
Question 1 
Aditya and David are the first-year data science students with Monash University. They are 
discussing how parallel and distributed processing can help data scientists perform the 
computation faster. They would like your help to understand and get answers to the following 
questions: 
 

1. Using the current processing resources, we can finish processing 1TB (one terabyte) of 
data in 1 hour. Recently the volume of data has increased to 2TB and the management has 
decided to double up the processing resources. Using the new processing resources, we 
can finish processing the 2TB in 60 minutes. Aditya wants to know​ (1 + 1 = 2 Marks) 
 

a. Is this speed-up or scale-up? Please explain your answer. 
b. Also, please explain what type of speed-up or scale-up is it (​linear, superlinear or 

sub-linear​)? 
 

It is a scale-up. It is data scale up (not transaction scale-up). Scale-up is not about 
speeding up a job. Scale-up is about maintaining the same performance when the workload 
is increased by increasing the processing resources, proportionally. 
(1 mark for scale-up) 
 
It is a linear scale-up. Using x resources (current resources), 1TB queries = 60 minutes 
When the resources are doubled (e.g. x becomes 2x now), a linear scale up is being able to 
complete 2TB in 60 minutes. 
 
In the question, using 2x resources, it finishes 2TB in 60 minutes. Therefore, it is linear 
scale up. 
(1 mark, including the reason) 
 

2. David is using his iMac desktop to do parallel query processing. The iMac has the following 
specifications: 

 

 
 

He wants to know what type of parallel database architecture is he using to do the parallel 
query processing. Please explain the reason for your answer. ​(2 Marks) 
 
It is a Shared-Memory Architecture. (1 mark) 
 



The memory is shared among all cores within a single computer (4 cores per iMac). There 
is no interconnection network involved. (1 mark) 
 

3. David read in the textbook that “Random unequal partitioning is sometimes inevitable in 
parallel search.” However, he could not understand why? Please give two reasons why 
random unequal partitioning is sometimes inevitable in parallel search.​ (1 + 1 = 2 Marks) 
  

- If the initial data placement is based on a particular attribute (say attribute x), whereas the 
parallel search is based on a different attribute (say attribute y), then all processors must be 
used, and the data is random unequal in all processors. 
 

- Even if the initial data placement is equal (random equal or round-robin), if the search is 
part of a large query which has some initial operations, such as join, then the parallel 
search which follows the previous operations, will have the data distributed unequally to all 
processors. Hence, it is random and unequal. 

 
 

4. Aditya now understands that skewness is the unevenness of workload and skewed 
workload distribution is generally undesirable. He found the figure below in the textbook 
that shows the skewed workload distribution. He wants to know ​(1 + 1 = 2 Marks) 

a. Is the figure below ​processing skew​ or ​data skew​? Please explain with 
reason. 

b. Is it possible to have an equal distribution of data? Please explain how. 

 
It is a data skew. Data skew is uneven distribution of data in terms of size or number of 
records. 
(1 Mark for the correct choice and explanation; 0 Mark for incorrect answer.) 
 
 
Yes, it is possible to have equal distribution of data using random-equal data partitioning 
method.  ​(1 Mark) 
 

5. David was given a task to perform log analysis in the lab. The input data consisted of log 
messages of varying degrees of severity, along with some blank lines. He has to compute 



how many log messages appear at each level of severity. The contents of the “input.txt” file 
are shown below. 
 

INFO This is a message with content 
INFO This is some other content 
(empty line) 
INFO Here are more messages 
WARN This is a warning 
(empty line) 
ERROR Something bad happened 
WARN More details on the bad thing 
INFO back to normal messages 

 
The expected output of the operations is as below. 
 

[(‘INFO’, 4), (‘WARN’, 2), (‘ERROR’, 1)] 

 
However, he is not sure how to begin. Please explain to him assuming ‘sc’ as a 
SparkContext object. ​(1 + 1 = 2 Marks) 

a. What is an RDD? 
b. How can it be created in this case to perform a log analysis of “input.txt” file? 

 
 
Resilient Distributed Datasets (RDD) is a fundamental data structure of Spark. It is an 
immutable distributed collection of objects. Each dataset in RDD is divided into logical 
partitions, which may be computed on different nodes of the cluster. (1 Mark) 
 
It can be created using sc.textFile() method e.g.  sc.textFile("input.txt")(1 Mark) 
 

Question 2 
Petadata is an ​enterprise software​ company that develops and sells database analytics software 
subscriptions. The company provides three main services: business analytics, cloud products, and 
consulting. It operates in North and Latin America, Europe, and Australia. 
 
Petadata is headquartered in Melbourne​, ​Victoria, and has additional major Australian locations in 
Sydney and Adelaide, where its data center research and development is housed. Peter Liu has 
served as the company's president and chief executive officer since 2014. The company reported 
$2.8 billion in revenue, with a net income of $112 million, and 15,026 employees globally, as of 
March 15, 2020. 
 
Chin is a recent graduate from Monash University and preparing for the job interview in Petadata. 
He needs your help to understand aspects of parallel processing especially parallel joins in 
shared-nothing architecture.  

 

https://en.wikipedia.org/wiki/Enterprise_software
https://en.wikipedia.org/wiki/San_Diego,_California


1. Using a more general notation, table R has |R| number of records, and table S has |S| 
number of records. The first step of ROJA is to redistribute the records from both tables 
according to hash/range partitioning. What is the ​cost model​ of the ​Redistribution Step​ of 
ROJA​? ​(4 marks) 

 

Symbol Description 

Data Parameters 

R Size of table in bytes 

R​i Size of table fragment in bytes on processor i 

|R| Number of records in table R 

|R​i​| Number of records in table R on processor i 

Systems Parameters 

N Number of processors 

P Page size 

Time Unit Cost 

IO Effective time to read a page from disk 

t​r Time to read a record in the main memory 

t​w Time to write a record to the main memory 

t​d Time to compute destination 

Communication Cost 

m​p Message protocol cost per page 

m​l Message latency for one page 
 
Scan cost for loading tables R and S from local disk in each processor is: ((Ri / P) + (Si / P)) 
IO 
 
Select cost for getting the record out of data page is: (|Ri| + |Si|)  (tr + tw) 
 
Finding destination cost is: (|Ri| + |Si|)  (td) 
 
Data transfer cost is: ((Ri / P) + (Si / P))  (mp + ml) 

 
Receiving records cost is: ((Ri / P) + (Si / P))  (mp) 
 
Both data transfer and receiving costs look similar, as also mentioned previously in the 
divide and broadcast cost. However, for disjoint partitioning, the size of Ri and Si in the data 
transfer cost is likely to be different from that of the receiving cost. The reason is as follows. 
Ri and Si in the data transfer cost are the size of each fragment of both tables in each 
processor. Again, assuming that the initial data placement is done using a round-robin or 
any other equal partitioning, each fragment size will be equal. Therefore, Ri and Si in the 
data transfer cost are simply dividing the total table size by the available number of 
processors. 



However, Ri and Si in the receiving cost are most likely skewed. Consequently, the values 
of Ri and Si in the receiving cost are different from those of the data transfer cost. 
 
Disk cost for storing the result of data distribution is: 
((Ri / P) + (Si / P))  IO 
 

2. Chin found the code below in ​stackunderflow.com​ that counts the errors and warnings in 
the text file using Apache Spark.  

 

from pyspark import SparkContext 

 

sc = SparkContext(master=“local[2]”, appName=“Errors and warnings Count”) 

twitter_rdd = sc.textFile('twitter.txt', 3) 

blank_lines = 0 # global variable 

 

def extract_blank_lines(line): 

    if line == "": 

        blank_lines += 1 

    return line.split(" ") 

   

word_rdds = twitter_rdd.flatMap(extract_blank_lines) 

word_rdds.collect() 

 

print("Blank lines: %d" %blank_lines) 

However, the code produces the error shown below. 
 

Caused by: org.apache.spark.api.python.PythonException: Traceback (most 

recent call last): 

  File 

"/home/.../.local/lib/python3.8/site-packages/pyspark/python/lib/pyspark.zip

/pyspark/util.py", line 107, in wrapper 

    return f(*args, **kwargs) 

  File "<ipython-input-29-b8182ac1646a>", line 6, in extract_blank_lines 

UnboundLocalError: local variable 'blank_lines' referenced before assignment 

at 

org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handleP

ythonException(PythonRunner.scala:503) 

at 

org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner

.scala:638) 

at 

org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner

.scala:621) 

at 

org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(

PythonRunner.scala:456) 

... 1 more 

 
a. Why does the code above generate errors? ​(1 Marks) 
b. How can you fix the error? Please explain and write the fixed code below. ​(3 Marks) 

https://stackunderflow.com/


 
blank_lines variable is a global variable to driver but is not accessible by the executors, 

because of which the flatMap operation in each executor produces the error 

UnboundLocalError:  local variable 'blank_lines' referenced before assignment 
 
This error can be fixed using accumulators. Accumulators provides a simple syntax for 
aggregating values from worker nodes back to the driver program. They are only “added” to 
through an associative and commutative operation and can therefore be efficiently 
supported in parallel. 
 

twitter_rdd = sc.textFile('twitter.txt', 3) 

blank_lines = sc.accumulator(0) # Create Accumulator[int] intitialized to 0 

 

def extract_blank_lines(line): 

  ​  global blank_lines # make the global variable accessible 

    if line == "": 

        print(type(line)) 

        blank_lines += 1 

    return line.split(" ") 

   

word_rdds = twitter_rdd.flatMap(extract_blank_lines) 

word_rdds.collect() 

 

print("Blank lines: %d" %blank_lines.value) 

 

 
3. Finally, Chin wants to know, if we have two tables (let’s say Table R and Table S) and we 

want to perform an Outer Join query, if we use OJSO algorithm to process this outer join 
query, OJSO algorithm will be the same as ROJA algorithm. Is this statement correct? 
Please explain why. ​(2 Marks) 
 
OJSO is a load balancing algorithm for outer join. Load imbalance addressed by OJSO is 
applicable if there are more than 2 tables to be join (e.g. R join S join T), because after 
joining the first two tables, there will be load imbalance problem, and OJSO will solve this 
load imbalance problem with joining with the third table. 
 
In this question, there are only 2 tables (R and S), hence OJSO is the same as ROJA, 
because OJSO is based on ROJA. 
 

Question 3 
Tooba is a sessional lecturer and data scientist in Monash University and loves to bake cookies 
with M&Ms in them. She rewards her students in the university where she frequently teaches 
machine learning and data science courses with batches of those cookies. But she’s data-driven 
and wants to ensure that she gets the right colours of M&Ms in the cookies for students from 
different states in Australia. 



1. She has a computer with four processors. But she is planning to use only three processors                
to avoid resource contention. Given a data set D = {55; 30; 68; 39; 1; 4; 49; 90; 34; 76; 82;                     
56; 31; 25; 78; 56; 38; 32; 88; 9; 44; 98; 11; 70; 66; 89; 99; 22; 23; 26} and three                     
processors, show step-by-step how the Parallel Redistribution Merge-All Sort works. ​(3           
Marks) 

Assume random equal partitioning has been applied, where each processor has 10 
records. The first processor will get the first 10 records, etc. 

Processor 1 = {55; 30; 68; 39; 1; 4; 49; 90; 34; 76} 

Processor 2= {82; 56; 31; 25; 78; 56; 38; 32; 88; 9} 

Processor 3 = {44; 98; 11; 70; 66; 89; 99; 22; 23; 26} 

 

Parallel Redistribution Merge-All Sort 

Step 1: Local Sort  

Processor 1 = {1; 4; 30; 34; 39; 49; 55; 68; 76; 90} 

Processor 2= {9; 25; 31; 32; 38; 56; 56; 78; 82; 88} 

Processor 3 = {11; 22; 23; 26; 44; 66; 70; 89; 98; 99} 

 

Step 2: Redistribution  

Assume Processor 1=1-33, Processor 2=34-66; Processor 3=67-99 

Processor 1 =  

{1; 4; 30} 

{9; 25; 31; 32} 

{11; 22; 23; 26} 

Results = {1; 4; 9; 11; 22; 23; 25; 26; 30; 31; 32} 

 

Processor 2=  

{34; 39; 49; 55} 

{38; 56; 56} 



{44; 66} 

Results = {34; 38; 39; 44; 49; 55; 56; 56; 66} 

 

Processor 3 =  

{68; 76; 90} 

{78; 82; 88} 

{70; 89; 98; 99} 

Results = {68; 70; 76; 78; 82; 88; 89; 90; 98; 99} 

2. She was thinking of using internal sorting to perform the sort. However, she read on the                
internet that “​External Sorting is different from ​Internal Sorting​. Therefore, external           
sorting cannot use any of the Internal sorting methods”. Is this statement True or False?               
Explain the reason as well. ​(2 Marks) 

The statement is False. 

External sorting method is used when the entire dataset to be sorted cannot fit into the main                 
memory. Internal sorting method is a sorting method when the entire dataset to be sorted               
can fit into main memory. 

The way external sorting works is by dividing the dataset into a smaller dataset so that each                 
smaller dataset can fit into the main memory and these smaller datasets are sorted using               
an Internal Sorting method. 

 So, External sorting method uses Internal sorting. 

3. Upon further reading, Tooba found that there are two types of skewness: data skew and               
processing skew, that can hinder the efficient performance of parallel sorting.  

a. Explain what is ​data skew​ and​ processing skew​. ​(2 Marks) 
b. Considering data skew and processing skew, when should we use Parallel           

Redistribution Merge-All Sort, and when should we use Parallel Partitioned Sort?           
Also, explain why. ​(3 Marks) 

Data skew is caused by the unevenness of data placement in a disk in each local                 
processor, or by the previous operator. Unevenness of data placement is caused by the              
fact that data value distribution, which is used in the data partitioning function, may well be                
non-uniform due to the nature of data value distribution. If initial data placement is based on                
a round-robin data partitioning function, data skew will not occur. However, it is common for               
database processing to not involve a single operation only. It sometimes involves many             
operations, such as selection first, projection second, join third, and sort last. In this case,               
although initial data placement is even, other operators may have rearranged the data –              
some data are eliminated, or joined, and consequently, data skew may occur when the              
sorting is about to start. 



Processing skew is caused by the processing itself, and may be propagated by the data               
skew initially. For example, a parallel external sorting processing consists of several stages.             
Somewhere along the process, the workload of each processing element may not be             
balanced, and this is called processing skew. Notice that even when data skew may not               
exist at the start of the processing, skew may exist at a later stage of processing. If data                  
skew exists in the first place, it is very likely that processing skew will also occur. 

If the processing skew degree is high, then use Parallel Redistribution Merge-All Sort. If              
both data skew and processing skew degrees are high OR no skew, then use Parallel               
Partitioned Sort. 

When there is a high processing skew degree, parallel partitioned sort performs poorly.             
Why? One reason is that the skew occurs in the second phase of processing, that is in the                  
sorting phase of parallel partitioned sort, and in the final merging of parallel redistribution              
merge-all sort. The second phase of parallel partitioned sort is similar to the first phase of                
parallel redistribution merge-all sort. With processing skew exists, the second phase of            
parallel partitioned sort now becomes so expensive, whereas the first phase of parallel             
redistribution merge-all sort remains the same, since no processing skew is involved in the              
first phase of processing. This results in an extreme overhead to parallel partitioned sort,              
and this is why the performance of parallel partitioned sort is degraded. 

When both data and processing skews exist, the performance of parallel partitioned sort is              
now slightly better than parallel redistribution merge-all sort. The main reason is that data              
skew now affects the first phase of parallel redistribution merge-all sort (i.e. local sorting              
phase) very badly. On the other hand, data skew effect in the first phase of parallel                
partitioned sort (i.e. scanning phase) is not as bad, since the scanning phase, only a few                
operations are involved, particularly disk loading, reading, and partitioning. The first phase            
of parallel redistribution merge-all sort involves many more operations and they are all             
affected by data skew. 

Parallel partitioned sort outperforms parallel redistribution merge-all sort when no skew is            
involved. However, it is unreasonable to assume that in the parallel partitioned sort, where              
the first phase is a redistribution phase does not involve any data skew. 

Conclusion: parallel partitioned sort is suitable for only when no skew or both skew are               
involved. When processing skew exists without data skew, parallel partitioned sort does not             
perform as well as parallel redistribution merge-all sort. 

 Question 4 

2020 has been the year of Big Data – the year when big data and analytics made tremendous                  
progress through innovative technologies, data-driven decision making and outcome-centric         
analytics. You are applying for the job as a Data Scientist. Mohammad is a senior lecturer and data                  
scientist at Monash University, and a good friend of yours. He has prepared a list of questions                 
regarding Apache Spark and Machine Learning to help you prepare for the job interview. Please               
answer the following questions. 

1. In Apache Spark, machine learning pipelines provide a uniform set of high-level APIs built 
on top of DataFrames. It makes it easier to combine multiple algorithms into a single 



pipeline, or workflow. The key concepts introduced by the Pipelines API are DataFrame, 
Transformer, Estimator, Pipeline, and Parameter.  

a. What is Machine Learning and why should you use machine learning with Spark?​ (2 
Marks) 

b. What is a Transformer and an Estimator?​ (​2 Marks) 

Write your answer below 

Machine learning algorithms attempt to make predictions or decisions based on 
training data, often maximizing a mathematical objective about how the algorithm should 
behave. In machine learning, computers are taught to spot patterns in data. They adapt 
their behaviour based on automated modelling and analysis of the task they are trying to 
perform. 

MLlib is designed to run in parallel on clusters. MLlib contains a variety of learning 
algorithms and is accessible from all of Spark’s programming languages such as scala, 
java or python. 

 A Transformer is an abstraction that includes feature transformers and learned 
models. Technically, a Transformer implements a method transform(), which converts one 
DataFrame into another, generally by appending one or more columns. 

An Estimator is an algorithm which can be fit on a DataFrame to produce a 
Transformer. Technically, an Estimator implements a method fit(), which accepts a 
DataFrame and produces a Model, which is a Transformer. 

2. According to McKinsey study, 35% of what consumers purchase on Amazon and 75% of              
what they watch on Netflix is driven by machine learning–based product recommendations. 

a. Mohammad wants to know if you have understood how these recommendation           
systems work. So, please use the dataset below to recommend Top-2 movies to             
Mohammad. Please show all the calculations. ​(3 Marks) 

  



 

Name StarTrek StarWars Superman Batman Hulk 

Mohammad 4 2 ? 5 4 

Paras 5 3 4 ? 3 

Huashun 3 ? 4 4 3 
 

b. You are given a dataset “ratings” which contains movie ratings consisting of user,             
movie, rating and timestamp columns. The column names are ​userId, movieId,           
rating and ts respectively. Write a basic Machine Learning Program in PySpark to             
build and evaluate the recommendation model. Write the missing code snippets in            
the program given below. ​(3  Marks) 

 ​Write your answer below 

Sim(Mohammad, Paras) = (4x5)+(2x3)+(4x3)/(Sqrt(42+22+42)  x Sqrt(52+32+32) )=0.97 

Sim(Mohammad,Huashun) =  (4x3)+(5x4)+(4x3)/(Sqrt(42+52+42)  x Sqrt(32+42+32) )=1.00 

Calculate k as a normalising factor 

k =  ​1/((0.97+1))​ = 0.51 

R(Mohammad, Superman) = k x 
((𝑠𝑖𝑚(Mohammad,Paras)∗𝑅(Paras,𝑆𝑢𝑝𝑒𝑟𝑚𝑎𝑛))+(𝑠𝑖𝑚(Mohammad, 
Huashun)∗𝑅(Huashun,𝑆𝑢𝑝𝑒𝑟𝑚𝑎𝑛))) 
= 0.51((0.97∗4)+(1 ∗4)) 
= 4.02 
Top-2(Harry, movies)= Batman, Superman 
 

from pyspark.ml.recommendation import _______________________________ 

from pyspark.ml.evaluation import_____________________________________ 

 

Task #1: ​# split the dataset into training and test data (70% training and 30% test) 
(trainingData, testData) = ____________________ 

 

Task #2:​ Build the recommendation model using ALS on the training data 

# Use maxIter = 5, regParam = 0.01, coldStartStrategy = “drop”,  

# implicitPrefs = False 

 

# make predictions 

predictions = model.transform(testData) 

 

Task #3:​ Find and print the accuracy of the model  
# Write code below 
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from pyspark.ml.evaluation import​ RegressionEvaluator 

from pyspark.ml.recommendation import​ ALS 

# split the dataset into training and test data (70% training and 30% test) 

(trainingData, testData) = ratings.randomSplit([0.7, 0.3]) 

 ​# build the recommendation model using ALS on the training data 

# Use maxIter = 5, regParam = 0.01, coldStartStrategy = “drop”, 

# implicitPrefs = False 

als = ALS(maxIter=5, regParam=0.01, userCol="userId", itemCol="movieId", 
ratingCol="rating", coldStartStrategy="drop") 

model = als.fit(trainingData) 

# make predictions 

predictions = model.transform(testData) 

# find and print the accuracy of the model 

evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating", 

                                predictionCol="prediction") 

rmse = evaluator.evaluate(predictions) 

print("Accuracy is = " + str(1-rmse)) 

 

Question 5 

StopHacking is a start-up incubated in Monash University to develop cloud service to detect              
and stop computer hackers. Although they have some rule-based service to identify certain             
hacks, they would like to add machine learning models which can integrate with their Spark               
cluster to process large amounts of data and detect any potential hacks. The dataset              
contains an “attack” column representing whether the request was an attack or not.  
 
They hired you as ​the Lead ​Data Scientist and Peter (your intern) to investigate the open                
data from the Cyber Range Labs of UNSW Canberra and build a model based on the data                 
to identify abnormal system behaviour.  
 

Before proceeding with the development of ML models, Peter has some questions            
in mind that he would like your input on.  
 



1. Peter is not sure whether this is a classification or a regression problem. Is this a                
classification or a regression problem? Briefly discuss when do we use classification            
and regression with examples. ​(2 Marks) 
This is a classification problem. Here we are required to decide whether the row is               
an attack or not, i.e. predicting which class the target variable belongs to which              
qualifies it as a regression problem. On the other hand, regression is used when the               
output variable is real or continuous. For example, if we want to predict the              
real-estate prices based on historical data, it is a regression problem. 
 

2. Upon investigation of the data, Peter has found that the data is imbalanced. Please              
suggest ways to handle an imbalanced dataset. ​(1 Marks) 
One way to handle imbalanced data is resampling using stratified sampling to            
represent the data from both classes in a balanced ratio.  
Other approaches include using different performance metrics like        
Precision/Recall/F1-Score instead of accuracy to gauge the model performance. 
 

3. You have prepared an estimator for the Decision Tree Model. Executing a Decision             
tree algorithm is a simple task. But, Peter still has some doubts. ​(2 + 3 = 5 Marks) 

a. How does a tree splitting take place? Explain in the context of the ID3              
algorithm. 

b. The models perform great on the training data but generalize poorly to new             
instances. Peter is not sure what is happening. Can you explain what is             
happening and suggest  two possible solutions. 

a. The variable with highest information gain is selected as the splitting node            
and this process is repeated. 

b. Generalizing poorly with new instances means the model is overfitted where           
it performs very well with training dataset but poorly with test dataset. We             
can handle overfitting using techniques like Cross validation and         
regularization.  

  



4. What are False Positive(FP) and False Negative(FN) in a confusion matrix?            
Which value should we try to reduce in this scenario, discuss briefly?  ​(2 Marks) 

False Positive means when the predicted class is positive but the label is negative              
whereas False Negative means the predicted class is negative but the actual label is              
positive. 

In our use case, False Negative would mean the algorithm predicts an event as              
“non-attack” even when the event is an “attack”. This could mean, the attack goes              
undetected which could compromise the security resulting in serious consequences. On the            
contrary, False positive would mean the event is detected as an “attack” despite being a               
“non-attack”, which wouldn’t be so critical. 

Question 6 
Spectroscopy products developed at Divergent Technologies generate a lot of performance 
and diagnostic data. The data is typically stored locally on the controlling PC’s hard disk 
drive and only analysed for the purpose of reviewing function and performance as a part of 
short term test requirements. Further analysis (such as trend analysis, predictive analytics, 
comparative studies, regression / correlation, etc.) is currently very challenging and is done 
manually on an as-needs basis. 
 
You and Neha have been hired as summer interns to implement machine learning 
algorithms with the data generated by the spectroscopy products. These spectroscopy 
products have sensor arrays installed and it is anticipated that using ML techniques could 
prove extremely valuable that enable timely preventative maintenance of the sensors and / 
or responsive lower cost repairs. Ultimately, it may lead to the development of a sale-able 
product in this area, with potential use across the broader Divergent instrument portfolio. 
You are working on streaming data from the sensors and Neha has some questions for you 
before she can develop the machine learning models. 
 

1. The spectroscopy product has multiple sensors attached to it that measures 
different things for example light, gas and heat emission. Can you please explain 
two different methods that can be used to lower the granularity of the sensor 
arrays? ​(3 Marks) 
 
There are two methods to lower the granularity of sensor arrays that measure 
the different thing. 
(a) Method 1: Reduce, Normalise, and then Merge 
 
The first step is to reduce the granularity level of each sensor’s raw 
Data. Each sensor measures different things, so we need to normalise 
the raw data of each sensor, by categorising each raw data into several 
categories. The final step is to Merge this normalised data. The merging process 
can use a mean function which calculates the average of the categories. The 
mean could be a floating point number which indicates the average. 
 
(b) Method 2: Normalise, Merge and then Reduce 
 
The first step of the second method is to normalise each stream according 
to the categories. This normalisation is a Value Normalisation, which is basically 
reducing the granularity of the raw data into categories.The second step is to merge 
the normalised data streams. The merging is basically a 1-1 join operation based on 
the Timestamp, and then the matched records are aggregated based on the 



normalised sensor values. The third step is to reduce the granularity of the merged 
results. 

 
2. There are three main sensors in the Spectroscopy products. So, Neha is planning to 

send the data using three Kafka producers using the same topic 
“spectroscopy_streams”. The sensors are producing data as key value pairs in the 
format below and sent as bytes. 

 

“gas”: 125 
“light”: 3298 
“heat”: 78 

 
In the Apache Spark Streaming, the received data looks like below. 

 
 

Please complete the code below for Apache Spark Streaming to find the average for 
each sensor every 10 seconds.  

 

from pyspark.sql import SparkSession 

 

spark = SparkSession. ... 

 
Task #1: ​# Subscribe to the topic “​spectroscopy_streams”. The server is running 
on 192.168.0.10, port 9092. 
 

Task #2:​  Find the average for each sensor. 
 

Task #3:​ # Start running the query that prints the running counts to the console 
every 10 seconds. 
 
 
query.awaitTermination() 

 
The output will be as shown in the example below. 

 

 
 (3 Marks) 

from pyspark.sql import SparkSession 

 

spark = SparkSession. ... 



 
Task #1: ​# Subscribe to the topic “​spectroscopy_streams”. The server is running 
on 192.168.0.10, port 9092. 
 

df = spark \ 

  .readStream \ 

  .format("kafka") \ 

  .option("kafka.bootstrap.servers", "​192.168.0.10​:​9092​") \ 
  .option("subscribe", "​spectroscopy_streams​") \ 
  .load() 

 

Task #2:​  Find the average for each sensor. 
average_df = df.withColumn("key", decode(col("key"),'utf-8'))\ 
.withColumn("value",decode(col("value"),'utf-8'))\ 
.groupBy("key")\ 
.agg({'value':'mean'}) 
 

Task #3:​ # Start running the query that prints the running counts to the console 
every 10 seconds. 
 
query = average_df \ 
    .writeStream \ 
    .outputMode("Complete")\ 
    .format("console") \ 
    .trigger(processingTime='10 seconds') \ 
    .start() 
   
query.awaitTermination() 

 
3. Is the windowing method mentioned in the question time based window or tuple             

based window? Please explain. How can you enable time based overlapping sliding            
windows in Apache Spark Structured Streaming? ​(4 Marks) 

It is a time based window. We have a window size of 10 seconds and we process                 
the records that appear within the window. There is no overlapping between the             
windows in this case. 

We can enable time based overlapping sliding in Apache Spark Structured           
streaming using window-based aggregations. 

In window-based aggregations, the aggregate values are maintained for each          
window the event-time of a row falls into. In code, we can use window() operations               
to express windowed aggregations.  

words = ... # streaming DataFrame of schema { timestamp: Timestamp, word:            
String } 

# Group the data by window and word and compute the count of each group 

windowedCounts = words.groupBy( 



    window(words.timestamp, "10 minutes", "5 minutes"), 

    words.word 

).count() 

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#
window-operations-on-event-time 

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#window-operations-on-event-time
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#window-operations-on-event-time

