parallel redistribution binary-merge sort,

101–102
parallel redistribution merge-all sort, 102–103
serial external merge-sort, 96–97

Count distribution-based parallelism
for association rule mining, 448–449

Cube queries, parallelization of, 412–417
basic CUBE queries, analysis, 413–416
partial CUBE queries, analysis of, 416–417
without using CUBE, 417

Cumulative distribution function (CUME DIST)
queries, parallelization, 419–420

Data computation cost, 46
Data distribution-based parallelism

for association rule mining, 450
Data mining, parallel data mining

association rules, 427–463
class description, 432
components, 430
data mining tasks, 431–433

descriptive data mining, 431
predictive data mining, 431

data parallelism, 437–438
data warehouse, 429
data-intensive applications, 428
definition, 430
from databases to data warehousing to data

mining, 428–431
parallel association rules, 440–450
parallel sequential patterns, 450–461
parallelism, 436–440
querying vs. mining, 433–436
read-only queries, 429
result parallelism, 438–440
sequential patterns, 427–463
write queries, 429

Data parallelism, 437–438
for a decision tree, 489–492
parallel k-means, 472–475

Data parameters, 34–35
Data partitioning method, 226
Data scale up, 8, 9–10
Data skew, 39
Data transfer cost

disjoint partitioning, 129
divide and broadcast, 128
parallel binary-merge sort, 100
parallel redistribution binary-merge sort, 102

Data virtualization approach
in grid environment, 28

Databases, parallel, 4–5, 43–46
data computation, 45–46
data distribution, 45–46
disk operations, 44
main memory operations, 45

Decision tree, 466
classification, 477–480

544 INDEX

Deferring, 276
Descriptive data mining, 431
Destination cost, 46
Direct Attached Storage (DAS), 27
Discarding, 276
Discrete range search query, 53
Disjoint data partitioning, 226–227
Disjoint partitioning join, 124–127

cost model, 129–130
Disk cost

disjoint partitioning, 130
divide and broadcast, 129
local join, 131

Disk writing cost, 71–72
Distributed databases, 293–297

architectural model, 294
autonomy, 294
distribution, 294
eterogeneity, 294

distributed DBMS in grids, 296–297
partitioning, 296
replication, 296
transactions, 291–320, See also Transactions
working model, 294–296

Divide and broadcast join, 121–124
cost model, 128–129

Divide and broadcast, and, 234–236
Divide and partial broadcast, 236–244

one-way, 242–243
two-way, 238–244

Double sort-merge collection-equi join
algorithm, 227–228

Duplicate removal, 78
Durability property, 302–303, See also Grid

transaction atomicity and durability
for centralized and homogeneous DBMSs,

304–305
for heterogeneous distributed DBMSs,

306–307
Dynamic cluster query optimization, 275–284

correction, 276–280, See also Correction
load information exchange, 275
migration, 280–281
partition, 281–284
query plan correction, 275
semijoin-based query optimization, 284
static query plan formulation, 275
subquery migration, 275
subquery partition, 275

Dynamic Query Processing, 271–272

Early distribution scheme, GroupBy-Before-Join
query processing, 143–144

distribution phase, 143
GroupBy-Join phase, 143–144

Early GroupBy with partitioning scheme,
145–147

distribution phase, 145
final grouping and join phase, 145
local grouping phase, 145, 147

Early-abort Grid-ACP, 346–348
Equi-join query, 112
Euclidean distance, 468
Euler’s constant, 40
Exact match search, 52
Execution Among Subqueries, 261–263
Exhaustive search, 69
External sorting

cost models for, 96–104
parallel, 83–91

binary-merge sort, 85–86
merge-all sort, 83–84
partitioned sort, 90–91
redistribution binary-merge sort, 86–88
redistribution merge-all sort, 88–89

serial, 80–83

Failure recovery algorithm for Grid-ACP,
353–359

originator recovery procedure, 357–359
participant recovery procedure, 354–357

File sorting, 77
Final merging costs, 98
Find node algorithm, 186–187
Finding destination cost

disjoint partitioning, 129
Flat-tree parallelization, 258
Frequent itemset generation, 444–445
Fully replicated indexing (FRI) structure, 168,

178–180
FRI-1, 178–179
FRI-3, 180–181
maintaining, 188

Gain criterion, 482
Generating result cost

local join, 131
parallel binary-merge sort, 100
parallel merge-all sort, 98–99
parallel partitioned sort, 104
parallel redistribution binary-merge sort, 102
parallel redistribution merge-all sort, 103
serial external merge-sort, 97

Global subtransaction ready log, 352
Global transaction active log, 352
Global transaction monitor (GTM), 294
Global transaction termination log, 353

INDEX 545

Grace hash join, 117
Grid atomic commit protocol (Grid-ACP),

343–351, 387–398, See also Modified
Grid-ACP

algorithm, 344–346
originator’s, 345, 347
participant’s, 345–346

correctness of recovery algorithm, 361–365
transaction submission procedure, 362–363

correctness of, 350–351
early-abort grid-ACP, 346–348
failure recovery algorithm for, 353–359
handling failure of sites with, 351–365

logs required at originator sites, 352–353
logs required at participant site, 353
storing log files at originator and

participating sites, 351–352
in replicated data, 387–398
message complexity analysis, 349–350
recovery protocols, comparison, 359–361
state diagram of, 343–344

compensate states, 343
pre-abort state, 343
sleep state, 343

time complexity analysis, 349
Grid concurrency control (GCC) protocol,

321–340
basic functions required, 324–325

active trans(DB), 324
append TS(STi j), 325
cardinality(Any set), 325
DB accessed(Ti), 324
split trans(Ti), 324

correctness of, 336–338
features of, 338–339
serializability theory, 325–329
submission phase, 329–330
termination phase, 331–333
traditional versus, 334–336

Grid Data Distribution (GDD), 27
Grid databases, 4–5

challenges, 292–293
definition, 3
transactions, 291–320, See also Transactions

Grid replica access protocol (GRAP), 371–378
correctness of, 377–378
read transaction operation for, 371–372
write transaction operation for, 372–375

if the participant decides to commit, 373
if the participant decides to abort, 373

Grid transaction atomicity and durability,
341–366

motivation, 342–343
Grid-ACP, See Grid atomic commit protocol

GroupBy-Join queries, 141–166
cost model notations, 151–153, See also Cost

model
cost models for parallel, 104–108
early GroupBy with partitioning scheme,

145–146
early GroupBy with partitioning scheme,

146–147
GroupBy After Join query, 142–143
GroupBy Before Join query, 142
GroupBy partitioning scheme, 150–151

aggregate operations, 151
consolidation, 151
data partitioning, 150–151
join operations, 151

GroupBy-After-Join query processing
parallel algorithms for, 148–151

GroupBy-Before-Join query processing, 143
early distribution scheme, 143
parallel algorithms for, 143–147

parallel algorithms for, 92–96
redistribution method, 94–96
traditional methods, 92–93
two-phase method, 93–94

Hashing collections/multivalues, 232–233
hash collection-equi join algorithm, 232–233
hash collection-intersect join algorithm, 246
hash subcollection join algorithm, 251–252
hash table, 36
hash-based join, 117–120
partitioning, 57–58, 126–127

Heterogeneity, 294
Heterogeneous distributed DBMSs

atomic commit protocols, 313–314
compensate, 314
redo, 314
retry, 314

transactions management in, 305–307
atomicity, 306
consistency, 306–307
durability, 307
isolation, 307

Hierarchical clustering, 468
Hierarchical merging method, 93
High-level replica management architecture,

368–369
Histogram queries, parallelization, 420–422
Homogeneous DBMSs

atomic commit protocols, 310–313
Three-phase commit (3PC), 312–313
Two-Phase Commit (2PC), 311–312

transactions management in, 303–305
atomicity, 304

546 INDEX

Homogeneous DBMSs (Continued)
consistency, 304
isolation, 304–305

Horizontal data partitioning, 55
Hybrid-range partitioning strategy (HRPS),

60–65
advantages, 63–65

Hypercube interconnection network, 25–26

I/O bottleneck, 4
Independent parallelism, 15, 18
Indexing, parallel, 167–218

comparative analysis, 207–215, See also
Comparative analysis

index join algorithms, 200–207
one-index join query, 200–203
two-index join query, 200, 203–207

maintenance, 180–188
algorithms, 185–188
complexity degree of, 188
fully replicated index, 188
nonreplicated index, 182
partially replicated index, 182–188
restructuring algorithms, 187
restructuring step, 183
steps for, 180–188

one-index method, 199–200
initialization module, 200
one-index access module, 200

search queries parallel processing using,
192–200

storage analysis, 188–192
structures, 168–180

fully replicated index (FRI), 168, 178–180
nonreplicated index (NRI), 168, 169–171
partially replicated index (PRI), 168,

171–178
Interconnection networks, 24–26

bus, 24
hypercube, 25–26
mesh, 24–25

Interference, 11–12
Interoperation parallelism, 12, 15–18
independent parallelism, 15, 18
pipeline parallelism, 15–18
Interquery parallelism, 12, 13–14
Intertree node parallelism, 492
Intraoperation parallelism, 12, 15, 16
Intraquery parallelism, 12, 14–15
Isolation property, 302–303

for centralized and homogeneous DBMSs,
304–305

for heterogeneous distributed DBMSs,
306–307

Itemset, 441
anti-monotonicity, 442
association rules, 441–442
candidate itemset, 441
frequent itemset, 441
itemset mining, 441

Join algorithms for the collection-intersect join,
244–245

Join costs
local join, 131

Join partitioning scheme
for GroupBy-After-Join query processing,

148–150
consolidation, 150
data partitioning, 148
global aggregation, 149
join operation, 149
local aggregation, 149
redistribution, 149

Join selectivity notation, parallel GroupBy-Join,
153

Join, parallel, 112–134
cost models, 128–131
join algorithms, 120–127

divide and broadcast-based, 121–124
disjoint partitioning join, 124–127

join operations, 103
optimization, 132–134
load balancing, 133–134
main memory, 132–133

k-Means clustering, parallel, 81–82, 471–477
algorithm, 468–471
data parallelism parallel k-means, 472–475

Leaf nodes, 189–190
Left-deep tree parallelization, 258
Linear scale up, 8
Linear search, 69
Linear speed up objective, parallel query

processing, 7
Literals, 441
Load cost

parallel binary-merge sort, 100
parallel merge-all sort, 99
parallel partitioned sort, 104
parallel redistribution binary-merge sort, 102
parallel redistribution merge-all sort, 103
serial external merge-sort, 97

Load imbalance, 133–134
Load information exchange, 273–275

high load processing node, 273
low load processing node, 273
medium load processing node, 273

INDEX 547

Load skew in single-table queries, 260
Local database management system (LDBMS),

294
Local join, 131
Local merge-sort costs, 98
Local searching method, 73
Locking-based algorithms, 309

MAGIC (Multiattribute Grid Declustering),
65–67

Massively Parallel Processing (MPP) machines,
22

Merge-all sort, 83–84
cost model, 98–100

Merging cost
parallel binary-merge sort, 100
parallel merge-all sort, 98–99
parallel partitioned sort, 104
parallel redistribution binary-merge sort, 102
parallel redistribution merge-all sort, 103
serial external merge-sort, 97

Mesh interconnection network, 24–25
Message complexity analysis, Grid-ACP,

349–350
Migration, dynamic cluster query optimization,

280–281
subquery migration, 280

Mixed parallelism, 18–19
Modeling skew, 40
Modified Grid-ACP, 390–395

algorithm, 390–393
correctness of, 393–395

ACP properties, 393–394
for originator site, 392
using replication at multiple levels, 391

Moving average queries, parallelization,
422–424

Multiattribute search query, 54
Multidatabase systems, 297–299

architecture, 297
communication autonomy, 297
design autonomy, 297
execution autonomy, 297
in grids, 297–299

Multi-index search query processing, 195–200
intersection method, 195

algorithm, 198
Case 1 (one index is based on NRI-1,

PRI-1, or FRI-1), 196
Case 2 (one index is based on NRI-3,

PRI-3, or FRI-3), 197
Case 3 (one index is based on NRI-2 or

PRI-2), 197
individual index access module, 198

initialization module, 198
intersection module, 198
record loading module, 198

Multiple ROLLUP queries, 409–411

Nested-loop join, 114–115
Network partitioning, 315–316
Node architectures, 23
Non-disjoint data partitioning, 234–244

divide and broadcast, and, 234–236
divide and partial broadcast, 236–244
simple replication, 234

Nonleaf nodes, 189–190
Nonreplicated Indexing (NRI) Structures, 168,

169–171
maintaining, 182
NRI-1, 170
NRI-2, 171–172
NRI-3, 171, 173

Nonskewed Subqueries, 264–265
NTILE queries, parallelization, 420–422

Obstacles objective, parallel query processing,
10–12

consolidation costs, 10–12
start up costs, 10–12

One-index join query, 192–195, 200–203
Case 1 (NRI-1 and NRI-3), 201
Case 2 (NRI-2), 201
Case 3 (PRI), 201
Case 4 (FRI), 201–203

Online analytic processing (OLAP) and business
intelligence, 9, 401–426

cube queries, parallelization of, 412–417
cume dist queries, parallelization, 419–420
histogram queries, parallelization, 420–422
moving average queries, parallelization,

422–424
NTILE queries, parallelization, 420–422
parallel multidimensional analysis, 402–405
parallelization without using ROLLUP, 412
ranking queries, parallelization of, 418–419
rollup queries, parallelization, 405–412
top-N queries, parallelization of, 418–419
windowing queries, parallelization of,

422–424
Open Grid Service Architecture (OGSA), 27
Optimistic algorithms, 309
Optimistic Plan Correction (OPC), 278
Originator’s algorithm for Grid-ACP, 345

Page, 34
Parallel association rules, 440–450, See also

Association rule mining

548 INDEX

Parallel universal qualification, See Collection
join queries

Parallelism
forms of, 12–19
independent parallelism, 15
interoperation parallelism, 12, 15–18
interquery parallelism, 12, 13–14
intraoperation parallelism, 12, 15, 16
intraquery parallelism, 12, 14–15
mixed parallelism, 18–19
pipeline parallelism, 15–18

Partial CUBE queries, analysis of, 416–417
Partial ROLLUP queries, 411–412
Partially Replicated Indexing (PRI) Structures,

168, 171–178
index entry deletion, 185
index entry insertion in, 184
multiple node pointers model for, 174
PRI-1, 172, 174
PRI-2, 176–177

maintaining, 182–188
PRI-3, 177–178
replication in, 177

Participant’s algorithm for Grid-ACP, 346
Partition/Partitioning, 296

dynamic cluster query optimization, 281–284
hash join, 283
simple join, 283

partitional clustering, 468
partitioned tree construction, 493
tuning, 263

Pessimistic algorithms, 309
Pessimistic Plan Correction (PPC), 279
Pipeline merging costs, 102
Pipeline parallelism, 15–18

drawbacks, 17–18
Predictive data mining, 431–432
Probing, 119
Processing skew, 40
Projectivity notation, parallel GroupBy-Join, 152
Projectivity ratio, 37

Query processing, parallel, 5–6
motivations, 5–6
objectives, 7–12

communication, 11–12
interference, 11–12
parallel obstacles, 10–12
scale up, 8–10
skew, 12
speed up, 7–8

parameters, 37
results generation cost, 45

Query scheduling and optimization, 256–287

cluster query processing model, 270–275
degree of parallelization, 258

bushy-tree parallelization, 258
flat-tree parallelization, 258
left-deep tree parallelization, 258
right-deep tree parallelization, 258

dynamic cluster query optimization, 275–284,
See also individual entry

query execution plan, 257–259
scheduling rules, 269–270
serial vs. parallel execution scheduling,

264–269
subqueries execution scheduling strategies,

259–263
Querying vs. Mining, 433–436

supervised learning, 436
unsupervised learning, 433–435

Quorum-based protocols, 317–318

Random-unequal data partitioning, 59
Range partitioning, 58–59, 124–126
Range search query, 53
Ranking queries, parallelization of, 418–419
Read transaction operation for GRAP, 371–372
Read-one-write-all (ROWA) approach, 316
Real Application Cluster (RAC), 28
Receiving cost

parallel binary-merge sort, 100
parallel redistribution binary-merge sort, 102

Receiving records cost, 107
disjoint partitioning, 130
divide and broadcast, 129

Record, 34
Recovery algorithm for Grid-ACP, correctness

of, 361–365
Recovery protocols of Grid-ACP, comparison,

359–361
Redistribution binary-merge sort, 86–88

cost model, 101–102
Redistribution merge-all sort, 88–90

cost model, 102–103
Redistribution method, 94–96

cost model, 107–108
Redo approach, 314
Replica management in grids, 367–386, See also

Grid replica access protocol (GRAP)
comparison among protocols, 381–383

asynchronous, 381
synchronous, 381

handling multiple partitioning, 378–384
contingency GRAP, 378–381

motivation, 367–368
replica architecture, 368–370

INDEX 549

high-level replica management architecture,
368–369

Replica synchronization protocols, 314–318
network partitioning, 315–316
primary copy, 317
quorum-based protocols, 317–318
read-one-write-all (ROWA) approach, 316
ROWA-Available (ROWA-A), 316–317

Replicated data, grid atomic commitment in,
387–398

transaction properties, 395–397
Replication, 296
Result generation cost, 70, 72
Result parallelism, 438–440

for the decision tree, 492–495
parallel k-means, 475–477

Retry approach, 314
Right-deep tree parallelization, 258
Rollup queries, parallelization, 405–412

multiple ROLLUP queries, 409–411
parallelization without using ROLLUP, 412
partial ROLLUP queries, 411–412
single ROLLUP queries, 405–409

Round-robin data partitioning, 56
ROWA-Available (ROWA-A), 316–317

Save cost
parallel binary-merge sort, 100
parallel merge-all sort, 98–99
parallel partitioned sort, 104
parallel redistribution binary-merge sort, 102
parallel redistribution merge-all sort, 103
serial external merge-sort, 97

Scalar aggregate, 79
Scale up objective, parallel query processing,

8–10
calculation, 8
data scale up, 8, 9–10
linear scale up, 8
transaction scale up, 8, 9

Scanning cost, 44, 70, 72
disjoint partitioning, 129
divide and broadcast, 128
local join, 130

Scheduling rules, 269–270
Search, parallel, 51–74

algorithm, 69–74
comparison, 74
local searching method, 73–74
processor activation or involvement, 73
serial search algorithms, 69–72

data partitioning, 54–69
basic, 55–60
complex, 60–69

search queries, 51–54
exact match search, 52
multiattribute search query, 54
range search query, 53

Search queries parallel processing using index,
192–200, See also One-index join query;
Two-index join query

multi-index, 195–200
intersection method, 195

one-index, 192–195
algorithm for, 195
index tree traversal, 192–194
parallel exact-match search queries,

192–194
parallel range selection query, 194–195
processor involvement, 192–193
record loading, 192, 194

Select cost, 45, 70, 72
disjoint partitioning, 129
divide and broadcast, 128
local join, 130
parallel binary-merge sort, 100
parallel merge-all sort, 98–99
parallel partitioned sort, 104
parallel redistribution binary-merge sort, 102
parallel redistribution merge-all sort, 103
serial external merge-sort, 97

Selection, 51
Selectivity notation, parallel GroupBy-Join, 152
Selectivity ratio, 37
Semantic atomicity, 343
Sequential patterns

data mining, 427–463
concepts, 452–456
count distribution, 459
data distribution, 459–461
joining phase, 457
pruning phase, 458–459

Serial execution among subqueries, 259–261
Serial external sorting, 80–83
Serial join algorithms, 114–120

algorithm comparison, 120
hash-based, 117–120
nested-loop, 114–115
sort-merge, 116–117

Serial search algorithms, 69–72
binary search, 71–72
linear search, 69–71

Serial subqueries execution scheduling, 490
Serial vs. parallel execution scheduling,

264–269
nonskewed subqueries, 264–265, 267–269
skewed subqueries, 265–269

550 INDEX

Serializability theory, grid, 325–329
global-global conflict, 329
global-local conflict, 329
local-local conflict, 329
Set/bag hashing, 229
Shared-disk architectures, 20–21
Shared-everything architecture, 54
Shared-memory architectures, 20–21
Shared-nothing architecture, 22, 54
Similarity measures, 467–468
Simple replication, 234
Single ROLLUP queries, 405–409
Skew/Skewness, 12, 39–40, 260

skewed subqueries, 265–267
Sort, parallel, 77–91

binary-merge sort, 85–86
merge-all sort, 83–84
partitioned sort, 90–91
redistribution binary-merge sort, 86–88
redistribution merge-all sort, 88–89
sort-hash collection-equi join algorithm,

228–231
sort-hash collection-intersect join algorithm,

245–246
sort-hash sub-collection join algorithm,

249–251
Sorting cost

parallel merge-all sort, 98
parallel partitioned sort, 104
serial external merge-sort, 97

Sort-merge nested-loop subcollection join
algorithm, 116–117, 248–249

Speed up objective, parallel query processing,
7–8

linear speed up, 7
sublinear speed up, 7
superlinear speed up, 7

Start up costs, 10–12
State diagram of Grid-ACP, 343–344

compensate states, 343
pre-abort state, 343
sleep state, 343

Storage analysis, index, 188–192
parallel processors, storage cost models for,

191–192
FRI Storage, 192
NRI Storage, 191
PRI Storage, 191

uniprocessors, storage cost models for,
189–191
index storage, 189–191
record storage, 189

Subcollection join algorithms, 224–225,
246–252

data partitioning, 247–248
hash subcollection join algorithm, 251–252
sort-hash sub-collection join algorithm,

249–251
sort-merge nested-loop subcollection join

algorithm, 248–249
Sublinear speed up objective, parallel query

processing, 7
Submission phase of GCC protocol, 329–330
Subqueries execution scheduling strategies,

259–263
parallel execution among subqueries,

261–263
dynamic resource division, 262
static resource division, 262–263

serial execution among subqueries, 259–261
Superlinear speed up objective, parallel query

processing, 7
Symmetric multi processor (SMP) machines, 21

cluster of, 23
Synchronous protocols, GRAP, 381
Synchronous tree construction approach, 491
Systems parameters, 36

Table, 34–35
Task stealing, 263
Termination phase of GCC protocol, 331–333
Testing data set, 466
Three-phase commit (3PC), 312–313
Time complexity analysis, Grid-ACP, 349
Time equalization method, 263
Time unit costs, 37–38
Time-series analysis, parallel data mining, 433
Timestamp ordering algorithms, 310
Top-N queries, parallelization of, 418–419
Training data set, 466
Transactions in distributed and grid databases,

291–320
acid properties of, 301–303
atomic commit protocols, 310–314
basic definitions on transaction management,

299–301
concurrency control protocols, 309–310
management, 303–307

centralized DBMSs, 303–305
heterogeneous distributed DBMSs,

305–307
homogeneous DBMSs, 303–305

replica synchronization protocols, 314–318
Transactions/Transaction properties

in replicated environment, 395–397
atomicity, 395
consistency and isolation, 396
durability, 396

INDEX 551

scale up, 8, 9
submission procedure, 362–363

Triggering, 276
Two-index join query, 200, 203–207

Case 1, 203–205
Case 2, 205–207

Two-Phase Commit (2PC), 93–94, 311–312
cost model, 104–105

Uniprocessors, storage cost models for, 189–191

Vertical data partitioning, 55

Windowing queries, parallelization of,
422–424

Write transaction operation for GRAP,
372–375

Writing cost, 44

Zipf distribution, 265

