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1 Sample Statistics

• quartiles, percentiles, etc.: given n data points, rank them in increasing
value to get x1, ..., xn

– median, if n is odd, given by x(n+1)/2, if n is even given by 1
2
(xn/2 +

xn/2+1)

– quartiles, Q1 or Q3 is given by Qk = xp + q
4
(xp+1 − xp) where

p = floor((k(n+ 1))/4) and q = (k(n+ 1)) mod 4

– percentiles, Pk = xp + q
100

(xp+1 − xp) where p = floor((k(n +
1))/100) and q = (k(n+ 1)) mod 100

• measures of spread for n data points, x = (x1, ..., xn)

– Sample variance, var(x) = s2
x = 1

n−1

∑n
i=1(xi − x̄)2

– Sample standard deviation, sx

– Range = maxni=1 xi −minni=1 xi

– (inter-quartile range) IQR = Q3 −Q1

• Sample covariance

qxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

• Sample correlation coefficient

rxy =
qxy
sxsy

=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
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• boxplots

– represents numerical data through quar-
tiles

– the lower hinge is Q1, upper hinge is Q3

– a lower whisker is drawn at minimum
data value greater than the lower inner
fence is Q1 − 1.5 × IQR (which itself is
usually not draw)

– upper whisker is drawn at maximum
data value less than the upper inner
fence is Q3 + 1.5 × IQR (which itself is
usually not draw)

– outliers are highlighted outside these
two fences

2 Probability

• probability axioms of Kolmogorov:

1. for any event A, 0 ≤ p(A) ≤ 1

2. p(Ω) = 1, where Ω is the universal set, the set of everything

3. for mutually exclusive events A1, ... An p(A1 ∪ A2... ∪ An) =∑n
i=1 p(Ai)

• other probability identities for the domain X × Y where A,B are any
events:

– complement rule, p(A) = 1− p(A)

– product rule, p(B ∩ A) = p(B|A)p(A)

– sum rule, p(A) =
∑

x∈X p(x ∩ A)

– conditional, p(B|A) = p(B∩A)
p(A)

when p(A) > 0

– Bayes theorem, p(x|A) = p(A|x)p(x)∑
x∈X p(A|x)p(x)
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• for continuous random variables a probability density function (PDF)
p(x) on domain X satisfies

p(x) ≥ 0 for all x ∈ X

and ∫
X
p(x)dx = 1

• for continuous random variables, the probability X ∈ A, where A ⊂ X
is

p(X ∈ A) =

∫
A

p(x)dx.

• for X a single dimension, then define the cumulative density func-
tion (CDF), P (x), in terms of the the PDF p(x) as

P (x) =

∫
y<x

p(y)d y

and the quantile function Q(x) as

Q(x) = P−1(x)

this is well defined when p(x) > 0.

• Let the random variable pair (X, Y ) be from domain X × Y . We say
X and Y are independent if any of the following three (equivalent)
conditions hold for all x ∈ X and y ∈ Y

(I) p(X=x|Y=y) = p(X=x) when p(Y=y) > 0

(II) p(Y=y|X=x) = p(Y=y) when p(X=x) > 0

(III) p(Y=y ∩X=x) = p(X=x)p(Y=y)

3 Expected Values

• if X has domain X , expectation and variance of f(X):

E [f(X)] =
∑
x∈X

p(x)f(x)

V [f(X)] = E
[
(f(X)− E [f(X)])2

]
= E

[
f(X)2

]
− E [f(X)]2

with integral replacing sum for continuous RVs
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• some useful rules for RVs X, Y and constant c

– E [f(X) + g(Y )] = E [f(X)] + E [g(Y )]

– E [cf(X)] = cE [f(X)]

– V [cf(X)] = c2V [f(X)]

• if X, Y are independent RVs

– E [f(X)g(Y )] = E [f(X)]E [g(Y )]

– V [f(X) + g(Y )] = V [f(X)] + V [g(Y )]

• Chebyshev’s inequality: if X is a RV with mean µ and variance σ2,
then for any k > 0

p

(
|X − µ|

σ
≥ k

)
≤ 1

k2

• Chebyshev’s inequality for samples: for a sample S = {x1, ..., xN}
of variable X with mean x and sample standard deviation sx, then for
any k > 0 ∣∣∣∣{xi :

|xi − x|
sx

≥ k

}∣∣∣∣ ≤ N

k2

that is, the number of data points at least k sx from the mean is no
more than N

k2
.

• Weak law of large numbers: let X1, . . . , Xn be RVs with E [Xi] = µ;
then for any ε > 0

p

(∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

)
→ 0 as n→∞.

4 Distributions

• for the Gaussian or normal distribution, denoted N(µ, σ2)

p(x |µ, σ2) =

(
1

2πσ2

) 1
2

exp

(
−(x− µ)2

2σ2

)
and has the properties
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– E [x] = µ and V [x] = σ2

– the mode and the median are the same as the mean

– if the curve for p(x | 0, 1) is shifted to the right by µ and scaled by
1/σ, one gets the curve for p(x |µ, σ2)

• the discrete uniform distribution models discrete RVs denoted U(a, b)
and follows

P(X = k | a, b) =
1

b− a+ 1

where X ∈ {a, . . . , b} with b ≥ a, and has properties

– E[X] = a+b
2

and V[X] = (b−a+1)2−1
12

• the continuous uniform distribution models continuous RVs de-
noted U(a, b) with pdf

p(x | a, b) =


0 for x < a
1
b−a for a ≤ x ≤ b

0 for x > b

where a > b and

– The quantity a determines the start of the distribution

– The quantity w = b− a is the width of the distribution

– E[X] = a+b
2

= a+ w
2

and V[X] = (b−a)2

12
= w2

12

• the Bernoulli distribution models discrete, binary RVs, i.e., X =
{0, 1}, denoted Be(θ),

p(X = 1 | θ) = θ, θ ∈ [0, 1]

so that the parametric probability distribution is

p(x | θ) = θx(1− θ)(1−x)

and has properties

– E [x] = θ and V [x] = θ(1− θ)

Page 5 of 20



Cheatsheet

• the binomial distribution describes the probability of getting x suc-
cessful outcomes in n Bernoulli trials with probability of success θ,
denoted bin(θ, n), and x ∈ {0, 1, ..., n},

p(x |n, θ) =

(
n

x

)
θx(1− θ)(n−x)

and has properties

– E [x] = nθ and V [x] = nθ(1− θ)

• the Poisson distribution with rate parameter λ is the number of
events x occurring, for X = {0} ∪ N , denoted Pois(λ),

p(x |λ) =
λx exp (−λ)

x!

and has properties

– E [x] = λ and V [x] = λ

– if X ∼ Pois(λX) and Y ∼ Pois(λY ) then (X+Y ) ∼ Pois(λX +λY )

– bin(θ, n) ≈ Pois(nθ) for n� 1 and nθ small

• Note the Central Limit Theorem (CLT) has been moved to section 6
of this document.

5 Estimation

• have a sample x; let θ̂(x) be a point estimate for model parameter θ;

then θ̂(x) is unbiased if Ex

[
θ̂(x)

]
= θ, where the expectation is taken

over samples x

• the bias of the estimator is

bθ(θ̂) = Ex

[
θ̂(x)

]
− θ

• the variance of the estimator is

Vθ

[
θ̂
]

= Ex

[(
θ̂(x)− Ex

[
θ̂(x)

])2
]
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• the mean square error (MSE) of the estimator is

MSEθ
[
θ̂
]

= Ex

[(
θ̂(x)− θ

)2
]

= bθ(θ̂)
2 + Vθ

[
θ̂
]

• for sample x of size n distributed as N(µ, σ) the sum of squared
errors (SSE) of mean estimate µ is given by

SSE(µ) =
n∑
i=1

(xi − µ)2

and the point estimate µ̂ minimising SSE is the mean

µ̂ =
1

n

n∑
i=1

xi

• the method of maximum likelihood says we should use the model that
assigns the greatest probability to the data we have observed; formally,
the maximum likelihood estimator (MLE) is found by solving

Θ̂ = arg max
Θ
{p(x |Θ)}

where p(x |Θ) is called the likelihood function

• use L(x |Θ) to denote the negative log-likelihood, log 1/p(x |Θ)

• for sample x of size n distributed as N(µ, σ)

L(x |µ, σ2) =
n

2
log(2πσ2) +

1

2σ2
SSE(µ)

from this we get

– µ̂ML is the mean, same as when using the SSE

– the MLE for the variance is

σ̂2
ML =

1

n

n∑
i=1

(xi − µ̂)2

this is however biased, an unbiased estimate is

σ̂2
u =

1

n− 1

n∑
i=1

(xi − µ̂)2
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• the MLE estimates for λ of the Poisson and θ of the Bernoulli is also
the mean

• the MLE estimates for θ of the binomial, bin(θ,m), using sample x of
size n is

θ̂ML =
1

nm

n∑
i=1

xi

• let x be a sample of size n from a Gaussian population with mean µ
and variance σ2, and let m be the mean and s2 be the sample variance:

– m is Gaussian with mean, variance
(
µ, σ

2

n

)
–
√
n(m− µ)/s is Student’s t with n− 1 degrees of freedom

– these can be used to develop confidence bounds or hypothesis tests
for µ and σ2 respectively

• the Student’s t distribution with n degrees of freedom, denoted
Student−t(n), has the following properties:

– it looks like a standard normal as n→∞
– is symmetric about 0

– has mean EStun [X] = 0 for n > 1

∗ mean undefined for n = 1

– has variance VStun [X] = n
n−2

for n > 2

∗ variance undefined for n ≤ 2

6 CLT and Confidence Intervals

• Central Limit Theorem (CLT): have distribution with mean µ and
variance σ2, and sample n identical RVs X1, ..., Xn from it; then the
sample mean 1

n

∑n
i=1Xi is approximately distributed as N

(
µ, 1

n
σ2
)

for
large n. Likewise the sample sum

∑n
i=1Xi is approximately distributed

as N (nµ, nσ2) for large n.

• examples of the CLT

– it is exact in the case of the Gaussian
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– for the binomial, bin(θ, n) ≈ N(nθ, nθ(1 − θ)) for n � 1 and θ
not near 0 or 1

– for the Poisson, Pois(λ) ≈ N(λ, λ) for λ� 1

• let X have the CDF P (X), and Q(p) = P−1(p) is the corresponding
quantile function; then the (1 − α) two-sided confidence interval
for X is given by

[Q(α/2), Q(1− α/2)]

• consider the case for Z ∼ N(0, 1):

– let Z1−α/2 denotes the upper α/2 quantile for N(0, 1)

– we are 1− α confident Z ∼ N(0, 1) falls inside (−Z1−α/2, Z1−α/2)

– [−Z1−α/2, Z1−α/2] is called a (two-sided) confidence interval for
N(0, 1)

this is depicted in the unshaded part of the curve:

• let X have the CDF P (X), and Q(p) = P−1(p) is the correspond-
ing quantile function; then the (1 − α) one-sided lower confidence
interval for X is given by

[−∞, Q(1− α)]

and the (1−α) one-sided upper confidence interval for X is given
by

[Q(α), ∞]

• assume dataset of count n with mean X̄ and sample variance S2:
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assumptions parameter interval

Gaussian, σ2

known
µ X̄ ± Zα/2 σ√

n

Gaussian, σ2

unknown
µ X̄ ± tα/2,n−1

S√
n

• assume dataset of count n with mean X̄ and sample variance S2 and a
second dataset of count m with mean Ȳ and sample variance T 2:

assumptions parameter interval

Gaussian, σ2
1, σ2

2

known
µ1 − µ2 X̄ − Ȳ ± Zα/2

√
σ2

1/n+ σ2
2/m

Gaussian, σ2
1 =

σ2
2 unknown but

equal

µ1 − µ2 X̄ − Ȳ ± tα/2,n+m−2 SP

√
1
n

+ 1
m

for

S2
P = (n−1)S2+(m−1)T 2

n+m−2

Gaussian, σ2
1 6=

σ2
2 unknown, us-

ing CLT

µ1 − µ2 use 1st case for σ2
1 = S2, σ2

2 = T 2,
assuming n,m are large

• for Poisson, assume dataset of count n with mean X̂; for Bernoulli,
assume dataset of count n with mean p̂; also a 2nd dataset of count m
with mean q̂;

assumptions parameter interval

Poisson, λ un-
known, using
CLT

λ X̂ ± Zα/2
√
X̂/n

Bernoulli, θ
unknown, using
CLT

θ p̂± Zα/2
√
p̂(1− p̂)/n

Bernoulli, θ1, θ2

unknown, using
CLT

θ1 − θ2 p̂ − q̂ ±
Zα/2

√
p̂(1− p̂)/n+ q̂(1− q̂)/m
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7 Hypothesis Tests

• given an arbitrary test statistic x with CDF P (X) (i.e. x could be z
or t), then the p-value is given by

p =


2P (−|x|) if null hypothesis is equality
1− P (x) if null hypothesis involves ≤
P (x) if null hypothesis involves ≥

• assume dataset of count n with mean X̄ and sample variance S2:

assumptions null-hypo. test statistic

Gaussian, σ2

known
µ0 Z = X̄−µ0

σ/
√
n

Gaussian, σ2

unknown
µ0 tn−1 = X̄−µ0

S/
√
n

• assume dataset of count n with mean X̄ and sample variance S2 and a
second dataset of count m with mean Ȳ and sample variance T 2:

assumptions null-hypo. test statistic

Gaussian, σ2
1, σ2

2

known
∆µ0 Z = X̄−Ȳ−∆µ0√

σ2
1/n+σ2

2/m

Gaussian, σ2
1 =

σ2
2 unknown but

equal

∆µ0 tn+m−2 = X̄−Ȳ−∆µ0

SP

√
1
n

+ 1
m

for S2
P =

(n−1)S2+(m−1)T 2

n+m−2

Gaussian, σ2
1 6=

σ2
2 unknown, us-

ing CLT

∆µ0 use 1st case for σ2
1 = S2, σ2

2 = T 2,
assuming n,m are large

• for Poisson, assume dataset of count n with mean X̂; for Bernoulli,
assume dataset of count n with mean p̂; also a 2nd dataset of count m
with mean q̂; all using the CLT so require large samples (n, m)
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assumptions null-hypo. test statistic

Poisson, λ un-
known, using
CLT

λ0 Z = X̂−λ0√
λ0/n

Bernoulli, θ
unknown, using
CLT

θ0 Z = p̂−θ0√
θ0(1−θ0)/n

Bernoulli, θ1, θ2 ∆θ0 Z = p̂−q̂−∆θ0√
p̂(1−p̂)/n+q̂(1−q̂)/m

unknown, using If ∆θ0 = 0 this reduces to

CLT Z = p̂−q̂√
r̂(1−r̂)(1/n+1/m)

where r̂ = np̂+mq̂
n+m

8 Linear Regression

• simple least squares model has E [yi |xi] = β0 +β1xi and has a residual
sum of squares

RSS(β0, β1) =
n∑
i=1

(yi − β0 − β1xi)
2

• various intermediate formula are used to calculate quantities including
the sums

SSXX =
n∑
i=1

(xi −X)2 = n
(
X2 −X2

)
SSXY =

n∑
i=1

(xi −X)(yi − Y ) = n
(
XY −X Y

)
SSY Y =

n∑
i=1

(yi − Y )2 = n
(
Y 2 − Y 2

)
• with this the RSS can be minimised using the solution for β1 of

β̂1 =
SSXY
SSXX

=
XY −X Y

X2 −X2
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and the solution for β0 of

β̂0 = Y − β̂1X =
Y X2 −XY X

X2 −X2

• giving an RSS at the minimum of

RSS
(
β̂0, β̂1

)
=

SSY Y SSXX − SS2
XY

SSXX
= SSY Y − SSXX β̂1

2

• if we use the probability model yi ∼ N(β0 + β1xi, σ
2) then the log-

likelihood becomes

L(x,y | β0, β1, σ
2) =

n

2
log(2πσ2) +

RSS(β0, β1)

2σ2

• minimising this gives the same solution to β0, β1 as before and an
estimator for σ2

σ̂2
ML =

1

n
RSS(β̂0, β̂1)

plus an unbiased estimator of σ2 is given by

σ̂2
u =

1

n− 2
RSS(β̂0, β̂1)

• moreover, the following statistics can be used to develop confidence
intervals or hypothesis tests

1

σ2
RSS(β̂0, β̂1) ∼ χ2

n−2

1√
RSS
n(n−2)

X2

X2−X2

(β̂0 − β0) ∼ Student−t(n− 2)

1√
RSS
n(n−2)

1

X2−X2

(β̂1 − β1) ∼ Student−t(n− 2)

• a measure of quality for the linear regression is the R2 value computed
as

R2 = 1− RSS

SSY Y
=

SS2
XY

SSXXSSY Y
= r2

XY

which is in [0, 1], 1 for a perfect zero error fit, 0 for pure noise, and
higher for better quality fit
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• for multi-linear regression, the prediction instead becomes

E [yi |xi,1, . . . , xi,p] = β0 +

p∑
j=1

βjxi,j

and residual sum of squares (RSS) of

RSS(β0, β1, . . . , βp) =
n∑
i=1

(
yi − β0 −

p∑
j=1

βjxi,j

)2

• the design matrix given by X of predictors:

X = (1,x′1,x
′
2, . . . ,x

′
p) =


1 x1,1 x1,2 · · · x1,p

1 x2,1 x2,2 · · · x2,p
...

...
...

...
1 xn,1 xn,2 · · · xn,p

 ,

has corresponding parameters βT = (β0, β1, . . . , βp) yielding the pre-
diction

E [yi |xi] = Xβ

• minimising RSS(β) has solution

β̂ = (XTX)−1(XTY)

RSS(β̂) = YTY − β̂T (XTY)

• if we use the probability model yi ∼ N(xiβ, σ
2) then the log-likelihood

becomes

L(X,y |β, σ2) =
n

2
log(2πσ2) +

RSS(β)

2σ2

• minimising this gives the same solution to β as before and an estimator
for σ2

σ̂2
ML =

1

n
RSS(β̂)

plus an unbiased estimator of σ2 is given by

σ̂2
u =

1

n− p− 1
RSS(β̂)

Page 14 of 20



Cheatsheet

9 Classification and Clustering

• probability prediction formula for näıve Bayes classifier is

P (y |x1, . . . , xp) =
P (y)

∏p
j=1 P (xj | y)

P (x1, . . . , xp)

where the denominator is a constant so can be found by normalising
the renumerator.

• point estimation is done by estimating the probabilities P (Y = y) and
P (Xj = xj |Y = y) for all entries of the tables

• probability prediction formula for logistic regression classifier is
expressed using the logistic function

p(Yi = 1 |xi,1, ..., xi,p) =
1

1 + exp(−ηi)

where

ηi = β0 +

p∑
j=1

βjxi,j

so that the log-odds given by

log
p(Yi = 1 |xi,1, ..., xi,p)
p(Yi = 0 |xi,1, ..., xi,p)

= ηi

• the parameters (β0, β1, ...βp) are fit using optimising routines on the log
likelihood

10 More Classification

• log2(x) = logc(x)/logc(2) where c is any constant

• define entropy (to base 2 by default)

H(X) = E [log2 1/p(X)]
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• define condtional entropy (to base 2 by default)

H(X|Y ) =
∑
y

p(Y=y)H(X|Y=y)

where H(X|Y=y) is the entropy of the conditional distribution p(X|Y=
y).

• some properties of entropy where X has discrete domain X :

– if X of finite dimension K, then 0 ≤ H(X) ≤ K

– if H(X) = 0 then p(X=x) = 1 for some x ∈ X

• some useful rules for RVs X, Y

– H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )

• if X, Y are independent RVs

– H(X, Y ) = H(X) +H(Y )

• Information gain for predictor RV X and target RV Y is defined as

– I.G.(Y,X) = H(Y )−H(Y |X)

11 Simulation

• To obtain an inverse x = f−1(y) of the function y = f(x) you need to
make sure that for every value of x there is only one value of y = f(x)
for the domain of x being considered and then rearrange y = f(x)
so that x can be expressed as a function of y. Then also the domain
and range of y = f(x) becomes the range and domain of x = f−1(y),
respectively.

• Make sure you memorise the inverse sampling and rejection sampling
algorithms or you will get to the exam and read this and say ”oh,
bugger”.
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12 Tables for Standard Normal

Tables from http://www.z-table.com/ on the next 2 pages. One table for
z-values less than 0 and one table for z-values greater than 0 to help you find
p = F (z).

Table for z-values less than 0.
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Table for z-values greater than 0.
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13 Table for Student t

Table from http://www.ttable.org/. Provides critical t-values for specific sig-
nificance values for one- and two-sided t-tests.
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14 Calculus
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